Comptes Rendus
The transport network of a leaf
Comptes Rendus. Physique, Volume 19 (2018) no. 4, pp. 244-252.

Modern leaves, the energy factories of plants, are the products of a 400-million-year evolutionary race towards improved efficiency and robustness. As such they have evolved two sophisticated transport systems, the xylem and the phloem, which irrigate the surface of the leaf blade, distribute water and nutrients, and collect the products of photosynthesis. In this review, we discuss the development and function of these two networks. Additionally, with a focus on the global topological and architectural features, we present an overview of the evolution of reticulation through the lens of transport network optimization theory and analyze some aspects of the physics of flow.

Les feuilles actuelles, les centrales énergétiques des plantes, sont la résultante d'une course de 400 millions d'années vers une efficacité et une robustesse accrues. En tant que telles, elles ont développé deux systèmes de transport sophistiqués, le xylème et le phloème, qui irriguent la surface du limbe de la feuille, distribuent l'eau et les nutriments, et recueillent les produits de la photosynthèse. Dans cette revue, nous discutons le développement et le fonctionnement de ces deux réseaux. En outre, en mettant l'accent sur leurs caractéristiques topologiques et architecturales globales, nous présentons un aperçu de l'évolution de la réticulation à travers l'optique de la théorie de l'optimisation des réseaux de transport et analysons certains aspects de la physique des flux.

Published online:
DOI: 10.1016/j.crhy.2018.10.007
Keywords: Leaf, Networks, Optimization
Mot clés : Feuilles des plantes, Réseaux, Optimisation

Eleni Katifori 1

1 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
     author = {Eleni Katifori},
     title = {The transport network of a leaf},
     journal = {Comptes Rendus. Physique},
     pages = {244--252},
     publisher = {Elsevier},
     volume = {19},
     number = {4},
     year = {2018},
     doi = {10.1016/j.crhy.2018.10.007},
     language = {en},
AU  - Eleni Katifori
TI  - The transport network of a leaf
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 244
EP  - 252
VL  - 19
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.10.007
LA  - en
ID  - CRPHYS_2018__19_4_244_0
ER  - 
%0 Journal Article
%A Eleni Katifori
%T The transport network of a leaf
%J Comptes Rendus. Physique
%D 2018
%P 244-252
%V 19
%N 4
%I Elsevier
%R 10.1016/j.crhy.2018.10.007
%G en
%F CRPHYS_2018__19_4_244_0
Eleni Katifori. The transport network of a leaf. Comptes Rendus. Physique, Volume 19 (2018) no. 4, pp. 244-252. doi : 10.1016/j.crhy.2018.10.007.

[1] P.H. Raven; R.F. Evert; S.E. Eichhorn Biology of Plants, W.H. Freeman, 2004

[2] M. Notaguchi; S. Okamoto Dynamics of long-distance signaling via plant vascular tissues, Front. Plant Sci., Volume 6 ( March 2015 ), pp. 1-10

[3] R.F. Evert Esau's Plant Anatomy, John Wiley & Sons, 2006

[4] L. Sack; C. Scoffoni Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future, New Phytol., Volume 198 (2013) no. 4, pp. 983-1000

[5] H. Ronellenfitsch Leaf Venation Networks, Georg-August Universität Göttingen, Germany, 2016 (Ph.D. thesis)

[6] R. Melville Leaf venation patterns and the origin of the angiosperms, Nature, Volume 224 (1969) no. 5215, pp. 121-125

[7] C.K. Boyce; T.J. Brodribb; T.S. Feild; M.A. Zwieniecki Angiosperm leaf vein evolution was physiologically and environmentally transformative, Proc. R. Soc. B, Biol. Sci., Volume 276 (2009) no. 1663, pp. 1771-1776

[8] B. Blonder; B.J. Enquist Inferring climate from angiosperm leaf venation networks, New Phytol., Volume 204 (2014) no. 1, pp. 116-126

[9] D. Uhl; V. Mosbrugger Leaf venation density as a climate and environmental proxy: a critical review and new data, Palaeogeogr. Palaeoclimatol. Palaeoecol., Volume 149 (1999) no. 1–4, pp. 15-26 | DOI

[10] T.J. Brodribb; T.S. Feild; G.J. Jordan Leaf maximum photosynthetic rate and venation are linked by hydraulics, Plant Physiol., Volume 144 (2007) no. 4, pp. 1890-1898

[11] T.J. Brodribb; T.S. Feild Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification, Ecol. Lett., Volume 13 (2010) no. 2, pp. 175-183

[12] X. Noblin; L. Mahadevan; I.A. Coomaraswamy; D.A. Weitz; N.M. Holbrook; M.A. Zwieniecki Optimal vein density in artificial and real leaves, Proc. Natl. Acad. Sci., Volume 105 (2008) no. 27, pp. 9140-9144

[13] M.A. Zwieniecki; C.K. Boyce Evolution of a unique anatomical precision in angiosperm leaf venation lifts constraints on vascular plant ecology, Proc. R. Soc. B, Biol. Sci., Volume 281 (2014) no. 1779

[14] S.M. Gleason; C.J. Blackman; S.T. Gleason; K.A. Mcculloh; T.W. Ocheltree; M. Westoby Vessel scaling in evergreen angiosperm leaves conforms with Murray's law and area-filling assumptions: implications for plant size, leaf size and cold tolerance, New Phytol., Volume 218 (2018) no. 4, pp. 1360-1370

[15] G.B. West; J.H. Brown; B.J. Enquist A general model for the structure and allometry of plant vascular systems, Nature, Volume 400 (1999) no. 6745, pp. 664-667

[16] C.A. Price; B.J. Enquist Scaling mass and morphology in leaves: an extension of the WBE model, Ecology, Volume 88 (2007) no. 5, pp. 1132-1141

[17] M.A. Zwieniecki; H.A. Stone; A. Leigh; C.K. Boyce; N.M. Holbrook Hydraulic design of pine needles: one-dimensional optimization for single-vein leaves, Plant Cell Environ., Volume 29 (2006) no. 5, pp. 803-809

[18] H. Ronellenfitsch; J. Liesche; K.H. Jensen; N.M. Holbrook; A. Schulz; E. Katifori Scaling of phloem structure and optimality of photoassimilate transport in conifer needles, Proc. R. Soc. B, Biol. Sci., Volume 282 (2015) no. 1801

[19] L. Sack; C. Scoffoni; A.D. McKown; K. Frole; K. Frole; M. Rawls; J.C. Havran; H. Tran; T. Tran Developmentally based scaling of leaf venation architecture explains global ecological patterns, Nat. Commun., Volume 3 (2012), p. 837

[20] A.D. McKown; H. Cochard; L. Sack Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution, Am. Nat., Volume 175 (2010) no. 4, pp. 447-460

[21] B. Blonder; C. Violle; L.P. Bentley; B.J. Enquist Venation networks and the origin of the leaf economics spectrum, Ecol. Lett., Volume 14 (2011) no. 2, pp. 91-100

[22] E. Katifori; G.J. Szöllosi; M.O. Magnasco Damage and fluctuations induce loops in optimal transport networks, Phys. Rev. Lett., Volume 104 (2010) no. 4

[23] A. Roth-Nebelsick; D. Uhl; V. Mosbrugger; H. Kerp Evolution and function of leaf venation architecture: a review, Ann. Bot., Volume 87 (2001) no. 5, pp. 553-566

[24] L. Sack; E.M. Dietrich; C.M. Streeter; D. Sánchez Gómez; N.M. Holbrook Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption, Proc. Natl. Acad. Sci. USA, Volume 105 (2008) no. 5, pp. 1567-1572

[25] C. a. Price; J.S. Weitz Costs and benefits of reticulate leaf venation, BMC Plant Biol., Volume 14 (2014) no. 1, p. 234

[26] K.J. Niklas A mechanical perspective on foliage leaf form and function, New Phytol., Volume 143 (1999) no. 1, pp. 19-31

[27] T. Nelson; N.G. Dengler Leaf vascular pattern formation, Plant Cell, Volume 9 (1997), pp. 1121-1135

[28] T. Bennett; G. Hines; O. Leyser Canalization: what the flux?, Trends Genet., Volume 30 (2014) no. 2, pp. 41-48

[29] H. Ronellenfitsch; E. Katifori Global optimization, local adaptation, and the role of growth in distribution networks, Phys. Rev. Lett., Volume 117 (2016)

[30] F.G. Feugier; Y. Iwasa How canalization can make loops: a new model of reticulated leaf vascular pattern formation, J. Theor. Biol., Volume 243 (2006) no. 2, pp. 235-244

[31] P. Dimitrov; S.W. Zucker A constant production hypothesis guides leaf venation patterning, Proc. Natl. Acad. Sci. USA, Volume 103 (2006) no. 24, pp. 9363-9368

[32] A.-G. Rolland-Lagan Vein patterning in growing leaves: axes and polarities, Curr. Opin. Genet. Dev., Volume 18 (2008) no. 4, pp. 348-353

[33] S.-W. Lee; F.G. Feugier; Y. Morishita Canalization-based vein formation in a growing leaf, J. Theor. Biol., Volume 353 (2014), pp. 104-120

[34] C. Feller; E. Farcot; C. Mazza Self-organization of plant vascular systems: claims and counter-claims about the flux-based auxin transport model, PLoS ONE, Volume 10 (2015) no. 3

[35] H. Ronellenfitsch; E. Katifori The phenotypes of fluctuating flow: development of distribution networks in biology and the trade-off between efficiency, cost, and resilience, 2018 | arXiv

[36] Y. Couder; L. Pauchard; C. Allain; S. Douady The leaf venation as formed in a tensorial field, Eur. Phys. J. B, Volume 28 (2002) no. 2, pp. 135-138

[37] F. Corson; H. Henry; M. Adda-Bedia A model for hierarchical patterns under mechanical stresses, Philos. Mag., Volume 90 (2010) no. 1–4, pp. 357-373

[38] F. Corson; M. Adda-Bedia; A. Boudaoud In silico leaf venation networks: growth and reorganization driven by mechanical forces, J. Theor. Biol., Volume 259 (2009) no. 3, pp. 440-448

[39] M.F. Laguna; S. Bohn; E.A. Jagla The role of elastic stresses on leaf venation morphogenesis, PLoS Comput. Biol., Volume 4 (2008)

[40] S. Bohn; B. Andreotti; S. Douady; J. Munzinger; Y. Couder Constitutive property of the local organization of leaf venation networks, Phys. Rev. E, Volume 65 (2002) no. 6

[41] N. Nakayama; R.S. Smith; T. Mandel; S. Robinson; S. Kimura; A. Boudaoud; C. Kuhlemeier Mechanical regulation of auxin-mediated growth, Curr. Biol., Volume 22 (2012) no. 16, pp. 1468-1476

[42] A. Runions; M. Fuhrer; B. Lane; P. Federl; A.-G. Rolland-Lagan; P. Prusinkiewicz Modeling and visualization of leaf venation patterns, ACM Trans. Graph., Volume 24 (2005) no. 3, pp. 702-711

[43] L.J. Hickey Classification of the architecture of dicotyledonous leaves, Am. J. Bot., Volume 60 (1973) no. 1, pp. 17-33

[44] B. Ellis; D.C. Daly; L.J. Hickey; J.D. Mitchell; K.R. Johnson; P. Wilf; S.L. Wing Manual of Leaf Architecture, Comstock Publishing Associates, 2009

[45] R. Hill A numerical taxonomic approach to the study of angiosperm leaves, Bot. Gaz., Volume 141 (1980) no. 2, pp. 213-229

[46] A. Das; A. Bucksch; C.A. Price; J.S. Weitz ClearedLeavesDB: an online database of cleared plant leaf images, Plant Methods, Volume 10 (2014) no. 1, p. 8

[47] C.A. Price; O. Symonova; Y. Mileyko; T. Hilley; J.S. Weitz Leaf extraction and analysis framework graphical user interface: segmenting and analyzing the structure of leaf veins and areoles, Plant Physiol., Volume 155 (2011) no. 1, pp. 236-245

[48] J. Bühler; L. Rishmawi; D. Pflugfelder; G. Huber; H. Scharr; M. Hülskamp; M. Koornneef; U. Schurr; S. Jahnke phenoVein – a tool for leaf vein segmentation and analysis, Plant Physiol., Volume 169 (2015) no. 4, pp. 2359-2370

[49] J. Lasser; E. Katifori NET: a new framework for the vectorization and examination of network data, Source Code Biol. Med., Volume 12 (2017) no. 1, p. 4

[50] L. Sack; M. Caringella; C. Scoffoni; C. Mason; M. Rawls; L. Markesteijn; L. Poorter Leaf vein length per unit area is not intrinsically dependent on image magnification: avoiding measurement artifacts for accuracy and precision, Plant Physiol., Volume 166 (2014) no. 2, pp. 829-838

[51] A.-G. Rolland-Lagan; M. Amin; M. Pakulska Quantifying leaf venation patterns: two-dimensional maps, Plant J., Volume 57 (2009) no. 1, pp. 195-205

[52] A. Perna; P. Kuntz; S. Douady Characterisation of spatial network-like patterns from junctions' geometry, Phys. Rev. E, Volume 83 (2011) no. 6

[53] E. Katifori; M.O. Magnasco Quantifying loopy network architectures, PLoS ONE, Volume 7 (2012) no. 6 | arXiv | DOI

[54] M.E.J. Newman The structure and function of complex networks, SIAM Rev., Volume 45 (2003) no. 2, pp. 167-256

[55] R. Louf; M. Barthelemy A typology of street patterns, J. R. Soc. Interface, Volume 11 (2014) no. 101, pp. 1-7 | arXiv

[56] H. Ronellenfitsch; J. Lasser; D.C. Daly; E. Katifori Topological phenotypes constitute a new dimension in the phenotypic space of leaf venation networks, PLoS Comput. Biol., Volume 11 (2015) no. 12

[57] P. Wilf; S. Zhang; S. Chikkerur; S.A. Little; S.L. Wing; T. Serre Computer vision cracks the leaf code, Proc. Natl. Acad. Sci. USA, Volume 113 (2016) no. 12, pp. 3305-3310

[58] M. Barthélemy Spatial networks, Phys. Rep., Volume 499 (2011) no. 1–3, pp. 1-101 | arXiv

Cited by Sources:

Comments - Policy