Comptes Rendus
Cultural heritage investigations using cosmic muons
Comptes Rendus. Physique, Volume 19 (2018) no. 7, pp. 533-542.

Cosmic rays are a constant, free source of radiation that can be exploited in various ways to probe heavy and extended objects. Analyzed with proper detection systems, they can produce radiographic as well as tomographic images of bulky materials. Several applications have been proposed, in particular in the domain of security checks, and some are presently fielded for routine use. In this paper, cosmic muon technology is presented, and its possible use in the field of cultural heritage is described.

Les rayons cosmiques représentent une source constante et gratuite de radiation qui peut être utilisée de différentes façons pour sonder des objets massifs et volumineux. Analysés avec des systèmes de détection spécialisés, ils peuvent produire aussi bien des images radiographiques que des images tomographiques d'objets de grandes dimensions. De nombreuses applications ont été proposées, dont quelques-unes sont actuellement utilisées, notamment dans le domaine de la sécurité. Ce papier présente la technologie des muons cosmiques et décrit des utilisations possibles dans le domaine des biens culturels.

Published online:
DOI: 10.1016/j.crhy.2018.08.002
Keywords: Cosmic rays, Cultural heritage, Muon tomography, Muon radiography, Image reconstruction
Mot clés : Rayons cosmiques, Patrimoine culturel, Tomographie muons, Radiographie muons, Imagerie

Sara Vanini 1; Fabio Ambrosino 2, 3; Lorenzo Bonechi 4; Germano Bonomi 5; Paolo Checchia 6; Raffaello D'Alessandro 7, 4; Giancarlo Nebbia 6; Giulio Saracino 2, 3; Aldo Zenoni 5; Gianni Zumerle 6

1 University of Padova, via Marzolo 8, 35131 Padova, Italy
2 University of Napoli, Via Cinthia, 80126 Fuorigrotta, NA, Italy
3 INFN Sezione di Napoli, Strada Comunale Cintia, 80126 Napoli, Italy
4 INFN Sezione di Firenze, Via Giovanni Sansone, 1, 50019 Sesto Fiorentino, FI, Italy
5 University of Brescia, via Branze 38, 25123 Brescia, Italy
6 INFN Sezione di Padova, via Marzolo 8, 35131 Padova, Italy
7 University of Firenze, via G. Sansone, 1, 50019 Sesto Fiorentino, FI, Italy
@article{CRPHYS_2018__19_7_533_0,
     author = {Sara Vanini and Fabio Ambrosino and Lorenzo Bonechi and Germano Bonomi and Paolo Checchia and Raffaello D'Alessandro and Giancarlo Nebbia and Giulio Saracino and Aldo Zenoni and Gianni Zumerle},
     title = {Cultural heritage investigations using cosmic muons},
     journal = {Comptes Rendus. Physique},
     pages = {533--542},
     publisher = {Elsevier},
     volume = {19},
     number = {7},
     year = {2018},
     doi = {10.1016/j.crhy.2018.08.002},
     language = {en},
}
TY  - JOUR
AU  - Sara Vanini
AU  - Fabio Ambrosino
AU  - Lorenzo Bonechi
AU  - Germano Bonomi
AU  - Paolo Checchia
AU  - Raffaello D'Alessandro
AU  - Giancarlo Nebbia
AU  - Giulio Saracino
AU  - Aldo Zenoni
AU  - Gianni Zumerle
TI  - Cultural heritage investigations using cosmic muons
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 533
EP  - 542
VL  - 19
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.08.002
LA  - en
ID  - CRPHYS_2018__19_7_533_0
ER  - 
%0 Journal Article
%A Sara Vanini
%A Fabio Ambrosino
%A Lorenzo Bonechi
%A Germano Bonomi
%A Paolo Checchia
%A Raffaello D'Alessandro
%A Giancarlo Nebbia
%A Giulio Saracino
%A Aldo Zenoni
%A Gianni Zumerle
%T Cultural heritage investigations using cosmic muons
%J Comptes Rendus. Physique
%D 2018
%P 533-542
%V 19
%N 7
%I Elsevier
%R 10.1016/j.crhy.2018.08.002
%G en
%F CRPHYS_2018__19_7_533_0
Sara Vanini; Fabio Ambrosino; Lorenzo Bonechi; Germano Bonomi; Paolo Checchia; Raffaello D'Alessandro; Giancarlo Nebbia; Giulio Saracino; Aldo Zenoni; Gianni Zumerle. Cultural heritage investigations using cosmic muons. Comptes Rendus. Physique, Volume 19 (2018) no. 7, pp. 533-542. doi : 10.1016/j.crhy.2018.08.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.08.002/

[1] E. George Cosmic rays measure overburden of tunnel, Commonw. Eng., Volume 1955 (1955), pp. 455-457

[2] L.W. Alvarez et al. Search for hidden chambers in the pyramids, Science, Volume 167 (1970), pp. 832-839 | DOI

[3] K. Morishima et al. Discovery of a big void in Khufu's pyramid by observation of cosmic-ray muons, Nature, Volume 552 (2017), p. 386 | DOI

[4] K. Nagamine et al. Method of probing inner-structure of geophysical substance with the horizontal cosmic-ray muons and possible application to volcanic eruption prediction, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip., Volume 356 (1995) no. 2, pp. 585-595 | DOI

[5] K.R. Borozdin et al. Surveillance: radiographic imaging with cosmic-ray muons, Nature, Volume 422 (2003), p. 277 | DOI

[6] P. Checchia Review of possible applications of cosmic muon tomography, J. Instrum., Volume 11 (2016) no. 12

[7] M. Yoshimoto et al. Hyper-track selector nuclear emulsion readout system aimed at scanning an area of one thousand square meters, Prog. Theor. Exp. Phys., Volume 2017 (2017) no. 10 | DOI

[8] K. Jourde et al. Effects of upward-going cosmic muons on density radiography of volcanoes | arXiv

[9] J. Marteau et al. Muons tomography applied to geosciences and volcanology, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip., Volume 695 (2012), pp. 23-28 | DOI

[10] A. Anastasio et al. The MU-RAY detector for muon radiography of volcanoes, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip., Volume 732 (2013), pp. 423-426 | DOI

[11] D. Carbone et al. An experiment of muon radiography at Mt. Etna (Italy), Geophys. J. Int., Volume 196 (2014) no. 2, pp. 633-643 | arXiv | DOI

[12] L. Malmqvist et al. Theoretical studies of in-situ rock density determinations using underground cosmic-ray muon intensity measurements with application in mining geophysics, Geophysics, Volume 44 (1979) no. 9, pp. 1549-1569 | DOI

[13] H. Gómez et al. Studies on muon tomography for archaeological internal structures scanning, J. Phys. Conf. Ser., Volume 718 (2016) no. 5

[14] G. Saracino et al. Imaging of underground cavities with cosmic-ray muons from observations at Mt. Echia (Naples), Sci. Rep., Volume 7 (2017), p. 1181 | DOI

[15] L.G. Dedenko et al. Prospects of the study of geological structures by muon radiography based on emulsion track detectors, Bull. Lebedev Phys. Inst., Volume 41 (2014) no. 8, pp. 235-241 | DOI

[16] J. Klinger et al. Simulation of muon radiography for monitoring CO2 stored in a geological reservoir, Int. J. Greenh. Gas Control, Volume 42 (2015), pp. 644-654 | DOI

[17] G. Jonkmans et al. Nuclear waste imaging and spent fuel verification by muon tomography, Ann. Nucl. Energy, Volume 53 (2013), pp. 267-273 | DOI

[18] A. Clarkson et al. Characterising encapsulated nuclear waste using cosmic-ray Muon Tomography (MT), 4th International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications, 2015, pp. 1-7 | DOI

[19] D. Poulson et al. Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip., Volume 842 (2017), pp. 48-53 | DOI

[20] S. Chatzidakis; C.K. Choi; L.H. Tsoukalas Analysis of spent nuclear fuel imaging using multiple Coulomb scattering of cosmic muons, IEEE Trans. Nucl. Sci., Volume 63 (2016) no. 6, pp. 2866-2874 | DOI

[21] K. Borozdin et al. Cosmic ray radiography of the damaged cores of the Fukushima reactors, Phys. Rev. Lett., Volume 109 (2012) | DOI

[22] J. Perry et al. Imaging a nuclear reactor using cosmic ray muons, J. Appl. Phys., Volume 113 (2013) | DOI

[23] K.A. Olive et al. Review of particle physics, Chin. Phys. C, Volume 38 (2014) | DOI

[24] E. Aström et al. Precision measurements of linear scattering density using muon tomography, J. Instrum., Volume 11 (2016) no. 07

[25] L.J. Schultz et al. Statistical reconstruction for cosmic ray muon tomography, IEEE Trans. Image Process., Volume 16 (2007) no. 8, pp. 1985-1993 | DOI

[26] M. Benettoni et al. Noise reduction in muon tomography for detecting high density objects, J. Instrum., Volume 8 (2013) no. 12

[27] S. Xiao et al. A modified multi-group model of angular and momentum distribution of cosmic ray muons for thickness measurement and material discrimination of slabs, Nucl. Sci. Tech., Volume 29 (2018) no. 2, p. 28 | DOI

[28] T.J.S. Lee; A. Foley Novel precision enhancement algorithm with reduced image noise in cosmic muon tomography applications, Nucl. Technol. Radiat. Prot., Volume 31 (2016), pp. 51-64 | DOI

[29] K. Gnanvo et al. Detection and imaging of high-Z materials with a muon tomography station using GEM detectors, IEEE Nuclear Science Symposium & Medical Imaging Conference, 2010, pp. 552-559 | DOI

[30] X. Wang et al. Design and construction of muon tomography facility based on MRPC detector for high-Z materials detection, Anaheim, CA (2012), pp. 83-85 | DOI

[31] G. Russo et al. Strip detectors for a portal monitor application, J. Instrum., Volume 9 (2014) no. 11

[32] M. Biglietti et al. Development of a novel micro pattern gaseous detector for cosmic ray muon tomography, Pisa, Italy, 24–30 May 2015 (Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip.), Volume 824 (2016), pp. 220-222 | DOI

[33] A. Nishio et al. Development of nuclear emulsion detector for muon radiography, Phys. Proc., Volume 80 (2015), pp. 74-77 | DOI

[34] A. Anastasio et al. The MU-RAY detector for muon radiography of volcanoes, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip., Volume 732 (2013), pp. 423-426 | DOI

[35] W. Priedhorsky et al. Detection of high-Z objects using multiple scattering of cosmic ray muons, Rev. Sci. Instrum., Volume 74 (2003), pp. 4294-4297 | DOI

[36] G. Blanpied et al. Material discrimination using scattering and stopping of cosmic ray muons and electrons: differentiating heavier from lighter metals as well as low-atomic weight materials, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip., Volume 784 (2015), pp. 352-358 | DOI

[37] Muons scanner to detect radioactive sources hidden in scrap metal containers (MU-STEEL), EU publications Research Fund for Coal and Steel RFSR-CT-2010-00033, . | DOI

[38] Study of the capability of muon tomography to map the material composition inside a blast furnace (MU-BLAST), EU Publications Research Fund for Coal and Steel RFSR-CT-2014-00027.

[39] H. Xianfeng et al. Exploring the capability of muon scattering tomography for imaging the components in the blast furnace, ISIJ Int., Volume 58 (2018) no. 1, pp. 35-42 | DOI

[40] G. Nagamine, et al., Probing the inner structure of blast furnaces by cosmic-ray muon radiography, INIS 41.

[41] N.N.W.B. Gilboy; P.M. Jenneson Industrial thickness gauging with cosmic-ray muons, Radiat. Phys. Chem., Volume 74 (2005) no. 6, pp. 454-458 | DOI

[42] J. Sauerwald, et al., Investigation of the coke network and cohesive zone by muon tomography, Technical contribution to the 6th International Congress on the Science and Technology of Ironmaking ICST.

[43] P. Checchia et al. Muon tomography for spent nuclear fuel control, ESARDA Bull., Volume 54 (2017), p. 2

[44] S. Pesente et al. First results on material identification and imaging with a large-volume muon tomography prototype, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip., Volume 604 (2009) no. 3, pp. 738-746 | DOI

[45] I. Bodini et al. Cosmic ray detection based measurement systems: a preliminary study, Meas. Sci. Technol., Volume 18 (2007) no. 11, p. 3537

[46] A. Donzella Stability monitoring of a historical building by means of cosmic ray tracking, Nuovo Cimento, Volume 37C (2014), pp. 223-232

Cited by Sources:

Comments - Policy