Modern leaves, the energy factories of plants, are the products of a 400-million-year evolutionary race towards improved efficiency and robustness. As such they have evolved two sophisticated transport systems, the xylem and the phloem, which irrigate the surface of the leaf blade, distribute water and nutrients, and collect the products of photosynthesis. In this review, we discuss the development and function of these two networks. Additionally, with a focus on the global topological and architectural features, we present an overview of the evolution of reticulation through the lens of transport network optimization theory and analyze some aspects of the physics of flow.
Les feuilles actuelles, les centrales énergétiques des plantes, sont la résultante d'une course de 400 millions d'années vers une efficacité et une robustesse accrues. En tant que telles, elles ont développé deux systèmes de transport sophistiqués, le xylème et le phloème, qui irriguent la surface du limbe de la feuille, distribuent l'eau et les nutriments, et recueillent les produits de la photosynthèse. Dans cette revue, nous discutons le développement et le fonctionnement de ces deux réseaux. En outre, en mettant l'accent sur leurs caractéristiques topologiques et architecturales globales, nous présentons un aperçu de l'évolution de la réticulation à travers l'optique de la théorie de l'optimisation des réseaux de transport et analysons certains aspects de la physique des flux.
Mots-clés : Feuilles des plantes, Réseaux, Optimisation
Eleni Katifori 1
@article{CRPHYS_2018__19_4_244_0, author = {Eleni Katifori}, title = {The transport network of a leaf}, journal = {Comptes Rendus. Physique}, pages = {244--252}, publisher = {Elsevier}, volume = {19}, number = {4}, year = {2018}, doi = {10.1016/j.crhy.2018.10.007}, language = {en}, }
Eleni Katifori. The transport network of a leaf. Comptes Rendus. Physique, Spatial networks / Réseaux spatiaux, Volume 19 (2018) no. 4, pp. 244-252. doi : 10.1016/j.crhy.2018.10.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.10.007/
[1] Biology of Plants, W.H. Freeman, 2004
[2] Dynamics of long-distance signaling via plant vascular tissues, Front. Plant Sci., Volume 6 ( March 2015 ), pp. 1-10
[3] Esau's Plant Anatomy, John Wiley & Sons, 2006
[4] Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future, New Phytol., Volume 198 (2013) no. 4, pp. 983-1000
[5] Leaf Venation Networks, Georg-August Universität Göttingen, Germany, 2016 (Ph.D. thesis)
[6] Leaf venation patterns and the origin of the angiosperms, Nature, Volume 224 (1969) no. 5215, pp. 121-125
[7] Angiosperm leaf vein evolution was physiologically and environmentally transformative, Proc. R. Soc. B, Biol. Sci., Volume 276 (2009) no. 1663, pp. 1771-1776
[8] Inferring climate from angiosperm leaf venation networks, New Phytol., Volume 204 (2014) no. 1, pp. 116-126
[9] Leaf venation density as a climate and environmental proxy: a critical review and new data, Palaeogeogr. Palaeoclimatol. Palaeoecol., Volume 149 (1999) no. 1–4, pp. 15-26 | DOI
[10] Leaf maximum photosynthetic rate and venation are linked by hydraulics, Plant Physiol., Volume 144 (2007) no. 4, pp. 1890-1898
[11] Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification, Ecol. Lett., Volume 13 (2010) no. 2, pp. 175-183
[12] Optimal vein density in artificial and real leaves, Proc. Natl. Acad. Sci., Volume 105 (2008) no. 27, pp. 9140-9144
[13] Evolution of a unique anatomical precision in angiosperm leaf venation lifts constraints on vascular plant ecology, Proc. R. Soc. B, Biol. Sci., Volume 281 (2014) no. 1779
[14] Vessel scaling in evergreen angiosperm leaves conforms with Murray's law and area-filling assumptions: implications for plant size, leaf size and cold tolerance, New Phytol., Volume 218 (2018) no. 4, pp. 1360-1370
[15] A general model for the structure and allometry of plant vascular systems, Nature, Volume 400 (1999) no. 6745, pp. 664-667
[16] Scaling mass and morphology in leaves: an extension of the WBE model, Ecology, Volume 88 (2007) no. 5, pp. 1132-1141
[17] Hydraulic design of pine needles: one-dimensional optimization for single-vein leaves, Plant Cell Environ., Volume 29 (2006) no. 5, pp. 803-809
[18] Scaling of phloem structure and optimality of photoassimilate transport in conifer needles, Proc. R. Soc. B, Biol. Sci., Volume 282 (2015) no. 1801
[19] Developmentally based scaling of leaf venation architecture explains global ecological patterns, Nat. Commun., Volume 3 (2012), p. 837
[20] Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution, Am. Nat., Volume 175 (2010) no. 4, pp. 447-460
[21] Venation networks and the origin of the leaf economics spectrum, Ecol. Lett., Volume 14 (2011) no. 2, pp. 91-100
[22] Damage and fluctuations induce loops in optimal transport networks, Phys. Rev. Lett., Volume 104 (2010) no. 4
[23] Evolution and function of leaf venation architecture: a review, Ann. Bot., Volume 87 (2001) no. 5, pp. 553-566
[24] Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption, Proc. Natl. Acad. Sci. USA, Volume 105 (2008) no. 5, pp. 1567-1572
[25] Costs and benefits of reticulate leaf venation, BMC Plant Biol., Volume 14 (2014) no. 1, p. 234
[26] A mechanical perspective on foliage leaf form and function, New Phytol., Volume 143 (1999) no. 1, pp. 19-31
[27] Leaf vascular pattern formation, Plant Cell, Volume 9 (1997), pp. 1121-1135
[28] Canalization: what the flux?, Trends Genet., Volume 30 (2014) no. 2, pp. 41-48
[29] Global optimization, local adaptation, and the role of growth in distribution networks, Phys. Rev. Lett., Volume 117 (2016)
[30] How canalization can make loops: a new model of reticulated leaf vascular pattern formation, J. Theor. Biol., Volume 243 (2006) no. 2, pp. 235-244
[31] A constant production hypothesis guides leaf venation patterning, Proc. Natl. Acad. Sci. USA, Volume 103 (2006) no. 24, pp. 9363-9368
[32] Vein patterning in growing leaves: axes and polarities, Curr. Opin. Genet. Dev., Volume 18 (2008) no. 4, pp. 348-353
[33] Canalization-based vein formation in a growing leaf, J. Theor. Biol., Volume 353 (2014), pp. 104-120
[34] Self-organization of plant vascular systems: claims and counter-claims about the flux-based auxin transport model, PLoS ONE, Volume 10 (2015) no. 3
[35] The phenotypes of fluctuating flow: development of distribution networks in biology and the trade-off between efficiency, cost, and resilience, 2018 | arXiv
[36] The leaf venation as formed in a tensorial field, Eur. Phys. J. B, Volume 28 (2002) no. 2, pp. 135-138
[37] A model for hierarchical patterns under mechanical stresses, Philos. Mag., Volume 90 (2010) no. 1–4, pp. 357-373
[38] In silico leaf venation networks: growth and reorganization driven by mechanical forces, J. Theor. Biol., Volume 259 (2009) no. 3, pp. 440-448
[39] The role of elastic stresses on leaf venation morphogenesis, PLoS Comput. Biol., Volume 4 (2008)
[40] Constitutive property of the local organization of leaf venation networks, Phys. Rev. E, Volume 65 (2002) no. 6
[41] Mechanical regulation of auxin-mediated growth, Curr. Biol., Volume 22 (2012) no. 16, pp. 1468-1476
[42] Modeling and visualization of leaf venation patterns, ACM Trans. Graph., Volume 24 (2005) no. 3, pp. 702-711
[43] Classification of the architecture of dicotyledonous leaves, Am. J. Bot., Volume 60 (1973) no. 1, pp. 17-33
[44] Manual of Leaf Architecture, Comstock Publishing Associates, 2009
[45] A numerical taxonomic approach to the study of angiosperm leaves, Bot. Gaz., Volume 141 (1980) no. 2, pp. 213-229
[46] ClearedLeavesDB: an online database of cleared plant leaf images, Plant Methods, Volume 10 (2014) no. 1, p. 8
[47] Leaf extraction and analysis framework graphical user interface: segmenting and analyzing the structure of leaf veins and areoles, Plant Physiol., Volume 155 (2011) no. 1, pp. 236-245
[48] phenoVein – a tool for leaf vein segmentation and analysis, Plant Physiol., Volume 169 (2015) no. 4, pp. 2359-2370
[49] NET: a new framework for the vectorization and examination of network data, Source Code Biol. Med., Volume 12 (2017) no. 1, p. 4
[50] Leaf vein length per unit area is not intrinsically dependent on image magnification: avoiding measurement artifacts for accuracy and precision, Plant Physiol., Volume 166 (2014) no. 2, pp. 829-838
[51] Quantifying leaf venation patterns: two-dimensional maps, Plant J., Volume 57 (2009) no. 1, pp. 195-205
[52] Characterisation of spatial network-like patterns from junctions' geometry, Phys. Rev. E, Volume 83 (2011) no. 6
[53] Quantifying loopy network architectures, PLoS ONE, Volume 7 (2012) no. 6 | arXiv | DOI
[54] The structure and function of complex networks, SIAM Rev., Volume 45 (2003) no. 2, pp. 167-256
[55] A typology of street patterns, J. R. Soc. Interface, Volume 11 (2014) no. 101, pp. 1-7 | arXiv
[56] Topological phenotypes constitute a new dimension in the phenotypic space of leaf venation networks, PLoS Comput. Biol., Volume 11 (2015) no. 12
[57] Computer vision cracks the leaf code, Proc. Natl. Acad. Sci. USA, Volume 113 (2016) no. 12, pp. 3305-3310
[58] Spatial networks, Phys. Rep., Volume 499 (2011) no. 1–3, pp. 1-101 | arXiv
Cited by Sources:
Comments - Policy