In this paper are reviewed some recent progress on the understanding and simulation of aluminum alloy age hardening. The main phenomena governing the formation of precipitate microstructures in aluminum alloys are presented; they provide a qualitative understanding of the relationship between alloy chemistry, processing and final precipitate microstructure at the nanoscale. In a second part, we describe how modeling approaches are capable of predicting these microstructures, from simple models to more advanced ones. A particular emphasis is put on the limits of these models and the strategies that are being developed to overcome them. In a third part, the mechanisms for precipitation strengthening will be discussed, as well as the models available to quantify this strengthening. Finally, in the last part, we will give some general prospects for the main developing areas of research.
Dans cet article, nous examinons quelques progrès récents en matière de compréhension et de simulation du durcissement par revenu des alliages d'aluminium. Les principaux phénomènes régissant la formation des précipités dans des alliages d'aluminium sont présentés. Ils fournissent une compréhension qualitative de la relation entre la composition des alliages, le traitement thermique et la taille des précipités à l'échelle nanométrique. Dans une seconde partie, nous décrivons comment les approches de modélisation sont capables de prédire ces microstructures, des modèles simples aux modèles plus avancés. Un accent particulier est mis sur les limites de ces derniers et sur les stratégies développées pour les surmonter. Dans une troisième partie, les mécanismes de durcissement des précipitations seront abordés, ainsi que les modèles disponibles pour quantifier ce durcissement. Enfin, dans la dernière partie, nous donnerons quelques perspectives générales.
Mot clés : Revenu, Durcissement, Guinier–Preston, Monte Carlo, Germination, Coalescence
Christophe Sigli 1; Frédéric De Geuser 2; Alexis Deschamps 2; Joël Lépinoux 2; Michel Perez 3
@article{CRPHYS_2018__19_8_688_0, author = {Christophe Sigli and Fr\'ed\'eric De Geuser and Alexis Deschamps and Jo\"el L\'epinoux and Michel Perez}, title = {Recent advances in the metallurgy of aluminum alloys. {Part} {II:} {Age} hardening}, journal = {Comptes Rendus. Physique}, pages = {688--709}, publisher = {Elsevier}, volume = {19}, number = {8}, year = {2018}, doi = {10.1016/j.crhy.2018.10.012}, language = {en}, }
TY - JOUR AU - Christophe Sigli AU - Frédéric De Geuser AU - Alexis Deschamps AU - Joël Lépinoux AU - Michel Perez TI - Recent advances in the metallurgy of aluminum alloys. Part II: Age hardening JO - Comptes Rendus. Physique PY - 2018 SP - 688 EP - 709 VL - 19 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2018.10.012 LA - en ID - CRPHYS_2018__19_8_688_0 ER -
%0 Journal Article %A Christophe Sigli %A Frédéric De Geuser %A Alexis Deschamps %A Joël Lépinoux %A Michel Perez %T Recent advances in the metallurgy of aluminum alloys. Part II: Age hardening %J Comptes Rendus. Physique %D 2018 %P 688-709 %V 19 %N 8 %I Elsevier %R 10.1016/j.crhy.2018.10.012 %G en %F CRPHYS_2018__19_8_688_0
Christophe Sigli; Frédéric De Geuser; Alexis Deschamps; Joël Lépinoux; Michel Perez. Recent advances in the metallurgy of aluminum alloys. Part II: Age hardening. Comptes Rendus. Physique, Volume 19 (2018) no. 8, pp. 688-709. doi : 10.1016/j.crhy.2018.10.012. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.10.012/
[1] The Preston of the Guinier–Preston zones. Guinier, Metall. Mater. Trans., Phys. Metall. Mater. Sci., Volume 41A (2010) no. 8, pp. 1873-1882
[2] A Century of Excellence in Measurements, Standards, and Technology, NIST, 2002
[3] Annotated Equilibrium Diagrams of Some Aluminium Alloy Systems, Monograph and Report Series, vol. 25, Institute of Metals, London, 1959
[4] Computer Calculation of Phase Diagrams. With Special Reference to Refractory Metals, Academic Press, New York, 1970
[5] The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al–Cu–Li–X alloy, J. Light Met., Volume 1 (2001) no. 14, pp. 1-14
[6] Influence of natural ageing and deformation on precipitation in an Al–Cu–Li alloy, Adv. Eng. Mater., Volume 15 (2013) no. 11, pp. 1082-1085
[7] The influence of Cu/Li ratio on precipitation in Al–Cu–Li–x alloys, Acta Mater., Volume 61 (2013), pp. 2207-2218
[8] Influence of Mg, Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an Al–Cu–Li alloy, Acta Mater., Volume 133 (2017), pp. 172-185
[9] The effect of minor solute additions on the precipitation path of an AlCuLi alloy, Acta Mater., Volume 115 (2016), pp. 104-114
[10] In-situ small-angle X-ray scattering study of dynamic precipitation in an Al–Zn–Mg–Cu alloy, Philos. Mag., Volume 83 (2003) no. 6, pp. 677-692
[11] Evolution of precipitate microstructure during creep of an AA7449 T7651 aluminum alloy, Metall. Mater. Trans. A, Volume 42 (2011), pp. 3934-3940
[12] In situ evaluation of dynamic precipitation during plastic straining of an Al–Zn–Mg–Cu alloy, Acta Mater., Volume 60 (2012) no. 5, pp. 1905-1916
[13] Quantitative measurements of dynamic precipitation during fatigue of an Al–Zn–Mg–(Cu) alloy using small-angle X-ray scattering, Acta Mater., Volume 74 (2014), pp. 96-109
[14] Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds, Acta Mater., Volume 53 (2005) no. 8, pp. 2447-2458
[15] On the coupling between precipitation and plastic deformation in relation with friction stir welding of AA2024 T3 aluminium alloy, Mater. Sci. Eng. A, Volume 441 (2006) no. 1–2, pp. 39-48
[16] Precipitation kinetics in a severely plastically deformed 7075 aluminium alloy, Acta Mater., Volume 66 (2014), pp. 105-117
[17] Influence of predeformation on ageing in an Al–Zn–Mg alloy – I. Microstructure evolution and mechanical properties, Acta Mater., Volume 47 (1999) no. 1, pp. 281-292
[18] et al. Low-temperature dynamic precipitation in a supersaturated Al–Zn–Mg alloy and related strain hardening, Philos. Mag. A, Volume 79 (1999) no. 10, pp. 2485-2504
[19] Modelling the effect of deformation-induced vacancies on segregation and precipitation, Acta Metall. Mater., Volume 42 (1994) no. 1, pp. 133-141
[20] Quantifying the strain-induced dissolution of precipitates in Al alloy microstructures using nuclear magnetic resonance, Acta Mater., Volume 57 (2009) no. 19, pp. 5645-5653
[21] Dislocation interaction with semicoherent precipitates (Omega phase) in deformed Al–Cu–Mg–Ag alloy, Acta Mater., Volume 46 ( Sep. 1998 ) no. 15, pp. 5483-5490
[22] The influence of precipitation on plastic deformation of Al–Cu–Li alloys, Acta Mater., Volume 61 (2013), pp. 4010-4021
[23] An investigation of the strain dependence of dynamic precipitation in an Al–Zn–Mg–Cu alloy, Scr. Mater., Volume 136 (2017), pp. 120-123
[24] The effect of interrupted aging on the yield strength and uniform elongation of precipitation-hardened Al alloys, Acta Mater., Volume 61 ( Sep. 2013 ) no. 15, pp. 5877-5894
[25] Integrated modeling of friction stir welding of 6xxx series Al alloys: process, microstructure and properties, Prog. Mater. Sci., Volume 57 (2012) no. 1, pp. 95-183
[26] Microstructure mapping of a friction stir welded AA2050 Al–Li–Cu in the T8 state, Philos. Mag., Volume 94 (2014) no. 13, pp. 1451-1462
[27] Microstructure distribution in an AA2050 T34 friction stir weld and its evolution during post-welding heat treatment, Acta Mater., Volume 101 (2015), pp. 90-100
[28] Phase Transformations (H.I. Aaronson, ed.), American Society for Metals, 1968, pp. 219-268
[29] Implementation of the classical nucleation theory for precipitation, Acta Mater., Volume 56 (2008), pp. 2119-2132
[30] Corrigendum to ‘Implementation of classical nucleation and growth theories for precipitation’, Acta Mater., Volume 57 (2009) no. 4, p. 1318
[31] Precipitation in Al–Zr–Sc alloys: a comparison between kinetic Monte Carlo, cluster dynamics and classical nucleation theory, Solid-Solid Phase Transformations in Inorganic Materials 2005, 2005
[32] Nucleation of Al3Zr and Al3Sc in aluminum alloys: from kinetic Monte Carlo simulations for classical theory, Phys. Rev. B, Volume 69 (2004)
[33] Precipitation kinetics of Al3Zr and Al3Sc in aluminum alloys modeled with cluster dynamics, Acta Mater., Volume 53 ( May 2005 ) no. 8, pp. 2313-2325
[34] Kinetics of precipitation: comparison between Monte Carlo simulations, cluster dynamics and the classical theories, Defect Diffus. Forum, Volume 237–240 (2005), pp. 671-676
[35] Gibbs–Thomson effect in phase transformations, Scr. Mater., Volume 52 (2005), pp. 709-712
[36] Numerical integration of the Gibbs–Thomson equation for multicomponent systems, Scr. Mater., Volume 66 (2012), pp. 419-422
[37] Homogeneous second-phase precipitation (G. Kostorz, ed.), Phase Transformations in Materials, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 2005, pp. 309-407
[38] Kinetics of vanadium carbonitride precipitation in steel: a computer model, Acta Mater., Volume 53 (2005), pp. 3359-3367
[39] Modelling of kinetics in multi-component multi-phase systems with spherical precipitates: II: numerical solution and application, Mater. Sci. Eng. A, Volume 385 (2004) no. 1, pp. 157-165
[40] MatCalc – A simulation tool for multicomponent thermodynamics, diffusion and phase transformation kinetics, Mathematical Modelling of Weld Phenomena, 2001, pp. 349-361
[41] Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I: theory, Mater. Sci. Eng. A, Volume 385 (2004), pp. 166-174
[42] Modeling precipitation kinetics during heat treatment with CALPHAD-based tools, J. Mater. Eng. Perform., Volume 23 (2014) no. 12, pp. 4193-4196
[43] Interfacial contribution to cluster free-energy, Surf. Sci., Volume 144 (1984) no. 1, pp. 53-66
[44] Interfacial reaction rates and free energy of cubic clusters, Philos. Mag., Volume 85 (2005) no. 30, pp. 3585-3621
[45] Contribution of matrix frustration to the free energy of cluster distributions in binary alloys, Philos. Mag., Volume 86 (2006) no. 32, pp. 5053-5082
[46] On the effect of concentrated solid solutions on properties of clusters in a model binary alloy, Philos. Mag., Volume 96 (2016) no. 10, pp. 955-971
[47] Multiscale modelling of precipitation in concentrated alloys: from atomistic Monte Carlo simulations to cluster dynamics I thermodynamics, Philos. Mag., Volume 98 (2018) no. 1, pp. 1-19
[48] Order and phase stability in alloys (F.R. De Boer; D.G. Pettifor, eds.), Cohesion and Structure, vol. 3, North Holland, Amsterdam, The Netherlands, 1991
[49] Séparation de phase dans les alliages Al–Zr–Sc : du saut des atomes à la croissance de précipités ordonnés, École centrale, Paris, 2004 (PhD Thesis)
[50] Cluster variation method calculation of the metastable aluminum–lithium phase diagram, San Diego, CA, USA, March 4–5 (1992), pp. 207-216
[51] Statistical theory of nucleation, condensation and coagulation, Adv. Phys., Volume 25 (1976) no. 4, pp. 343-396
[52] Influence of cluster mobility on Cu precipitation in α-Fe: a cluster dynamics modeling, Acta Mater., Volume 58 ( May 2010 ) no. 9, pp. 3400-3405
[53] Modeling homogeneous precipitation with an event-based Monte Carlo method: application to the case of Fe–Cu, Acta Mater., Volume 58 (2010) no. 9, pp. 3295-3302
[54] Theoretical study of the thermodynamic properties of α– interphase boundaries in Al–Li, Acta Mater., Volume 44 (1996) no. 10, pp. 4131-4136
[55] Experimental, computational and theoretical studies of phase coarsening in Al–Li alloys, Acta Mater., Volume 60 (2012) no. 16, pp. 5803-5817
[56] Length scales in phase coarsening: theory, simulation, and experiment, Comput. Mater. Sci., Volume 34 (2005) no. 3, pp. 235-253
[57] Role of interfacial energy during solid-state phase transformations, Jernkontorets Ann., Volume 141 (1957), pp. 757-789
[58] Theory of diffusion-limited precipitation, J. Phys. Chem. Solids, Volume 6 (1958) no. 4, pp. 335-351
[59] Precipitation of non-spherical particles in aluminum alloys part I: generalization of the Kampmann–Wagner numerical model, Metall. Mater. Trans. A, Volume 47 (2016), pp. 581-588
[60] Shape factors in modeling of precipitation, Mater. Sci. Eng. A, Volume 441 (2006) no. 1, pp. 68-72
[61] et al. Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy, Acta Mater., Volume 62 (2014), pp. 129-140
[62] Over-ageing of an Al–Mg–Si alloy with silicon excess, Mater. Sci. Eng. A, Volume 730 (2018), pp. 92-105
[63] G. Meyruey, V. Massardier, M. Perez, Modelling the precipitation sequence of an Al–Mg–Si alloy with Si excess, 2018.
[64] Electrochemical investigation of solubility and chemical diffusion of lithium in aluminum, Metall. Trans. B, Volume 11 (1980), p. 131
[65] Atomistic calculations of interfacial energies, nucleus shape and size of theta′ precipitates in Al–Cu alloys, Acta Mater., Volume 54 (2006) no. 18, pp. 4699-4707
[66] B.P. Uberuaga, D. Perez, A.F. Voter, Atomistic simulation methods for long-time dynamics in materials for nuclear energy systems, Los Alamos National Lab. (LANL), Los Alamos, NM, USA, LA-UR-18-25928, 2018.
[67] Focus issue: advanced atomistic algorithms in materials science introduction, J. Mater. Res., Volume 33 (2018) no. 7, pp. 773-776
[68] Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table, J. Chem. Phys., Volume 115 (2001) no. 21, pp. 9657-9666
[69] Kinetic activation–relaxation technique: an off-lattice self-learning kinetic Monte Carlo algorithm, Phys. Rev. B, Volume 78 (2008) no. 15
[70] Simulating complex atomistic processes: on-the-fly kinetic Monte Carlo scheme with selective active volumes, Phys. Rev. B, Volume 84 (2011) no. 13
[71] The superposition of strengthening contributions in engineering alloys, Mater. Sci. Eng., Struct. Mater.: Prop. Microstruct. Process., Volume 582 (2013), pp. 147-154
[72] Dislocations, Elsevier, 2013
[73] Thermodynamics and Kinetics of Slip, Progress in Materials Science, vol. 19, Pergamon, Oxford, 1975
[74] Microstructure-based modelling of isotropic and kinematic strain hardening in a precipitation hardening aluminium alloy, Acta Mater., Volume 59 (2011), pp. 3621-3635
[75] Strength contributions from precipitates, Philos. Mag. Lett., Volume 95 (2015) no. 12, pp. 594-601
[76] Strain hardening rate in relation to microstructure in precipitation hardening materials, J. Phys. IV, Volume 10 (2000) no. P6, pp. 151-156
[77] The shearable–non-shearable transition in Al–Mg–Si–Cu precipitation hardening alloys: implications on the distribution of slip, work hardening and fracture, Philos. Mag., Volume 85 (2005), pp. 3113-3135
[78] The effect of precipitate shape and orientation on dispersion strengthening in high strength aluminium alloys, Mater. Sci. Forum, Volume 217–222 (1996), pp. 1257-1262
[79] On the strengthening response of aluminum alloys containing shear-resistant plate-shaped precipitates, Acta Mater., Volume 56 (2008) no. 20, pp. 6109-6122
[80] Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al–Cu–Li alloy, Acta Mater., Volume 75 (2014), pp. 134-146
[81] Microstructural design of high-strength aluminum alloys, J. Phase Equilib., Volume 19 (1998) no. 6, p. 543
[82] Kinetics of flow and strain-hardening, Acta Metall., Volume 29 (1981) no. 11, pp. 1865-1875
[83] Dislocation density-related constitutive modeling (A.S. Krausz; K. Krausz, eds.), Unified Constitutive Laws of Plastic Deformation, Academic Press, 1996
[84] A model for the grain size dependent work hardening of copper, Scr. Mater., Volume 55 (2006) no. 8, pp. 739-742
[85] Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6, Acta Mater., Volume 55 (2007) no. 18, pp. 6133-6143
[86] Cyclic behaviour of a 6061 aluminium alloy: coupling precipitation and elastoplastic modelling, Acta Mater., Volume 83 (2015), pp. 256-258
[87] Combinatorial approaches for the design of metallic alloys, C. R. Physique, Volume 19 (2018) (in this issue) | DOI
[88] A combinatorial approach for studying the effect of Mg concentration on precipitation in an Al–Cu–Li alloy, Scr. Mater., Volume 110 (2016), pp. 44-47
[89] High throughput evaluation of the effect of Mg concentration on natural ageing of Al–Cu–Li–(Mg) alloys, Scr. Mater., Volume 150 (2018), pp. 156-159
[90] Cluster expansions for thermodynamics and kinetics of multicomponent alloys, J. Phase Equilib. Diffus., Volume 37 (2016) no. 1, pp. 44-52
[91] Neural network potential for Al–Mg–Si alloys, Phys. Rev. Mater., Volume 1 (2017) no. 5
[92] Ab initio modelling of the early stages of precipitation in Al-6000 alloys, Acta Mater., Volume 140 (2017), pp. 240-249
Cited by Sources:
Comments - Policy