Comptes Rendus
Simulating the composition and structuration of coloring layers in historical painting from non-invasive spectral reflectance measurements
Comptes Rendus. Physique, Volume 19 (2018) no. 7, pp. 599-611.

Reflectance spectroscopy is a powerful non-invasive technique for determining the material composition of historical polychromies, since the measurement is fast, simple, and contactless. However, reflectance spectra of complex color mixtures can sometimes be hard to interpret from a compositional point of view. In these cases, theoretical optical simulations can provide useful additional data. The main issue is the choice of the optical model that must be adapted to the measurement protocol and the material structure of the coloring layer, this latter being generally unknown. Simple models based on analytical formulas are preferred, as they can be easily inversed to deduce the optical and structural properties of the materials from the measured spectral reflectance of the object. In this paper, we address this issue to investigate the material composition of the colors of the Codex Borbonicus, a 16th-century Mesoamerican manuscript. Two models dedicated to two different types of material structures are presented: the Kubelka–Munk model with Saunderson correction, suitable for one homogenous layer, and the Clapper–Yule model used for continuous colorant layer, suitable when a weakly scattering paint is on top of a diffusing support. The results of the simulation provide new insights into the way the coloring materials were combined in the document, either as mechanical mixture before application or as superimposition.

La spectroscopie de réflexion diffuse est une technique non invasive très pratique pour l'étude des polychromies historiques, puisque sa mise œuvre est rapide, simple et sans contact. Toutefois, les spectres de réflexion de mélanges colorés complexes peuvent parfois être difficiles à interpréter d'un point de vue compositionnel. Dans ces cas, des simulations optiques théoriques peuvent fournir des données supplémentaires pertinentes. La problématique principale concerne le choix du modèle optique, qui doit être adapté au protocole de mesure et à la structure matérielle (généralement inconnue) des couches colorées étudiées. Les modèles simples basés sur des formules analytiques sont préférés, puisqu'ils peuvent facilement être inversés pour déduire les propriétés optiques et la structure des matériaux à partir de leur réflectance spectrale. Dans cet article, cette problématique est abordée pour l'étude de la composition des peintures du Codex Borbonicus, un manuscrit mésoaméricain du XVIe siècle. Deux modèles sont appliqués pour deux types de structure matérielle : le modèle de Kubelka–Munk avec la correction de Saunderson, adapté à une couche colorée homogène, et le modèle de Clapper–Yule pour des couches continues de colorants, adapté à une peinture faiblement diffusante superposée à un support diffusant. Les simulations apportent une nouvelle compréhension quant à la façon dont les matériaux colorants ont été associés dans le document, soit par mélange mécanique avant application, soit par superposition.

Published online:
DOI: 10.1016/j.crhy.2018.09.007
Keywords: Pictorial layer, Diffuse reflectance spectroscopy, Composition and structuration simulations
Mot clés : Couche picturale, Spectroscopie de réflection diffuse, Simulation de composition et de structure

Fabien Pottier 1; Morgane Gerardin 2; Anne Michelin 1; Mathieu Hébert 3; Christine Andraud 1

1 Centre de recherche sur la conservation (CRC), MNHN, Sorbonne Universités CNRS, MCC, USR 3224, CP21, 36, rue Geoffroy-Saint-Hilaire, 75005 Paris, France
2 Institut d'optique – Graduate School, 16, rue du Professeur-Benoît-Lauras, 42000 Saint-Étienne, France
3 Univ Lyon, UJM–Saint-Étienne, CNRS, Institut d'optique – Graduate School, Laboratoire Hubert-Curien, UMR 5516, 42023 Saint-Étienne, France
@article{CRPHYS_2018__19_7_599_0,
     author = {Fabien Pottier and Morgane Gerardin and Anne Michelin and Mathieu H\'ebert and Christine Andraud},
     title = {Simulating the composition and structuration of coloring layers in historical painting from non-invasive spectral reflectance measurements},
     journal = {Comptes Rendus. Physique},
     pages = {599--611},
     publisher = {Elsevier},
     volume = {19},
     number = {7},
     year = {2018},
     doi = {10.1016/j.crhy.2018.09.007},
     language = {en},
}
TY  - JOUR
AU  - Fabien Pottier
AU  - Morgane Gerardin
AU  - Anne Michelin
AU  - Mathieu Hébert
AU  - Christine Andraud
TI  - Simulating the composition and structuration of coloring layers in historical painting from non-invasive spectral reflectance measurements
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 599
EP  - 611
VL  - 19
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.09.007
LA  - en
ID  - CRPHYS_2018__19_7_599_0
ER  - 
%0 Journal Article
%A Fabien Pottier
%A Morgane Gerardin
%A Anne Michelin
%A Mathieu Hébert
%A Christine Andraud
%T Simulating the composition and structuration of coloring layers in historical painting from non-invasive spectral reflectance measurements
%J Comptes Rendus. Physique
%D 2018
%P 599-611
%V 19
%N 7
%I Elsevier
%R 10.1016/j.crhy.2018.09.007
%G en
%F CRPHYS_2018__19_7_599_0
Fabien Pottier; Morgane Gerardin; Anne Michelin; Mathieu Hébert; Christine Andraud. Simulating the composition and structuration of coloring layers in historical painting from non-invasive spectral reflectance measurements. Comptes Rendus. Physique, Volume 19 (2018) no. 7, pp. 599-611. doi : 10.1016/j.crhy.2018.09.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.09.007/

[1] H. Kunkely; A. Vogler Absorption and luminescence spectra of cochineal, Inorg. Chem. Commun., Volume 14 (2011), pp. 1153-1155 | DOI

[2] C. Zaffino; A. Passaretti; G. Poldi; M. Fratelli; A. Tibiletti; R. Bestetti; I. Saccani; V. Guglielmi; S. Bruni A multi-technique approach to the chemical characterization of colored inks in contemporary art: the materials of Lucio Fontana, J. Cult. Herit. (2016) | DOI

[3] A. Casini; C. Cucci; M. Picollo; L. Stefani; T. Vitorino Creation of a hyper-spectral imaging reference database, COSCH e-Bull., Volume 2 (2015), pp. 1-6

[4] T. Vitorino; A. Casini; C. Cucci; M.J. Melo; M. Picollo; L. Stefani Hyper-spectral acquisition on historically accurate reconstructions of red organic lakes, Cherbourg, France, 30 June–2 July 2014 (A. Elmoataz; O. Lezoray; F. Nouboud; D. Mammass, eds.), Springer International Publishing (2014), pp. 257-264

[5] K.M. Morales; B.H. Berrie A note on characterization of the cochineal dyestuff on wool using microspectrophotometry, E-Preserv. Sci., Volume 12 (2015), pp. 8-14

[6] C. Montagner; M. Bacci; S. Bracci; R. Freeman; M. Picollo Library of UV–Vis–NIR reflectance spectra of modern organic dyes from historic pattern-card coloured papers, Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc., Volume 79 (2011), pp. 1669-1680 | DOI

[7] M.A. Maynez-Rojas; E. Casanova-González; J.L. Ruvalcaba-Sil Identification of natural red and purple dyes on textiles by Fiber-optics Reflectance Spectroscopy, Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc., Volume 178 (2017), pp. 239-250 | DOI

[8] M. Hébert; R.D. Hersch Review of spectral reflectance models for halftone prints: principles, calibration, and prediction accuracy, Color Res. Appl., Volume 40 (2015), pp. 383-397 | DOI

[9] D. Duncan The colour of pigment mixtures, J. Oil Colour Chem. Assoc., Volume 32 (1949), pp. 296-321

[10] A.R. Pallipurath; J.M. Skelton; P. Ricciardi; S.R. Elliott Estimation of semiconductor-like pigment concentrations in paint mixtures and their differentiation from paint layers using first-derivative reflectance spectra, Talanta, Volume 154 (2016), pp. 63-72 | DOI

[11] J.M. Fernández Rodríguez; J.A. Fernández Fernández Application of the second derivative of the Kubelka–Munk function to the semiquantitative analysis of Roman paintings, Color Res. Appl., Volume 30 (2005), pp. 448-456 | DOI

[12] G. Dupuis; M. Menu Quantitative characterisation of pigment mixtures used in art by fibre-optics diffuse-reflectance spectroscopy, Appl. Phys. A, Mater. Sci. Process., Volume 83 (2006), pp. 469-474 | DOI

[13] F. Pottier; A. Michelin; C. Andraud; F. Goubard; B. Lavédrine Characterizing the intrinsic fluorescence properties of historical painting materials: the case study of a sixteenth-century Mesoamerican manuscript, Appl. Spectrosc., Volume 72 (2018), pp. 573-583 | DOI

[14] F. Pottier Etude des matières picturales du Codex Borbonicus – Apport des spectroscopies non-invasives à la codicologie, Université de Cergy-Pontoise, France, 2017

[15] F. Pottier; S. Kwimang; A. Michelin; C. Andraud; F. Goubard; B. Lavédrine Independent macroscopic chemical mappings of cultural heritage materials with reflectance imaging spectroscopy: case study of a 16th century Aztec manuscript, Anal. Methods, Volume 9 (2017), pp. 5997-6008 | DOI

[16] F. Pottier; A. Michelin; G.B. Anne; A. Tournié; F. Goubard; A. Histace; B. Lavédrine Preliminary investigation on the Codex Borbonicus: macroscopic examination and coloring materials characterization (E. Dupey-Garcia; M. Vazquez de Agredos, eds.), Colors on the Skin, The University of Arizona Press, Tucson, AZ, USA, 2018 (in press)

[17] P. Kubelka; F. Munk Ein Beitrag zur Optik des Farbanstriche, Z. Tech. Phys., Volume 12 (1931), pp. 593-601

[18] M. Hébert; R.D. Hersch Extending the Clapper–Yule model to rough printing supports, J. Opt. Soc. Am. A, Opt. Image Sci. Vis., Volume 22 (2005), pp. 1952-1967 | DOI

[19] J.L. Saunderson Calculation of the color pigmented plastics, J. Opt. Soc. Am., Volume 32 (1942), pp. 727-736

[20] D.B. Judd Fresnel reflection of diffusely incident light, J. Res. Natl. Bur. Stand., Volume 29 (1942), pp. 329-332 (1934)

[21] S.Q. Duntley The optical properties of diffusing materials, J. Opt. Soc. Am., Volume 3 (1942), pp. 61-70

[22] F.C. Williams; F.R. Clapper Multiple internal reflections in photographic color prints, J. Opt. Soc. Am., Volume 43 (1953), pp. 595-597

[23] J.D. Shore; J.P. Spoonhower Reflection density in photographic color prints: generalizations of the Williams–Clapper transform, J. Imaging Sci. Technol., Volume 45 (2001), pp. 484-488

[24] F.R. Clapper; A.C. Yule The effect of multiple internal reflections on the densities of halftone prints on paper, J. Opt. Soc. Am., Volume 43 (1953), pp. 600-603

[25] M. Hebert; R.D. Hersch Deducing ink-transmittance spectra from reflectance and transmittance measurements of prints, Proc. Soc. Photo-Opt. Instrum. Eng., Volume 649314 (2007) | DOI

[26] R.S. Berns; M. Mohammadi Evaluating single- and two-constant Kubelka–Munk turbid media theory for instrumental-based inpainting, Stud. Conserv., Volume 52 (2007), pp. 299-314

[27] R.H. Yuhas; A.F.H. Goetz; J.W. Boardman Discrimination among semiarid landscape endmembers using the spectral angle mapper (SAM) algorithm (R.O. Green, ed.), Summaries of the Third JPL Airborne Geoscience Workshop, vol. 1, JPL Publication, 1992, pp. 147-149

[28] H. Deborah; N. Richard; J.Y. Hardeberg A comprehensive evaluation of spectral distance functions and metrics for hyperspectral image processing, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., Volume 8 (2015), pp. 3224-3234 | DOI

Cited by Sources:

Comments - Policy