Comptes Rendus
Design of strain-transformable titanium alloys
[Conception d'alliages de titane transformables par déformation]
Comptes Rendus. Physique, New trends in metallic alloys / Alliages métalliques : nouvelles tendances, Volume 19 (2018) no. 8, pp. 710-720.

Parmi les alliages de titane, ceux de type β métastable sont les plus prometteurs pour améliorer les performances des matériaux utilisés actuellement dans de nombreux secteurs tels que l'aéronautique ou le biomédical. En particulier, certains alliages de titane β métastable sont sujet à une transformation martensitique induite sous contrainte (vers la phase α orthorhombique), qui peut être ajustée afin d'obtenir de la superélasticité ou un effet TRIP (TRansformation-Induced Plasticity). La stratégie de conception de ces alliages transformables par déformation est présentée ici et quelques découvertes majeures récentes sont mises en lumière et discutées.

Amongst titanium alloys, metastable β types are the most promising to improve performances of materials currently used in several sectors such as aeronautics or biomedical applications. Particularly, some metastable β titanium alloys exhibit a stress-induced martensitic transformation (into the orthorhombic α phase) that can be tuned to obtain superelasticity or the TRansformation Induced Plasticity (TRIP) effect. The design strategy of such strain-transformable alloys is presented here, and some recent key findings are highlighted and discussed.

Publié le :
DOI : 10.1016/j.crhy.2018.10.004
Keywords: Titanium alloys, Metastable β phase, Superelasticity, TRIP, TWIP
Mots-clés : Alliages de titane, Phase β métastable, Superélasticité, TRIP, TWIP

Philippe Castany 1 ; Thierry Gloriant 1 ; Fan Sun 2 ; Frédéric Prima 2

1 Univ Rennes, INSA de Rennes, CNRS, ISCR, UMR 6226, 35000 Rennes, France
2 PSL Research University, Chimie ParisTech–CNRS, Institut de recherche de Chimie Paris, 75005 Paris, France
@article{CRPHYS_2018__19_8_710_0,
     author = {Philippe Castany and Thierry Gloriant and Fan Sun and Fr\'ed\'eric Prima},
     title = {Design of strain-transformable titanium alloys},
     journal = {Comptes Rendus. Physique},
     pages = {710--720},
     publisher = {Elsevier},
     volume = {19},
     number = {8},
     year = {2018},
     doi = {10.1016/j.crhy.2018.10.004},
     language = {en},
}
TY  - JOUR
AU  - Philippe Castany
AU  - Thierry Gloriant
AU  - Fan Sun
AU  - Frédéric Prima
TI  - Design of strain-transformable titanium alloys
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 710
EP  - 720
VL  - 19
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.10.004
LA  - en
ID  - CRPHYS_2018__19_8_710_0
ER  - 
%0 Journal Article
%A Philippe Castany
%A Thierry Gloriant
%A Fan Sun
%A Frédéric Prima
%T Design of strain-transformable titanium alloys
%J Comptes Rendus. Physique
%D 2018
%P 710-720
%V 19
%N 8
%I Elsevier
%R 10.1016/j.crhy.2018.10.004
%G en
%F CRPHYS_2018__19_8_710_0
Philippe Castany; Thierry Gloriant; Fan Sun; Frédéric Prima. Design of strain-transformable titanium alloys. Comptes Rendus. Physique, New trends in metallic alloys / Alliages métalliques : nouvelles tendances, Volume 19 (2018) no. 8, pp. 710-720. doi : 10.1016/j.crhy.2018.10.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.10.004/

[1] G. Lütjering; J.C. Williams Titanium, Springer, 2007

[2] S. Banerjee; R. Tewari; G.K. Dey Omega phase transformation – morphologies and mechanisms, Int. J. Mater. Res., Volume 97 (2006), p. 963

[3] F. Prima et al. Evidence of α-nanophase heterogeneous nucleation from ω particles in a β-metastable Ti-based alloy by high-resolution electron microscopy, Scr. Mater., Volume 54 (2006), p. 645

[4] T. Gloriant et al. Characterization of nanophase precipitation in a metastable β titanium-based alloy by electrical resistivity, dilatometry and neutron diffraction, Scr. Mater., Volume 58 (2008), p. 271

[5] F. Sun; F. Prima; T. Gloriant High-strength nanostructured Ti–12Mo alloy from ductile metastable beta state precursor, Mater. Sci. Eng. A, Volume 527 (2010), p. 4262

[6] A. Devaraj et al. Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium–molybdenum alloys, Acta Mater., Volume 60 (2012), p. 596

[7] D. Choudhuri et al. Coupled experimental and computational investigation of omega phase evolution in a high misfit titanium–vanadium alloy, Acta Mater., Volume 130 (2017), p. 215

[8] M. Marteleur et al. On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects, Scr. Mater., Volume 66 (2012), p. 749

[9] F. Sun et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects, Acta Mater., Volume 61 (2013), p. 6406

[10] F. Sun et al. A new titanium alloy with a combination of high strength, high strain hardening and improved ductility, Scr. Mater., Volume 94 (2015), p. 17

[11] S. Sadeghpour; S.M. Abbasi; M. Morakabati Deformation-induced martensitic transformation in a new metastable β titanium alloy, J. Alloys Compd., Volume 650 (2015), p. 22

[12] C. Brozek et al. A β-titanium alloy with extra high strain-hardening rate: design and mechanical properties, Scr. Mater., Volume 114 (2016), p. 60

[13] H.Y. Kim et al. Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys, Acta Mater., Volume 54 (2006), p. 2419

[14] E. Bertrand et al. Synthesis and characterisation of a new superelastic Ti–25Ta–25Nb biomedical alloy, J. Mech. Behav. Biomed. Mater., Volume 3 (2010), p. 559

[15] E. Bertrand; P. Castany; T. Gloriant Investigation of the martensitic transformation and the damping behavior of a superelastic Ti–Ta–Nb alloy, Acta Mater., Volume 61 (2013), p. 511

[16] Q. Li et al. Effect of Zr on super-elasticity and mechanical properties of Ti-24 at% Nb-(0, 2, 4) at% Zr alloy subjected to aging treatment, Mater. Sci. Eng. A, Volume 536 (2012), p. 197

[17] P. Castany et al. In situ synchrotron X-ray diffraction study of the martensitic transformation in superelastic Ti–24Nb–0.5N and Ti–24Nb–0.5O alloys, Acta Mater., Volume 88 (2015), p. 102

[18] Y. Yang et al. Characterization of the martensitic transformation in the superelastic Ti–24Nb–4Zr–8Sn alloy by in situ synchrotron X-ray diffraction and dynamic mechanical analysis, Acta Mater., Volume 88 (2015), p. 25

[19] J.K. Bass; H. Fine; G.J. Cisneros Nickel hypersensitivity in the orthodontic patient, Am. J. Orthod. Dentofac. Orthop., Volume 103 (1993), p. 280

[20] H. Kerosuo et al. Nickel allergy in adolescents in relation to orthodontic treatment and piercing of ears, Am. J. Orthod. Dentofac. Orthop., Volume 109 (1996), p. 148

[21] H.H. Huang et al. Ion release from NiTi orthodontic wires in artificial saliva with various acidities, Biomaterials, Volume 24 (2003), p. 3585

[22] H.Y. Kim et al. Effect of Ta addition on shape memory behavior of Ti–22Nb alloy, Mater. Sci. Eng. A, Volume 417 (2006), p. 120

[23] J.I. Kim et al. Shape memory characteristics of Ti–22Nb–(2–8)Zr(at.%) biomedical alloys, Mater. Sci. Eng. A, Volume 403 (2005), p. 334

[24] F. Sun et al. Influence of a short thermal treatment on the superelastic properties of a titanium-based alloy, Scr. Mater., Volume 63 (2010), p. 1053

[25] F. Sun et al. A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti–26Nb and Ti–20Nb–6Zr (at.%) alloys, J. Mech. Behav. Biomed. Mater., Volume 4 (2011), p. 1864

[26] Y. Yang et al. Texture investigation of the superelastic Ti–24Nb–4Zr–8Sn alloy, J. Alloys Compd., Volume 591 (2014), p. 85

[27] H. Jabir et al. Cristallographic orientation dependence of mechanical properties in the superelastic Ti–24Nb–4Zr–8Sn, Phys. Rev. Mater. (2018) (submitted)

[28] H.Y. Kim et al. Texture and shape memory behavior of Ti–22Nb–6Ta alloy, Acta Mater., Volume 54 (2006), p. 423

[29] M.F. Ijaz et al. Superelastic properties of biomedical (Ti–Zr)–Mo–Sn alloys, Mater. Sci. Eng. C, Volume 48 (2015), p. 11

[30] M. Tahara et al. Cyclic deformation behavior of a Ti-26 at.% Nb alloy, Acta Mater., Volume 57 (2009), p. 2461

[31] E.G. Obbard et al. Mechanics of superelasticity in Ti–30Nb–(8–10)Ta–5Zr alloy, Acta Mater., Volume 58 (2010), p. 3557

[32] A. Ramarolahy et al. Microstructure and mechanical behavior of superelastic Ti–24Nb–0.5O and Ti–24Nb–0.5N biomedical alloys, J. Mech. Behav. Biomed. Mater., Volume 9 (2012), p. 83

[33] M. Tahara et al. Lattice modulation and superelasticity in oxygen-added β-Ti alloys, Acta Mater., Volume 59 (2011), p. 6208

[34] P. Castany; M. Besse; T. Gloriant Dislocation mobility in gum metal beta-titanium alloy studied via in situ transmission electron microscopy, Phys. Rev. B, Volume 84 (2011)

[35] M. Besse; P. Castany; T. Gloriant Mechanisms of deformation in gum metal TNTZ–O and TNTZ titanium alloys: a comparative study on the oxygen influence, Acta Mater., Volume 59 (2011), p. 5982

[36] P. Castany; M. Besse; T. Gloriant In situ TEM study of dislocation slip in a metastable β titanium alloy, Scr. Mater., Volume 66 (2012), p. 371

[37] P. Castany et al. Deformation mechanisms and biocompatibility of the superelastic Ti–23Nb–0.7Ta–2Zr–0.5N alloy, Shape Mem. Superelasticity, Volume 2 (2016), p. 18

[38] Y. Kamimura et al. Thermally activated deformation of gum metal: a strong evidence for the Peierls mechanism of deformation, Mater. Trans., Volume 56 (2015), p. 2084

[39] E. Plancher et al. On dislocation involvement in Ti–Nb gum metal plasticity, Scr. Mater., Volume 68 (2013), p. 805

[40] D.C. Chrzan et al. Spreading of dislocation cores in elastically anisotropic body-centered-cubic materials: the case of gum metal, Phys. Rev. B, Volume 82 (2010)

[41] J. Huang; H. Xing; J. Sun Structural stability and generalized stacking fault energies in β Ti–Nb alloys: relation to dislocation properties, Scr. Mater., Volume 66 (2012), p. 682

[42] S. Hanada; O. Izumi Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys, Metall. Trans. A, Volume 17 (1986), p. 1409

[43] M. Abdel-Hady; K. Hinoshita; M. Morinaga General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters, Scr. Mater., Volume 55 (2006), p. 477

[44] M. Ahmed et al. The influence of β phase stability on deformation mode and compressive mechanical properties of Ti–10V–3Fe–3Al alloy, Acta Mater., Volume 84 (2015), p. 124

[45] E. Bertrand et al. Twinning system selection in a metastable β-titanium alloy by Schmid factor analysis, Scr. Mater., Volume 64 (2011), p. 1110

[46] M.J. Blackburn; J.A. Feeney Stress-induced transformations in Ti–Mo alloys, J. Inst. Met., Volume 99 (1971), p. 132

[47] P. Castany et al. Reversion of a parent {130}310α martensitic twinning system at the origin of {332}113β twins observed in metastable beta titanium alloys, Phys. Rev. Lett., Volume 117 (2016)

[48] E. Bertrand et al. Deformation twinning in the full-α martensitic Ti–25Ta–20Nb shape memory alloy, Acta Mater., Volume 105 (2016), p. 94

[49] M. Tahara et al. Plastic deformation behaviour of single-crystalline martensite of Ti–Nb shape memory alloy, Sci. Rep., Volume 7 (2017)

[50] Y. Yang et al. Stress release-induced interfacial twin boundary ω phase formation in a β type Ti-based single crystal displaying stress-induced α martensitic transformation, Acta Mater., Volume 149 (2018), p. 97

[51] J. Fu et al. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility, Acta Biomater., Volume 17 (2015), p. 56

[52] M.F. Ijaz et al. Design of a novel superelastic Ti–23Hf–3Mo–4Sn biomedical alloy combining low modulus, high strength and large recovery strain, Mater. Lett., Volume 177 (2016), p. 39

[53] A. Ramalohary et al. Superelastic property induced by low-temperature heating of a shape memory Ti–24Nb–0.5Si biomedical alloy, Scr. Mater., Volume 88 (2014), p. 25

[54] R. Boyer Aerospace applications of beta titanium alloys, JOM, Volume 46 (1994), p. 20

[55] P.J. Winkler; M.A. Äubler; M. Peters Application of Ti alloys in the European aerospace industry, San Diego, California, June 29–July 2 (1992), p. 2877

[56] P.J. Bania Beta titanium alloys and their role in the titanium industry, JOM, Volume 46 (1994), p. 16

[57] M. Morinaga et al. Theoretical design of titanium alloys, Cannes, June 6–9, 1988 (P. Lacombe; R. Tricot; G. Béranger, eds.), Volume vol. III, Les Éditions de Physique (1989), p. 1601

[58] D. Kuroda et al. Design and mechanical properties of new β type titanium alloys for implant materials, Mater. Sci. Eng. A, Volume 243 (1998), p. 244

[59] M. Morinaga; H. Adachi; M. Tsukada Electronic structure and phase stability of ZrO2, J. Phys. Chem. Solids, Volume 44 (1983), p. 301

[60] M. Morinaga et al. New PHACOMP and its applications to alloy design, Superalloys, Volume 1984 (1984), p. 523

[61] M. Morinaga et al. Solid solubilities in transition-metal-based fcc alloys, Philos. Mag. A, Volume 51 (1985), p. 223

[62] M. Morinaga et al. Theoretical design of β-type titanium alloys, Science and Technology, Proceedings of the 7th International Conference on Titanium, 1992, p. 276

[63] M. Abdel-Hady et al. Phase stability change with Zr content in β-type Ti–Nb alloys, Scr. Mater., Volume 57 (2007), p. 1000

[64] J. Gao et al. Segregation mediated heterogeneous structure in a metastable β titanium alloy with a superior combination of strength and ductility, Sci. Rep., Volume 8 (2018), p. 7512

[65] X. Min et al. Effect of oxygen content on deformation mode and corrosion behavior in β-type Ti–Mo alloy, Mater. Sci. Eng. A, Volume 684 (2017), p. 534

[66] I. Gutierrez-Urrutia; C.-L. Li; K. Tsuchiya {332}113 detwinning in a multilayered bcc-Ti–10Mo–Fe alloy, J. Mater. Sci., Volume 52 (2017), p. 7858

[67] J. Zhang et al. Fabrication and characterization of a novel β metastable Ti–Mo–Zr alloy with large ductility and improved yield strength, Mater. Charact., Volume 139 (2018), p. 421

[68] X. Min et al. Mechanical twinning and dislocation slip multilayered deformation microstructures in β-type Ti–Mo base alloy, Scr. Mater., Volume 102 (2015), p. 79

[69] X. Zhou; X. Min Effect of grain boundary angle on {332}113 twinning transfer behavior in β-type Ti–15Mo–5Zr alloy, J. Mater. Sci., Volume 53 (2018), p. 8604

[70] M. Buzatu et al. Obtaining and characterization of the Ti15Mo5W alloy for biomedical applications, Mater. Plast., Volume 54 (2017), p. 596

[71] D.-S. Kang et al. Enhanced work hardening by redistribution of oxygen in (α+β)-type Ti–4Cr–0.2O alloys, Mater. Sci. Eng. A, Volume 606 (2014), p. 101

[72] M. Niinomi Enhancement of mechanical biocompatibility of titanium alloys by deformation-induced transformation, Mater. Sci. Forum, Volume 879 (2017)

[73] M. Ahmed et al. Stress-induced twinning and phase transformations during the compression of a Ti–10V–3Fe–3Al alloy, Metall. Mater. Trans. A, Volume 48 (2017), p. 2791

[74] C. Li et al. Effect of strain rate on stress-induced martensitic formation and the compressive properties of Ti–V–(Cr, Fe)–Al alloys, Mater. Sci. Eng. A, Volume 573 (2013), p. 111

[75] X.L. Wang et al. Role of oxygen in stress-induced ω phase transformation and {332}113 mechanical twinning in β Ti–20V alloy, Scr. Mater., Volume 96 (2015), p. 37

[76] P. Fernandes Santos et al. Improvement of microstructure, mechanical and corrosion properties of biomedical Ti–Mn alloys by Mo addition, Mater. Des., Volume 110 (2016), p. 414

[77] H. Zhan et al. On the deformation mechanisms and strain rate sensitivity of a metastable β Ti–Nb alloy, Scr. Mater., Volume 107 (2015), p. 34

[78] M.J. Lai; C.C. Tasan; D. Raabe On the mechanism of {332} twinning in metastable β titanium alloys, Acta Mater., Volume 111 (2016), p. 173

[79] B.-S. Lee et al. Stress-induced α martensitic transformation mechanism in deformation twinning of metastable β-type Ti–27Nb–0.5Ge alloy under tension, Mater. Trans., Volume 57 (2016), p. 1868

[80] L. Lilensten et al. Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity, Mater. Res. Lett., Volume 5 (2017), p. 110

  • P Christie; MA Siddiq; RM McMeeking; ME Kartal Interaction of defects, martensitic transformation and slip in metastable body centred cubic crystals of Ti-10V-2Fe-3Al: A study via crystal plasticity finite element methods (CPFEM), International Journal of Damage Mechanics, Volume 34 (2025) no. 1, p. 157 | DOI:10.1177/10567895241275373
  • João V. Calazans Neto; Cícero A. S. Celles; Catia S. A. F. de Andrade; Conrado R. M. Afonso; Bruna E. Nagay; Valentim A. R. Barão Recent Advances and Prospects in β-type Titanium Alloys for Dental Implants Applications, ACS Biomaterials Science Engineering, Volume 10 (2024) no. 10, p. 6029 | DOI:10.1021/acsbiomaterials.4c00963
  • Jacopo Romanò; Simone Di Giuseppe; Fabio Lazzari; Lorenzo Garavaglia; Francesco Volonte’; Simone Pittaccio An Investigation of Energy Dissipation in Beta III Titanium Alloy, JOM, Volume 76 (2024) no. 9, p. 5036 | DOI:10.1007/s11837-024-06428-2
  • Clémence Fontaine; Lola Lilensten; Dalibor Preisler; Josef Strasky; Mathilde Laurent-Brocq; Philippe Chevallier; Amélie Fillon; Daniel Galy; Milos Janecek; Frédéric Prima Local characterization of mechanical properties and deformation mechanisms of SPS graded strain-transformable Ti-Nb alloy, Materials Characterization, Volume 218 (2024), p. 114482 | DOI:10.1016/j.matchar.2024.114482
  • Yu Fu; Yue Gao; Wentao Jiang; Wenlong Xiao; Xinqing Zhao; Chaoli Ma A Review of Deformation Mechanisms, Compositional Design, and Development of Titanium Alloys with Transformation-Induced Plasticity and Twinning-Induced Plasticity Effects, Metals, Volume 14 (2024) no. 1, p. 97 | DOI:10.3390/met14010097
  • Wataru Tasaki; Yuzuki Akiyama; Tamotsu Koyano; Shuichi Miyazaki; Hee Young Kim Martensitic transformation and shape memory effect of TiZrHf-based multicomponent alloys, Journal of Alloys and Compounds, Volume 931 (2023), p. 167496 | DOI:10.1016/j.jallcom.2022.167496
  • Lorène Héraud; Philippe Castany; Muhammad Farzik Ijaz; Doina-Margareta Gordin; Thierry Gloriant Large-strain functional fatigue properties of superelastic metastable β titanium and NiTi alloys: A comparative study, Journal of Alloys and Compounds, Volume 953 (2023), p. 170170 | DOI:10.1016/j.jallcom.2023.170170
  • Hugo Schaal; Philippe Castany; Pascal Laheurte; Thierry Gloriant Design of a low Young’s modulus Ti-Zr-Nb-Sn biocompatible alloy by in situ laser powder bed fusion additive manufacturing process, Journal of Alloys and Compounds, Volume 966 (2023), p. 171539 | DOI:10.1016/j.jallcom.2023.171539
  • Jingtao Zhang; Cunshan Wang; Nisha Shareef Influence of Ti60/Ti6554 ratio on the microstructure and properties of Ti alloys fabricated by laser directed energy deposition, Materials Characterization, Volume 204 (2023), p. 113187 | DOI:10.1016/j.matchar.2023.113187
  • Hugo Schaal; Philippe Castany; Thierry Gloriant Outstanding strain-hardening of a new metastable β-titanium alloy elaborated by in situ additive manufacturing L-PBF process, Materials Science and Engineering: A, Volume 875 (2023), p. 145117 | DOI:10.1016/j.msea.2023.145117
  • O. M. Myslyvchenko; Yu. M. Podrezov; A. A. Bondar; D. G. Verbylo; V. A. Nazarenko; V. M. Voblikov The Influence of Strain on Texture Changes and Phase Transformations in the Quenched Ti92.5Nb5Mo2.5 Alloy, Powder Metallurgy and Metal Ceramics, Volume 61 (2023) no. 11-12, p. 748 | DOI:10.1007/s11106-023-00361-w
  • Sravya Tekumalla; Jian Eng Chew; Sui Wei Tan; Manickavasagam Krishnan; Matteo Seita Towards 3-D texture control in a β titanium alloy via laser powder bed fusion and its implications on mechanical properties, Additive Manufacturing, Volume 59 (2022), p. 103111 | DOI:10.1016/j.addma.2022.103111
  • Frank Niessen; Elena Pereloma A Review of In Situ Observations of Deformation‐Induced β ↔ α″ Martensite Transformations in Metastable β Ti Alloys, Advanced Engineering Materials, Volume 24 (2022) no. 8 | DOI:10.1002/adem.202200281
  • Carolina Catanio Bortolan; Leonardo Contri Campanelli; Paolo Mengucci; Gianni Barucca; Nicolas Giguère; Nicolas Brodusch; Carlo Paternoster; Claudemiro Bolfarini; Raynald Gauvin; Diego Mantovani Development of Ti-Mo-Fe alloys combining different plastic deformation mechanisms for improved strength-ductility trade-off and high work hardening rate, Journal of Alloys and Compounds, Volume 925 (2022), p. 166757 | DOI:10.1016/j.jallcom.2022.166757
  • Emmanuel Bertrand; Philippe Castany; Yang Yang; Edern Menou; Laurent Couturier; Thierry Gloriant Origin of 112 < 111 > antitwinning in a Ti-24Nb-4Zr-8Sn superelastic single crystal, Journal of Materials Science, Volume 57 (2022) no. 14, p. 7327 | DOI:10.1007/s10853-022-07086-y
  • Teddy Sjafrizal; Damon Kent; Ali Dehghan-Manshadi; Wenlong Xiao; Matthew S. Dargusch Metastable Ti-Fe-Ge alloys with high elastic admissible strain, Materialia, Volume 21 (2022), p. 101304 | DOI:10.1016/j.mtla.2021.101304
  • B. Ellyson; K. Fezzaa; T. Sun; N. Parab; A. Saville; C. Finfrock; C.J. Rietema; D. Smith; J. Copley; C. Johnson; C.G. Becker; J. Klemm-Toole; C. Kirk; N. Kedir; J. Gao; W. Chen; R. Banerjee; K.D. Clarke; A.J. Clarke Transformation and twinning induced plasticity in metastable Ti-Mo alloys under high strain rate deformation, Materials Science and Engineering: A, Volume 857 (2022), p. 143716 | DOI:10.1016/j.msea.2022.143716
  • Jincai Dai; Xiaohua Min; Lin Wang Dynamic response and adiabatic shear behavior of β-type Ti–Mo alloys with different deformation modes, Materials Science and Engineering: A, Volume 857 (2022), p. 144108 | DOI:10.1016/j.msea.2022.144108
  • Zhuo Chen; Liang Yang; Xinkai Ma; Qi Sun; Fuguo Li; Xiaotian Fang Tensile Deformation Behavior of a Heterogeneous Structural Dual-Phase Metastable β Titanium Alloy, Metallurgical and Materials Transactions A, Volume 53 (2022) no. 7, p. 2754 | DOI:10.1007/s11661-022-06705-2
  • Jincai Dai; Xiaohua Min; Lin Wang Dynamic Response and Adiabatic Shear Behavior Of Β-Type Ti-Mo Alloys with Different Deformation Modes, SSRN Electronic Journal (2022) | DOI:10.2139/ssrn.4164510
  • Madeleine Bignon; Emmanuel Bertrand; Pedro E.J. Rivera-Díaz-del-Castillo; Franck Tancret Martensite formation in titanium alloys: Crystallographic and compositional effects, Journal of Alloys and Compounds, Volume 872 (2021), p. 159636 | DOI:10.1016/j.jallcom.2021.159636
  • Xiaocan Wen; Yuan Wu; Hailong Huang; Suihe Jiang; Hui Wang; Xiongjun Liu; Yong Zhang; Xianzhen Wang; Zhaoping Lu Effects of Nb on deformation-induced transformation and mechanical properties of HfNbxTa0.2TiZr high entropy alloys, Materials Science and Engineering: A, Volume 805 (2021), p. 140798 | DOI:10.1016/j.msea.2021.140798
  • G.-H. Zhao; X.Z. Liang; X. Xu; M.B. Gamża; H. Mao; D.V. Louzguine-Luzgin; P.E.J. Rivera-Díaz-del-Castillo Alloy design by tailoring phase stability in commercial Ti alloys, Materials Science and Engineering: A, Volume 815 (2021), p. 141229 | DOI:10.1016/j.msea.2021.141229
  • Carolina Catanio Bortolan; Leonardo Contri Campanelli; Carlo Paternoster; Nicolas Giguère; Nicolas Brodusch; Claudemiro Bolfarini; Raynald Gauvin; Paolo Mengucci; Gianni Barucca; Diego Mantovani Effect of oxygen content on the mechanical properties and plastic deformation mechanisms in the TWIP/TRIP Ti–12Mo alloy, Materials Science and Engineering: A, Volume 817 (2021), p. 141346 | DOI:10.1016/j.msea.2021.141346
  • Syed Faraz Jawed; Chirag Dhirajlal Rabadia; Fahad Azim; Saad Jawaid Khan; Jian Chen Effect of Nb on β → α ″ Martensitic Phase Transformation and Characterization of New Biomedical Ti-xNb-3Fe-9Zr Alloys, Scanning, Volume 2021 (2021), p. 1 | DOI:10.1155/2021/8173425
  • Guohua Zhao; Xiaoqing Li; Nik Petrinic Materials information and mechanical response of TRIP/TWIP Ti alloys, npj Computational Materials, Volume 7 (2021) no. 1 | DOI:10.1038/s41524-021-00560-2
  • Guo-Hua Zhao; Xin Xu; David Dye; Pedro E.J. Rivera-Díaz-del-Castillo Microstructural evolution and strain-hardening in TWIP Ti alloys, Acta Materialia, Volume 183 (2020), p. 155 | DOI:10.1016/j.actamat.2019.11.009
  • Y. Yang; P. Castany; Y.L. Hao; T. Gloriant Plastic deformation via hierarchical nano-sized martensitic twinning in the metastable β Ti-24Nb-4Zr-8Sn alloy, Acta Materialia, Volume 194 (2020), p. 27 | DOI:10.1016/j.actamat.2020.04.021
  • Frank Niessen; Elena V. Pereloma; Ahmed A. Saleh Predicting the available work from deformation-induced α′′ martensite formation in metastable β Ti alloys, Journal of Applied Crystallography, Volume 53 (2020) no. 4, p. 1015 | DOI:10.1107/s1600576720007451
  • Ling Shao; Sujun Wu; Wenya Peng; Amit Datye; Hongbo Ju; Ying Liu Fatigue Crack Growth Behavior of Different Zones in an Annealed Automatic Gas Tungsten Arc Weld Joint of TA16 and TC4 Titanium Alloys, Journal of Wuhan University of Technology-Mater. Sci. Ed., Volume 35 (2020) no. 6, p. 1090 | DOI:10.1007/s11595-020-2359-5
  • Lola Lilensten; Yolaine Danard; Fan Sun; Philippe Vermaut; Loïc Perrière; Jean-Marc Joubert; Frédéric Prima; P. Villechaise; B. Appolaire; P. Castany; M. Dehmas; C. Delaunay; J. Delfosse; A. Denquin; E. Gautier; L. Germain; N. Gey; T. Gloriant; J.-Y. Hascoët; S. Hémery; Y. Millet; D. Monceau; F. Pettinari-Sturmel; M. Piellard; F. Prima; B. Viguier Design and development of a dual-phase TRIP-TWIP alloy for enhanced mechanical properties, MATEC Web of Conferences, Volume 321 (2020), p. 11014 | DOI:10.1051/matecconf/202032111014
  • Xi-Long Ma; Kazuhiro Matsugi; Zhe-Feng Xu; Yong-Bum Choi; Ryohei Matsuzaki; Zi-Feng Lin; Xin-Gang Liu; Hao Huang Possibility of As-Cast Applications on β-Type Titanium Alloys Proposed in the Newly Expanded Area of Bot-Mdt Diagram, MATERIALS TRANSACTIONS, Volume 61 (2020) no. 4, p. 740 | DOI:10.2320/matertrans.f-m2020803
  • D.M. Gordin; F. Sun; D. Laillé; F. Prima; T. Gloriant How a new strain transformable titanium-based biomedical alloy can be designed for balloon expendable stents, Materialia, Volume 10 (2020), p. 100638 | DOI:10.1016/j.mtla.2020.100638
  • L. Lilensten; Y. Danard; R. Poulain; R. Guillou; J.M. Joubert; L. Perrière; P. Vermaut; D. Thiaudière; F. Prima From single phase to dual-phase TRIP-TWIP titanium alloys: Design approach and properties, Materialia, Volume 12 (2020), p. 100700 | DOI:10.1016/j.mtla.2020.100700
  • Rajeshwar R. Eleti; Margarita Klimova; Mikhail Tikhonovsky; Nikita Stepanov; Sergey Zherebtsov Exceptionally high strain-hardening and ductility due to transformation induced plasticity effect in Ti-rich high-entropy alloys, Scientific Reports, Volume 10 (2020) no. 1 | DOI:10.1038/s41598-020-70298-2
  • Qianglong Liang; Zachary Kloenne; Yufeng Zheng; Dong Wang; Stoichko Antonov; Yipeng Gao; Yulin Hao; Rui Yang; Yunzhi Wang; Hamish L. Fraser The role of nano-scaled structural non-uniformities on deformation twinning and stress-induced transformation in a cold rolled multifunctional β-titanium alloy, Scripta Materialia, Volume 177 (2020), p. 181 | DOI:10.1016/j.scriptamat.2019.10.029
  • Yu Fu; Wenlong Xiao; Damon Kent; Matthew S. Dargusch; Junshuai Wang; Xinqing Zhao; Chaoli Ma Ultrahigh strain hardening in a transformation-induced plasticity and twinning-induced plasticity titanium alloy, Scripta Materialia, Volume 187 (2020), p. 285 | DOI:10.1016/j.scriptamat.2020.06.029
  • Shiyuan Luo; Philippe Castany; Sandrine Thuillier Microstructure, thermo-mechanical properties and Portevin-Le Chatelier effect in metastable β Ti-xMo alloys, Materials Science and Engineering: A, Volume 756 (2019), p. 61 | DOI:10.1016/j.msea.2019.04.018

Cité par 38 documents. Sources : Crossref

Commentaires - Politique