Comptes Rendus
Spatial brain networks
[Réseaux neuronaux spatiaux]
Comptes Rendus. Physique, Volume 19 (2018) no. 4, pp. 253-264.

Le cerveau humain est un organe merveilleusement complexe, caractérisé par une connectivité hétérogène entre les unités cellulaires et tissulaires. Cette complexité alimente le riche répertoire de dynamiques et de fonctions caractéristiques de la cognition humaine. Bien que les études sur la connectivité neuronale aient fourni des informations importantes sur la cognition saine ainsi que sur son altération observée dans les troubles psychiatriques et les maladies neurologiques, il reste difficile de comprendre comment cette connectivité est intégrée à l'espace tridimensionnel du crâne. Dans cet article, nous allons expliquer l'importance de l'étude du cerveau en tant que réseau spatialement intégré, en particulier pour comprendre les règles de son développement et les modifications de ces dernières qui peuvent intervenir dans les troubles neurologiques du développement tels que la schizophrénie. Nous examinerons la découverte récente de règles de câblage bien définies dans le cerveau, en nous appuyant sur les notions de minimisation du câblage, de modules spatialement localisés et de topologie imbriquée hiérarchiquement. Nous discuterons ensuite les moteurs potentiels qui gouvernent ces règles en matière d'évolution, de génétique, d'énergie et de nécessité d'une complexité computationnelle. Enfin, nous conclurons par une discussion des perspectives actuelles dans l'étude des réseaux neuronaux spatiaux, à la fois en matière de théorie et de modélisation, ainsi que leur potentiel pour améliorer notre compréhension de la santé mentale.

The human brain is a wonderfully complex organ characterized by heterogeneous connectivity between cellular and tissue units. This complexity supports the rich repertoire of dynamics and function that is characteristic of human cognition. While studies of brain connectivity have provided important insight into healthy cognition as well as its alteration in psychiatric disorders and neurological disease, an understanding of how this connectivity is embedded into the 3-dimensional space of the skull has remained elusive. In this article, we will motivate the importance of studying the brain as a spatially embedded network, particularly for understanding the rules of its development and alterations to those rules that may occur in neurodevelopmental disorders such as schizophrenia. We will review recent evidence for well-defined wiring rules in the brain, informed by notions of wiring minimization, spatially localized modules, and hierarchically nested topology. We will then discuss potential drivers of these rules in the form of evolution, genetics, energy, and the need for computational complexity. Finally, we will conclude with a discussion of emerging frontiers in the study of spatial brain networks, both in theory and modeling, and their potential to enhance our understanding of mental health.

Publié le :
DOI : 10.1016/j.crhy.2018.09.006
Keywords: Brain network, Spatial embedding, Development
Mot clés : Réseau neuronal, Réseaux spatiaux, Développement du cerveau
Danielle S. Bassett 1, 2, 3, 4 ; Jennifer Stiso 1, 5

1 Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
2 Department of Physics & Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
3 Department of Electrical & Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
4 Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
5 Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
@article{CRPHYS_2018__19_4_253_0,
     author = {Danielle S. Bassett and Jennifer Stiso},
     title = {Spatial brain networks},
     journal = {Comptes Rendus. Physique},
     pages = {253--264},
     publisher = {Elsevier},
     volume = {19},
     number = {4},
     year = {2018},
     doi = {10.1016/j.crhy.2018.09.006},
     language = {en},
}
TY  - JOUR
AU  - Danielle S. Bassett
AU  - Jennifer Stiso
TI  - Spatial brain networks
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 253
EP  - 264
VL  - 19
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.09.006
LA  - en
ID  - CRPHYS_2018__19_4_253_0
ER  - 
%0 Journal Article
%A Danielle S. Bassett
%A Jennifer Stiso
%T Spatial brain networks
%J Comptes Rendus. Physique
%D 2018
%P 253-264
%V 19
%N 4
%I Elsevier
%R 10.1016/j.crhy.2018.09.006
%G en
%F CRPHYS_2018__19_4_253_0
Danielle S. Bassett; Jennifer Stiso. Spatial brain networks. Comptes Rendus. Physique, Volume 19 (2018) no. 4, pp. 253-264. doi : 10.1016/j.crhy.2018.09.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.09.006/

[1] E.H. Shen; C.C. Overly; A.R. Jones Trends Neurosci., 35 (2012), p. 711

[2] L. Madisen; T.A. Zwingman; S.M. Sunkin; S. Wook Oh; H.A. Zariwala; H. Gu; L.L. Ng; R.D. Palmiter; M.J. Hawrylycz; A.R. Jones; E.S. Lein; H. Zeng Nat. Neurosci., 13 (2010) | DOI

[3] M. Shariatgorji; A. Nilsson; R. Goodwin; P. Kllback; N. Schintu; X. Zhang; A. Crossman; E. Bezard; P. Svenningsson; P. Andren Neuron, 84 (2014), p. 697

[4] E. Bullmore; O. Sporns Nat. Rev. Neurosci., 10 (2009), p. 186

[5] J.C. Reijneveld; S.C. Ponten; H.W. Berendse; C.J. Stam Clin. Neurophysiol., 118 (2007), p. 2317

[6] M. Kaiser NeuroImage, 57 (2011), p. 892

[7] D.S. Bassett; D.L. Greenfield; A. Meyer-Lindenberg; D.R. Weinberger; S.W. Moore; E.T. Bullmore PLoS Comput. Biol., 6 (2010)

[8] D.S. Bassett; P. Zurn; J.I. Gold Nat. Rev. Neurosci., 19 (2010)

[9] D.S. Bassett; O. Sporns Nat. Neurosci., 20 (2017), p. 353 | arXiv

[10] M. Ekman; J. Derrfuss; M. Tittgemeyer; C.J. Fiebach Proc. Natl. Acad. Sci., 109 (2012)

[11] B.A. Zielinski; E.D. Gennatas; J. Zhou; W.W. Seeley Proc. Natl. Acad. Sci. USA, 107 (2010)

[12] D.S. Bassett; E.T. Bullmore Curr. Opin. Neurol., 22 (2009), p. 340

[13] C.J. Stam Nat. Rev. Neurosci., 15 (2014), p. 683

[14] A. Fornito; E.T. Bullmore; A. Zalesky Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2 (2017), p. 9

[15] M. Barthélemy Phys. Rep., 499 (2011), p. 1

[16] B.T. Yeo; F.M. Krienen; J. Sepulcre; M.R. Sabuncu; D. Lashkari; M. Hollinshead; J.L. Roffman; J.W. Smoller; L. Zollei; J.R. Polimeni; B. Fischl; H. Liu; R.L. Buckner J. Neurophysiol., 106 (2011), p. 1125

[17] B.L. Chen; D.H. Hall; D.B. Chklovskii Proc. Natl. Acad. Sci. USA, 103 (2006), p. 4723

[18] S.W. Oh; J.A. Harris; L. Ng; B. Winslow; N. Cain; S. Mihalas; Q. Wang; C. Lau; L. Kuan; A.M. Henry et al. Nature, 508 (2014), p. 207

[19] C.-T. Shih; O. Sporns; A.-S. Chiang BMC Neurosci., 14 (2013), p. P63

[20] M. Bota; H.W. Dong; L.W. Swanson Front. Neuroinform., 6 (2012)

[21] J.W. Scannell; C. Blakemore; M.P. Young J. Neurosci., 15 (1995), p. 1463

[22] R. Bakker; T. Wachtler; M. Diesmann Front. Neuroinform., 6 (2012), p. 30

[23] P. Hagmann; L. Cammoun; X. Gigandet; R. Meuli; C.J. Honey; V.J. Wedeen; O. Sporns PLoS Biol., 6 (2008), p. e159

[24] D.S. Bassett; J.A. Brown; V. Deshpande; J.M. Carlson; S.T. Grafton NeuroImage, 54 (2011), p. 1262

[25] A.M. Hermundstad; D.S. Bassett; K.S. Brown; E.M. Aminoff; D. Clewett; S. Freeman; A. Frithsen; A. Johnson; C.M. Tipper; M.B. Miller et al. Proc. Natl. Acad. Sci. USA, 110 (2013), p. 6169

[26] A.M. Hermundstad; K.S. Brown; D.S. Bassett; E.M. Aminoff; A. Frithsen; A. Johnson; C.M. Tipper; M.B. Miller; S.T. Grafton; J.M. Carlson PLoS Comput. Biol., 10 (2014)

[27] H.S. Seung Nature, 471 (2011), p. 170

[28] S. Teller; C. Granell; M. De Domenico; J. Soriano; S. Gomez; A. Arenas PLoS Comput. Biol., 10 (2014)

[29] D.S. Bassett; M. Yang; N.F. Wymbs; S.T. Grafton Nat. Neurosci., 18 (2015), p. 744

[30] X.N. Zuo; Y. He; R.F. Betzel; S. Colcombe; O. Sporns; M.P. Milham Trends Cogn. Sci., 21 (2017), p. 32

[31] M.P. van den Heuvel; E.T. Bullmore; O. Sporns Trends Cogn. Sci., 20 (2016), p. 345

[32] S.B. Laughlin; T.J. Sejnowski Science, 108 (2002), p. 22

[33] J.K. Kim; J.M. Soffer; A.E. Kahn; J.M. Vettel; F. Pasqualetti; D.S. Bassett Nat. Phys., 14 (2018), p. 91

[34] F. Klimm; D.S. Bassett; J.M. Carlson; P.J. Mucha PLoS Comput. Biol., 10 (2014)

[35] C. Cherniak J. Neurosci., 14 (1994), p. 2418

[36] M. Kaiser; C.C. Hilgetag PLoS Comput. Biol., 2 (2006), p. e95

[37] C. Cherniak Trends Neurosci., 18 (1995), p. 522

[38] R.F. Betzel; D.S. Bassett Proc. Natl. Acad. Sci. USA, 115 (2018)

[39] M.E. Newman; M. Girvan Phys. Rev. E, 69 (2004)

[40] A. Lancichinetti; S. Fortunato Phys. Rev. E, 80 (2009)

[41] M. Rosvall; C.T. Bergstrom Proc. Natl. Acad. Sci. USA, 105 (2008), p. 1118

[42] D.S. Bassett; M.A. Porter; N.F. Wymbs; S.T. Grafton; J.M. Carlson; P.J. Mucha Chaos, 23 (2013)

[43] R.F. Betzel; J.D. Medaglia; L. Papadopoulos; G. Baum; R. Gur; R. Gur; D. Roalf; T.D. Satterthwaite; D.S. Bassett Netw. Neurosci., 1 (2017), p. 42

[44] J.D. Power; A.L. Cohen; S.M. Nelson; G.S. Wig; K.A. Barnes; J.A. Church; A.C. Vogel; T.O. Laumann; F.M. Miezin; B.L. Schlaggar; S.E. Petersen Neuron, 72 (2011), p. 665

[45] M. Sperry; Q. Telesford; F. Klimm; D.S. Bassett J. Complex Netw., 5 (2017), p. 199

[46] L. Papadopoulos; P. Blinder; H. Ronellenfitsch; F. Klimm; E. Katifori; D. Kleinfeld; D.S. Bassett PLoS Comput. Biol., 14 (2018) no. 9

[47] E. Bullmore; O. Sporns Nat. Rev. Neurosci., 13 (2012), p. 336

[48] E. Bruner Child's Nerv. Syst., 23 (2007), p. 1357

[49] A.J. Sherbondy; R.F. Dougherty; R. Ananthanarayanan; D.S. Modha; B.A. Wandell Med. Image Comput. Comput. Assist. Interv., 12 (2009), p. 861

[50] J.E. Niven; S.B. Laughlin J. Exp. Biol., 211 (2008), p. 1792

[51] S.B. Laughlin Curr. Opin. Neurobiol., 11 (2001), p. 475

[52] D. Attwell; S.B. Laughlin J. Cereb. Blood Flow Metab., 21 (2001), p. 1133

[53] J.E. Niven; J.C. Anderson; S.B. Laughlin PLoS Biol., 5 (2007), p. e116

[54] R.F. Betzel; J.D. Medaglia; D.S. Bassett Nat. Commun., 9 (2018), p. 346

[55] B.D. Fulcher; A. Fornito Proc. Natl. Acad. Sci. USA, 113 (2016), p. 1435

[56] L.H. Somerville; B.J. Casey Curr. Opin. Neurobiol., 20 (2010), p. 236

[57] M. Kaiser Trends Cogn. Sci., 21 (2017), p. 703

[58] V. Latora; M. Marchiori Phys. Rev. Lett., 87 (2001)

[59] J.O. Garcia; A. Ashourvan; S.F. Muldoon; J.M. Vettel; D.S. Bassett Proc. IEEE, 106 (2018)

[60] K.W. Doron; D.S. Bassett; M.S. Gazzaniga Proc. Natl. Acad. Sci. USA, 109 (2012)

[61] S. Feldt Muldoon; I. Soltesz; R. Cossart Proc. Natl. Acad. Sci. USA, 110 (2013)

[62] C. Lohse; D.S. Bassett; K.O. Lim; J.M. Carlson PLoS Comput. Biol., 10 (2014)

[63] R.F. Betzel; A. Avena-Koenigsberger; J. Goñi; Y. He; M.A. de Reus; A. Griffa; P.E. Vértes; B. Mišic; J.-P. Thiran; P. Hagmann et al. NeuroImage, 124 (2016), p. 1054

[64] V. Nicosia; P.E. Vértes; W.R. Schafer; V. Latora; E.T. Bullmore Proc. Natl. Acad. Sci. USA, 110 (2013), p. 7880

[65] S.F. Beul; S. Grant; C.C. Hilgetag Brain Struct. Funct., 220 (2015), p. 3167

[66] S.F. Beul; H. Barbas; C.C. Hilgetag Sci. Rep., 7 (2017)

[67] P.E. Vertes; A.F. Alexander-Bloch; N. Gogtay; J.N. Giedd; J.L. Rapoport; E.T. Bullmore Proc. Natl. Acad. Sci. USA, 109 (2012), p. 5868

[68] D. Samu; A.K. Seth; T. Nowotny PLoS Comput. Biol., 10 (2014)

[69] J.A. Roberts; A. Perry; A.R. Lord; G. Roberts; P.B. Mitchell; R.E. Smith; F. Calamante; M. Breakspear NeuroImage, 124 (2016), p. 379

[70] P. Expert; T.S. Evans; V.D. Blondel; R. Lambiotte Proc. Natl. Acad. Sci. USA, 108 (2011), p. 7663

[71] M. Sarzynska; E.A. Leicht; G. Chowell; M.A. Porter J. Complex Netw., 4 (2017), p. 363

[72] P. Ritter; M. Schirner; A.R. McIntosh; V.K. Jirsa Brain Connect., 3 (2013), p. 121

[73] D. Roy; R. Sigala; M. Breakspear; A.R. McIntosh; V.K. Jirsa; G. Deco; P. Ritter Brain Connect., 4 (2014), p. 791

[74] C.A. Runyan; E. Piasini; S. Panzeri; C.D. Harvey Nature, 548 (2017), p. 92

[75] D.S. Margulies; S.S. Ghosh; A. Goulas; M. Falkiewicz; J.M. Huntenburg; G. Langs; G. Bezgin; S.B. Eickhoff; F.X. Castellanos; M. Petrides; E. Jefferies; J. Smallwood Proc. Natl. Acad. Sci. USA, 113 (2016) | arXiv

[76] J.M. Huntenburg; P.L. Bazin; D.S. Margulies Trends Cogn. Sci., 22 (2018), p. 21

[77] M. Rubinov; S.A. Knock; C.J. Stam; S. Micheloyannis; A.W. Harris; L.M. Williams; M. Breakspear, 30 (2009), p. 403

[78] M. Rubinov; D.S. Bassett J. Neurosci., 31 (2011), p. 6263

[79] J. Zhu; C. Zhuo; F. Liu; W. Qin; L. Xu; C. Yu Sci. Rep., 6 (2016)

[80] C.Y. Lo; T.W. Su; C.C. Huang; C.C. Hung; W.L. Chen; T.H. Lan; C.P. Lin; E.T. Bullmore Proc. Natl. Acad. Sci. USA, 112 (2015), p. 9123

[81] J. Viventi; D.H. Kim; L. Vigeland; E.S. Frechette; J.A. Blanco; Y.S. Kim; A.E. Avrin; V.R. Tiruvadi; S.W. Hwang; A.C. Vanleer; D.F. Wulsin; K. Davis; C.E. Gelber; L. Palmer; J. Van der Spiegel; J. Wu; J. Xiao; Y. Huang; D. Contreras; J.A. Rogers; B. Litt Nat. Neurosci., 14 (2011), p. 1599

[82] H. Zhang; J. Jacobs J. Neurosci., 35 (2015)

[83] G.B. Ermentrout; D. Kleinfeld Neuron, 29 (2001), p. 33

[84] S. Ching; E.N. Brown; M.A. Kramer Phys. Rev. E, Stat. Nonlinear Soft Matter Phys., 86 (2012)

[85] A.J. Whalen; S.N. Brennan; T.D. Sauer; S.J. Schiff Phys. Rev. X, 5 (2015)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Towards a mathematical definition of functional connectivity

Patricia Reynaud-Bouret; Alexandre Muzy; Ingrid Bethus

C. R. Math (2021)


Sciences of the brain: The long road to scientific maturity and to present-day reductionism

Michel Le Moal; Joël Swendsen

C. R. Biol (2015)