Comptes Rendus
Design of strain-transformable titanium alloys
Comptes Rendus. Physique, Volume 19 (2018) no. 8, pp. 710-720.

Amongst titanium alloys, metastable β types are the most promising to improve performances of materials currently used in several sectors such as aeronautics or biomedical applications. Particularly, some metastable β titanium alloys exhibit a stress-induced martensitic transformation (into the orthorhombic α phase) that can be tuned to obtain superelasticity or the TRansformation Induced Plasticity (TRIP) effect. The design strategy of such strain-transformable alloys is presented here, and some recent key findings are highlighted and discussed.

Parmi les alliages de titane, ceux de type β métastable sont les plus prometteurs pour améliorer les performances des matériaux utilisés actuellement dans de nombreux secteurs tels que l'aéronautique ou le biomédical. En particulier, certains alliages de titane β métastable sont sujet à une transformation martensitique induite sous contrainte (vers la phase α orthorhombique), qui peut être ajustée afin d'obtenir de la superélasticité ou un effet TRIP (TRansformation-Induced Plasticity). La stratégie de conception de ces alliages transformables par déformation est présentée ici et quelques découvertes majeures récentes sont mises en lumière et discutées.

Published online:
DOI: 10.1016/j.crhy.2018.10.004
Keywords: Titanium alloys, Metastable β phase, Superelasticity, TRIP, TWIP
Mot clés : Alliages de titane, Phase β métastable, Superélasticité, TRIP, TWIP

Philippe Castany 1; Thierry Gloriant 1; Fan Sun 2; Frédéric Prima 2

1 Univ Rennes, INSA de Rennes, CNRS, ISCR, UMR 6226, 35000 Rennes, France
2 PSL Research University, Chimie ParisTech–CNRS, Institut de recherche de Chimie Paris, 75005 Paris, France
@article{CRPHYS_2018__19_8_710_0,
     author = {Philippe Castany and Thierry Gloriant and Fan Sun and Fr\'ed\'eric Prima},
     title = {Design of strain-transformable titanium alloys},
     journal = {Comptes Rendus. Physique},
     pages = {710--720},
     publisher = {Elsevier},
     volume = {19},
     number = {8},
     year = {2018},
     doi = {10.1016/j.crhy.2018.10.004},
     language = {en},
}
TY  - JOUR
AU  - Philippe Castany
AU  - Thierry Gloriant
AU  - Fan Sun
AU  - Frédéric Prima
TI  - Design of strain-transformable titanium alloys
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 710
EP  - 720
VL  - 19
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.10.004
LA  - en
ID  - CRPHYS_2018__19_8_710_0
ER  - 
%0 Journal Article
%A Philippe Castany
%A Thierry Gloriant
%A Fan Sun
%A Frédéric Prima
%T Design of strain-transformable titanium alloys
%J Comptes Rendus. Physique
%D 2018
%P 710-720
%V 19
%N 8
%I Elsevier
%R 10.1016/j.crhy.2018.10.004
%G en
%F CRPHYS_2018__19_8_710_0
Philippe Castany; Thierry Gloriant; Fan Sun; Frédéric Prima. Design of strain-transformable titanium alloys. Comptes Rendus. Physique, Volume 19 (2018) no. 8, pp. 710-720. doi : 10.1016/j.crhy.2018.10.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.10.004/

[1] G. Lütjering; J.C. Williams Titanium, Springer, 2007

[2] S. Banerjee; R. Tewari; G.K. Dey Omega phase transformation – morphologies and mechanisms, Int. J. Mater. Res., Volume 97 (2006), p. 963

[3] F. Prima et al. Evidence of α-nanophase heterogeneous nucleation from ω particles in a β-metastable Ti-based alloy by high-resolution electron microscopy, Scr. Mater., Volume 54 (2006), p. 645

[4] T. Gloriant et al. Characterization of nanophase precipitation in a metastable β titanium-based alloy by electrical resistivity, dilatometry and neutron diffraction, Scr. Mater., Volume 58 (2008), p. 271

[5] F. Sun; F. Prima; T. Gloriant High-strength nanostructured Ti–12Mo alloy from ductile metastable beta state precursor, Mater. Sci. Eng. A, Volume 527 (2010), p. 4262

[6] A. Devaraj et al. Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium–molybdenum alloys, Acta Mater., Volume 60 (2012), p. 596

[7] D. Choudhuri et al. Coupled experimental and computational investigation of omega phase evolution in a high misfit titanium–vanadium alloy, Acta Mater., Volume 130 (2017), p. 215

[8] M. Marteleur et al. On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects, Scr. Mater., Volume 66 (2012), p. 749

[9] F. Sun et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects, Acta Mater., Volume 61 (2013), p. 6406

[10] F. Sun et al. A new titanium alloy with a combination of high strength, high strain hardening and improved ductility, Scr. Mater., Volume 94 (2015), p. 17

[11] S. Sadeghpour; S.M. Abbasi; M. Morakabati Deformation-induced martensitic transformation in a new metastable β titanium alloy, J. Alloys Compd., Volume 650 (2015), p. 22

[12] C. Brozek et al. A β-titanium alloy with extra high strain-hardening rate: design and mechanical properties, Scr. Mater., Volume 114 (2016), p. 60

[13] H.Y. Kim et al. Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys, Acta Mater., Volume 54 (2006), p. 2419

[14] E. Bertrand et al. Synthesis and characterisation of a new superelastic Ti–25Ta–25Nb biomedical alloy, J. Mech. Behav. Biomed. Mater., Volume 3 (2010), p. 559

[15] E. Bertrand; P. Castany; T. Gloriant Investigation of the martensitic transformation and the damping behavior of a superelastic Ti–Ta–Nb alloy, Acta Mater., Volume 61 (2013), p. 511

[16] Q. Li et al. Effect of Zr on super-elasticity and mechanical properties of Ti-24 at% Nb-(0, 2, 4) at% Zr alloy subjected to aging treatment, Mater. Sci. Eng. A, Volume 536 (2012), p. 197

[17] P. Castany et al. In situ synchrotron X-ray diffraction study of the martensitic transformation in superelastic Ti–24Nb–0.5N and Ti–24Nb–0.5O alloys, Acta Mater., Volume 88 (2015), p. 102

[18] Y. Yang et al. Characterization of the martensitic transformation in the superelastic Ti–24Nb–4Zr–8Sn alloy by in situ synchrotron X-ray diffraction and dynamic mechanical analysis, Acta Mater., Volume 88 (2015), p. 25

[19] J.K. Bass; H. Fine; G.J. Cisneros Nickel hypersensitivity in the orthodontic patient, Am. J. Orthod. Dentofac. Orthop., Volume 103 (1993), p. 280

[20] H. Kerosuo et al. Nickel allergy in adolescents in relation to orthodontic treatment and piercing of ears, Am. J. Orthod. Dentofac. Orthop., Volume 109 (1996), p. 148

[21] H.H. Huang et al. Ion release from NiTi orthodontic wires in artificial saliva with various acidities, Biomaterials, Volume 24 (2003), p. 3585

[22] H.Y. Kim et al. Effect of Ta addition on shape memory behavior of Ti–22Nb alloy, Mater. Sci. Eng. A, Volume 417 (2006), p. 120

[23] J.I. Kim et al. Shape memory characteristics of Ti–22Nb–(2–8)Zr(at.%) biomedical alloys, Mater. Sci. Eng. A, Volume 403 (2005), p. 334

[24] F. Sun et al. Influence of a short thermal treatment on the superelastic properties of a titanium-based alloy, Scr. Mater., Volume 63 (2010), p. 1053

[25] F. Sun et al. A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti–26Nb and Ti–20Nb–6Zr (at.%) alloys, J. Mech. Behav. Biomed. Mater., Volume 4 (2011), p. 1864

[26] Y. Yang et al. Texture investigation of the superelastic Ti–24Nb–4Zr–8Sn alloy, J. Alloys Compd., Volume 591 (2014), p. 85

[27] H. Jabir et al. Cristallographic orientation dependence of mechanical properties in the superelastic Ti–24Nb–4Zr–8Sn, Phys. Rev. Mater. (2018) (submitted)

[28] H.Y. Kim et al. Texture and shape memory behavior of Ti–22Nb–6Ta alloy, Acta Mater., Volume 54 (2006), p. 423

[29] M.F. Ijaz et al. Superelastic properties of biomedical (Ti–Zr)–Mo–Sn alloys, Mater. Sci. Eng. C, Volume 48 (2015), p. 11

[30] M. Tahara et al. Cyclic deformation behavior of a Ti-26 at.% Nb alloy, Acta Mater., Volume 57 (2009), p. 2461

[31] E.G. Obbard et al. Mechanics of superelasticity in Ti–30Nb–(8–10)Ta–5Zr alloy, Acta Mater., Volume 58 (2010), p. 3557

[32] A. Ramarolahy et al. Microstructure and mechanical behavior of superelastic Ti–24Nb–0.5O and Ti–24Nb–0.5N biomedical alloys, J. Mech. Behav. Biomed. Mater., Volume 9 (2012), p. 83

[33] M. Tahara et al. Lattice modulation and superelasticity in oxygen-added β-Ti alloys, Acta Mater., Volume 59 (2011), p. 6208

[34] P. Castany; M. Besse; T. Gloriant Dislocation mobility in gum metal beta-titanium alloy studied via in situ transmission electron microscopy, Phys. Rev. B, Volume 84 (2011)

[35] M. Besse; P. Castany; T. Gloriant Mechanisms of deformation in gum metal TNTZ–O and TNTZ titanium alloys: a comparative study on the oxygen influence, Acta Mater., Volume 59 (2011), p. 5982

[36] P. Castany; M. Besse; T. Gloriant In situ TEM study of dislocation slip in a metastable β titanium alloy, Scr. Mater., Volume 66 (2012), p. 371

[37] P. Castany et al. Deformation mechanisms and biocompatibility of the superelastic Ti–23Nb–0.7Ta–2Zr–0.5N alloy, Shape Mem. Superelasticity, Volume 2 (2016), p. 18

[38] Y. Kamimura et al. Thermally activated deformation of gum metal: a strong evidence for the Peierls mechanism of deformation, Mater. Trans., Volume 56 (2015), p. 2084

[39] E. Plancher et al. On dislocation involvement in Ti–Nb gum metal plasticity, Scr. Mater., Volume 68 (2013), p. 805

[40] D.C. Chrzan et al. Spreading of dislocation cores in elastically anisotropic body-centered-cubic materials: the case of gum metal, Phys. Rev. B, Volume 82 (2010)

[41] J. Huang; H. Xing; J. Sun Structural stability and generalized stacking fault energies in β Ti–Nb alloys: relation to dislocation properties, Scr. Mater., Volume 66 (2012), p. 682

[42] S. Hanada; O. Izumi Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys, Metall. Trans. A, Volume 17 (1986), p. 1409

[43] M. Abdel-Hady; K. Hinoshita; M. Morinaga General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters, Scr. Mater., Volume 55 (2006), p. 477

[44] M. Ahmed et al. The influence of β phase stability on deformation mode and compressive mechanical properties of Ti–10V–3Fe–3Al alloy, Acta Mater., Volume 84 (2015), p. 124

[45] E. Bertrand et al. Twinning system selection in a metastable β-titanium alloy by Schmid factor analysis, Scr. Mater., Volume 64 (2011), p. 1110

[46] M.J. Blackburn; J.A. Feeney Stress-induced transformations in Ti–Mo alloys, J. Inst. Met., Volume 99 (1971), p. 132

[47] P. Castany et al. Reversion of a parent {130}310α martensitic twinning system at the origin of {332}113β twins observed in metastable beta titanium alloys, Phys. Rev. Lett., Volume 117 (2016)

[48] E. Bertrand et al. Deformation twinning in the full-α martensitic Ti–25Ta–20Nb shape memory alloy, Acta Mater., Volume 105 (2016), p. 94

[49] M. Tahara et al. Plastic deformation behaviour of single-crystalline martensite of Ti–Nb shape memory alloy, Sci. Rep., Volume 7 (2017)

[50] Y. Yang et al. Stress release-induced interfacial twin boundary ω phase formation in a β type Ti-based single crystal displaying stress-induced α martensitic transformation, Acta Mater., Volume 149 (2018), p. 97

[51] J. Fu et al. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility, Acta Biomater., Volume 17 (2015), p. 56

[52] M.F. Ijaz et al. Design of a novel superelastic Ti–23Hf–3Mo–4Sn biomedical alloy combining low modulus, high strength and large recovery strain, Mater. Lett., Volume 177 (2016), p. 39

[53] A. Ramalohary et al. Superelastic property induced by low-temperature heating of a shape memory Ti–24Nb–0.5Si biomedical alloy, Scr. Mater., Volume 88 (2014), p. 25

[54] R. Boyer Aerospace applications of beta titanium alloys, JOM, Volume 46 (1994), p. 20

[55] P.J. Winkler; M.A. Äubler; M. Peters Application of Ti alloys in the European aerospace industry, San Diego, California, June 29–July 2 (1992), p. 2877

[56] P.J. Bania Beta titanium alloys and their role in the titanium industry, JOM, Volume 46 (1994), p. 16

[57] M. Morinaga et al. Theoretical design of titanium alloys, Cannes, June 6–9, 1988 (P. Lacombe; R. Tricot; G. Béranger, eds.), Volume vol. III, Les Éditions de Physique (1989), p. 1601

[58] D. Kuroda et al. Design and mechanical properties of new β type titanium alloys for implant materials, Mater. Sci. Eng. A, Volume 243 (1998), p. 244

[59] M. Morinaga; H. Adachi; M. Tsukada Electronic structure and phase stability of ZrO2, J. Phys. Chem. Solids, Volume 44 (1983), p. 301

[60] M. Morinaga et al. New PHACOMP and its applications to alloy design, Superalloys, Volume 1984 (1984), p. 523

[61] M. Morinaga et al. Solid solubilities in transition-metal-based fcc alloys, Philos. Mag. A, Volume 51 (1985), p. 223

[62] M. Morinaga et al. Theoretical design of β-type titanium alloys, Science and Technology, Proceedings of the 7th International Conference on Titanium, 1992, p. 276

[63] M. Abdel-Hady et al. Phase stability change with Zr content in β-type Ti–Nb alloys, Scr. Mater., Volume 57 (2007), p. 1000

[64] J. Gao et al. Segregation mediated heterogeneous structure in a metastable β titanium alloy with a superior combination of strength and ductility, Sci. Rep., Volume 8 (2018), p. 7512

[65] X. Min et al. Effect of oxygen content on deformation mode and corrosion behavior in β-type Ti–Mo alloy, Mater. Sci. Eng. A, Volume 684 (2017), p. 534

[66] I. Gutierrez-Urrutia; C.-L. Li; K. Tsuchiya {332}113 detwinning in a multilayered bcc-Ti–10Mo–Fe alloy, J. Mater. Sci., Volume 52 (2017), p. 7858

[67] J. Zhang et al. Fabrication and characterization of a novel β metastable Ti–Mo–Zr alloy with large ductility and improved yield strength, Mater. Charact., Volume 139 (2018), p. 421

[68] X. Min et al. Mechanical twinning and dislocation slip multilayered deformation microstructures in β-type Ti–Mo base alloy, Scr. Mater., Volume 102 (2015), p. 79

[69] X. Zhou; X. Min Effect of grain boundary angle on {332}113 twinning transfer behavior in β-type Ti–15Mo–5Zr alloy, J. Mater. Sci., Volume 53 (2018), p. 8604

[70] M. Buzatu et al. Obtaining and characterization of the Ti15Mo5W alloy for biomedical applications, Mater. Plast., Volume 54 (2017), p. 596

[71] D.-S. Kang et al. Enhanced work hardening by redistribution of oxygen in (α+β)-type Ti–4Cr–0.2O alloys, Mater. Sci. Eng. A, Volume 606 (2014), p. 101

[72] M. Niinomi Enhancement of mechanical biocompatibility of titanium alloys by deformation-induced transformation, Mater. Sci. Forum, Volume 879 (2017)

[73] M. Ahmed et al. Stress-induced twinning and phase transformations during the compression of a Ti–10V–3Fe–3Al alloy, Metall. Mater. Trans. A, Volume 48 (2017), p. 2791

[74] C. Li et al. Effect of strain rate on stress-induced martensitic formation and the compressive properties of Ti–V–(Cr, Fe)–Al alloys, Mater. Sci. Eng. A, Volume 573 (2013), p. 111

[75] X.L. Wang et al. Role of oxygen in stress-induced ω phase transformation and {332}113 mechanical twinning in β Ti–20V alloy, Scr. Mater., Volume 96 (2015), p. 37

[76] P. Fernandes Santos et al. Improvement of microstructure, mechanical and corrosion properties of biomedical Ti–Mn alloys by Mo addition, Mater. Des., Volume 110 (2016), p. 414

[77] H. Zhan et al. On the deformation mechanisms and strain rate sensitivity of a metastable β Ti–Nb alloy, Scr. Mater., Volume 107 (2015), p. 34

[78] M.J. Lai; C.C. Tasan; D. Raabe On the mechanism of {332} twinning in metastable β titanium alloys, Acta Mater., Volume 111 (2016), p. 173

[79] B.-S. Lee et al. Stress-induced α martensitic transformation mechanism in deformation twinning of metastable β-type Ti–27Nb–0.5Ge alloy under tension, Mater. Trans., Volume 57 (2016), p. 1868

[80] L. Lilensten et al. Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity, Mater. Res. Lett., Volume 5 (2017), p. 110

Cited by Sources:

Comments - Policy