Comptes Rendus
Prix Edmond-Brun 2017 de l'Académie des sciences
On shapes and forms: Population balance dynamics of corrugated stirred fronts
Comptes Rendus. Physique, Volume 19 (2018) no. 5, pp. 306-315.

We introduce a unified framework to discuss the emergence of corrugations on material interfaces transported by random media. Relating the shape of these interfaces to the stirring field giving birth to it, we formalize a population balance dynamics for the r-elements (segments of length r) needed to cover the interface contour in the course of its deformation. As long as corrugations grow kinematically, shapes change continuously, their fractal dimension df(r,t) is a non-monotonous function of the scale r, and increases in time t with no bounds. Interface creation and destruction balance, however, in self-propagating fronts like flames, and in fronts smearing by molecular diffusion, through a mixing induced overlap mechanism, leading to a stationary shape. These findings, which help reexamining old observations in a new perspective, also reconcile kinetics with geometry.

Nous introduisons un cadre unifié pour discuter l'émergence de corrugations sur les interfaces matérielles transportées dans des milieux agités aléatoirement. En reliant la forme de ces interfaces au champ d'agitation qui la crée, nous formalisons une dynamique de bilan de population pour les r-éléments (segments de longueur r) nécessaires pour couvrir le contour de l'interface au cours de sa déformation. Tant que les corrugations croissent cinématiquement, les formes changent continuellement, leur dimension fractale df(r,t) est une fonction non monotone de l'échelle r et augmente dans le temps t sans limite. La création et la destruction d'interfaces s'équilibrent toutefois pour les fronts auto-propagés tels que les flammes, et pour les fronts qui s'étalent par diffusion moléculaire, par un mécanisme de chevauchement induit par le mélange, conduisant à une forme stationnaire. Ces résultats, qui permettent de réexaminer d'anciennes observations dans une nouvelle perspective, réconcilient également la cinétique avec la géométrie.

Published online:
DOI: 10.1016/j.crhy.2018.10.009
Keywords: Interfaces, Turbulence, Mixing, Growth, Fractals
Mot clés : Interfaces, Turbulence, Mélange, Croissance, Fractales

Emmanuel Villermaux 1, 2, 3

1 Aix Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, Marseille, France
2 Institut universitaire de France, Paris, France
3 CNRS/MIT/AMU Joint Laboratory “MultiScale Materials Science for Energy and Environment”, MIT Energy Initiative, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
@article{CRPHYS_2018__19_5_306_0,
     author = {Emmanuel Villermaux},
     title = {On shapes and forms: {Population} balance dynamics of corrugated stirred fronts},
     journal = {Comptes Rendus. Physique},
     pages = {306--315},
     publisher = {Elsevier},
     volume = {19},
     number = {5},
     year = {2018},
     doi = {10.1016/j.crhy.2018.10.009},
     language = {en},
}
TY  - JOUR
AU  - Emmanuel Villermaux
TI  - On shapes and forms: Population balance dynamics of corrugated stirred fronts
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 306
EP  - 315
VL  - 19
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.10.009
LA  - en
ID  - CRPHYS_2018__19_5_306_0
ER  - 
%0 Journal Article
%A Emmanuel Villermaux
%T On shapes and forms: Population balance dynamics of corrugated stirred fronts
%J Comptes Rendus. Physique
%D 2018
%P 306-315
%V 19
%N 5
%I Elsevier
%R 10.1016/j.crhy.2018.10.009
%G en
%F CRPHYS_2018__19_5_306_0
Emmanuel Villermaux. On shapes and forms: Population balance dynamics of corrugated stirred fronts. Comptes Rendus. Physique, Volume 19 (2018) no. 5, pp. 306-315. doi : 10.1016/j.crhy.2018.10.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.10.009/

[1] B. Mandelbrot On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars, J. Fluid Mech., Volume 72 (1975) no. 2, pp. 401-416

[2] P. Welander Studies on the general development of motion in a two-dimensional, ideal fluid, Tellus, Volume 7 (1955) no. 2, pp. 141-156

[3] E. Villermaux; Y. Gagne Line dispersion in homogeneous turbulence: stretching, fractal dimensions and micromixing, Phys. Rev. Lett., Volume 73 (1994) no. 2, pp. 252-255

[4] E. Villermaux Fast bimolecular reactions in high Reynolds number turbulence: structure of the reactive interface and surface of reaction (R. Benzi, ed.), Advances in Turbulence V, Kluwer Academic Publishers, 1995, pp. 529-533

[5] G.I. Taylor Diffusion by continuous movements, Proc. Lond. Math. Soc., Volume 20 (1921), pp. 196-212

[6] P. Langevin Sur la théorie du mouvement brownien, C. R. Acad. Sci. Paris, Volume 146 (1908), pp. 530-533

[7] J. Duplat; S. Kheifets; T. Li; M.G. Raizen; E. Villermaux Superdiffusive trajectories in Brownian motion, Phys. Rev. E, Volume 87 (2013)

[8] L.F. Richardson Atmospheric diffusion shown on a distance-neighbour graph, Proc. R. Soc. Lond. A, Volume 110 (1926), pp. 709-737

[9] S. Corrsin; M. Karweit Fluid line growth in grid-generated isotropic turbulence, J. Fluid Mech., Volume 39 (1969) no. 1, pp. 87-96

[10] K.R. Sreenivasan Fractals and multifractals in fluid turbulence, Annu. Rev. Fluid Mech., Volume 23 (1991), pp. 539-600

[11] H.J. Catrakis; P.E. Dimotakis Mixing in turbulent jets: scalar measures and isosurface geometry, J. Fluid Mech., Volume 317 (1996), pp. 369-406

[12] E. Villermaux; C. Innocenti On the geometry of turbulent mixing, J. Fluid Mech., Volume 393 (1999), pp. 123-145

[13] F.C.G.A. Nicolleau; A. Elmaihy Study of the development of three-dimensional sets of fluid particles and iso-concentration fields using kinematic simulation, J. Fluid Mech., Volume 517 (2004), pp. 229-249

[14] J. Mantzaras; P.G. Felton; F.V. Bracco Fractals and turbulent premixed engine flames, Combust. Flame, Volume 77 (1989), pp. 295-310

[15] B.D. Haslam; P.D. Ronney Fractal properties of propagating fronts in a strongly stirred fluid, Phys. Fluids, Volume 7 (1995), pp. 1931-1937

[16] B. Denet Fractal dimension of turbulent premixed flames for different turbulence spectra, Combust. Sci. Technol., Volume 159 (2000), pp. 305-314

[17] R. Yu; X.-S. Bai; V. Bychkov Fractal flame structure due to the hydrodynamic Darrieus–Landau instability, Phys. Rev. E, Volume 92 (2015)

[18] J. Kalda Simple model of intermittent passive scalar turbulence, Phys. Rev. Lett., Volume 84 (2000) no. 3, pp. 471-474

[19] P. Meunier; E. Villermaux The diffusive strip method for scalar mixing in two-dimensions, J. Fluid Mech., Volume 662 (2010), pp. 134-172

[20] M. Kree; E. Villermaux Scalar mixtures in porous media, Phys. Rev. Fluids, Volume 2 (2017)

[21] R.H. Kraichnan Small-scale structure of a scalar field convected by turbulence, Phys. Fluids, Volume 11 (1968) no. 5, pp. 945-953

[22] R.H. Kraichnan Anomalous scaling of a randomly advected passive scalar, Phys. Rev. Lett., Volume 72 (1994), p. 1016

[23] J.-C. Geminard; P. Pelcé Statistical approach for radial fingering in a Hele Shaw cell, J. Phys. II, Volume 2 (1992), pp. 1931-1940

[24] E. Villermaux; H. Rehab Mixing in coaxial jets, J. Fluid Mech., Volume 425 (2000), pp. 161-185

[25] W.J. Cocke Turbulent hydrodynamic line stretching: consequences of isotropy, Phys. Fluids, Volume 12 (1969) no. 12, pp. 2488-2492

[26] S. Kida; S. Goto Line statistics: stretching rate of passive lines in turbulence, Phys. Fluids, Volume 14 (2002) no. 1, pp. 352-361

[27] M. Souzy; H. Lhuissier; E. Villermaux; B. Metzger Stretching and mixing in sheared particulate suspensions, J. Fluid Mech., Volume 812 (2017), pp. 611-635

[28] B.I. Shraiman; E.D. Siggia Scalar turbulence, Nature, Volume 405 (2000), pp. 639-646

[29] E. Villermaux Mixing versus stirring, Annu. Rev. Fluid Mech. (2019) | DOI

[30] J. Schumacher; K.R. Sreenivasan Geometric features of the mixing of passive scalars at high Schmidt numbers, Phys. Rev. Lett., Volume 91 (2003) no. 17

[31] P. Clavin; G. Searby Combustion Waves and Fronts in Flows, Cambridge University Press, 2016

[32] G. Damköhler Der Einfluss der Turbulenz auf die Flammengeschwindigkeit in Gasgemischen, Z. Elektrochem., Volume 46 (1940) no. 11, pp. 601-652

[33] W.R. Hawthorne; D.S. Wendell; H.C. Hottel Mixing and combustion in turbulent gas jets, Baltimore, MD, USA (1949), pp. 266-288

[34] R.G. Abdel-Gayed; D. Bradley; M. Lawnes Turbulent burning velocities: a general correlation in terms of straining rates, Proc. R. Soc. Lond. A, Volume 414 (1987), pp. 389-413

[35] N. Vladimirova; P. Constantin; A. Kiselev; O. Ruchayskiy; L. Ryzhik Flame enhancement and quenching in fluid flows, Combust. Theory Model., Volume 7 (2003), pp. 487-508

[36] J. Quinard; G. Searby; B. Denet; J. Grana Self-turbulent flame speeds, Flow Turbul. Combust., Volume 89 (2012) no. 2, pp. 231-247

[37] V. Yakhot Propagation velocity of premixed turbulent flames, Combust. Sci. Technol., Volume 60 (1988) no. 1–3, pp. 191-214

[38] T. Le Borgne; P.D. Huck; M. Dentz; E. Villermaux Scalar gradients in stirred mixtures and the deconstruction of random fields, J. Fluid Mech., Volume 812 (2017), pp. 578-610

[39] E. Villermaux; J. Duplat Coarse grained scale of turbulent mixtures, Phys. Rev. Lett., Volume 97 (2006)

[40] J.C.H. Fung; J.C. Vassilicos Fractal dimensions of lines in chaotic advection, Phys. Fluids A, Volume 3 (1995), pp. 2725-2733

Cited by Sources:

Comments - Policy