Comptes Rendus
Temps de cohérence d'un condensat de Bose–Einstein dans un gaz isolé harmoniquement piégé
[Coherence time of a Bose–Einstein condensate in an isolated harmonically trapped gas]
Comptes Rendus. Physique, Volume 19 (2018) no. 5, pp. 316-336.

We study the condensate phase dynamics in a low-temperature equilibrium gas of weakly interacting bosons, harmonically trapped and isolated from the environment. We find that at long times, much longer than the collision time between Bogoliubov quasi-particles, the variance of the phase accumulated by the condensate grows with a ballistic term quadratic in time and a diffusive term affine in time. We give the corresponding analytical expressions in the limit of a large system, in the collisionless regime and in the ergodic approximation for the quasi-particle motion. When properly rescaled, they are described by universal functions of the temperature divided by the Thomas–Fermi chemical potential. The same conclusion holds for the mode damping rates. Such universality class differs from the previously studied one of the homogeneous gas.

Nous étudions la dynamique de phase à l'équilibre d'un condensat dans un gaz de bosons en interaction faible harmoniquement piégé et isolé de l'environnement. Nous trouvons qu'au bout d'un temps long devant le temps de collision typique entre les quasi-particules de Bogolioubov, la variance du déphasage du condensat comporte en général un terme balistique quadratique en temps et un terme diffusif affine en temps. Nous donnons des expressions analytiques des coefficients correspondants, à la limite d'un grand système, dans le régime faiblement collisionnel et dans l'approximation ergodique pour le mouvement des quasi-particules. Correctement adimensionnés, ils sont décrits, tout comme les taux d'amortissement des modes, par des fonctions universelles de la température ramenée au potentiel chimique de Thomas–Fermi du condensat. Cette classe d'universalité diffère de celle précédemment étudiée du gaz spatialement homogène.

Published online:
DOI: 10.1016/j.crhy.2018.04.001
Mot clés : Gaz de bosons, Condensat de Bose–Einstein, Cohérence temporelle, Gaz piégés, Atomes froids
Keywords: Bose gases, Bose–Einstein condensate, Temporal coherence, Trapped gases, Ultracold atoms

Yvan Castin 1; Alice Sinatra 1

1 Laboratoire Kastler Brossel, ENS-PSL, CNRS, Sorbonne Université et Collège de France, Paris, France
@article{CRPHYS_2018__19_5_316_0,
     author = {Yvan Castin and Alice Sinatra},
     title = {Temps de coh\'erence d'un condensat de {Bose{\textendash}Einstein} dans un gaz isol\'e harmoniquement pi\'eg\'e},
     journal = {Comptes Rendus. Physique},
     pages = {316--336},
     publisher = {Elsevier},
     volume = {19},
     number = {5},
     year = {2018},
     doi = {10.1016/j.crhy.2018.04.001},
     language = {fr},
}
TY  - JOUR
AU  - Yvan Castin
AU  - Alice Sinatra
TI  - Temps de cohérence d'un condensat de Bose–Einstein dans un gaz isolé harmoniquement piégé
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 316
EP  - 336
VL  - 19
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.04.001
LA  - fr
ID  - CRPHYS_2018__19_5_316_0
ER  - 
%0 Journal Article
%A Yvan Castin
%A Alice Sinatra
%T Temps de cohérence d'un condensat de Bose–Einstein dans un gaz isolé harmoniquement piégé
%J Comptes Rendus. Physique
%D 2018
%P 316-336
%V 19
%N 5
%I Elsevier
%R 10.1016/j.crhy.2018.04.001
%G fr
%F CRPHYS_2018__19_5_316_0
Yvan Castin; Alice Sinatra. Temps de cohérence d'un condensat de Bose–Einstein dans un gaz isolé harmoniquement piégé. Comptes Rendus. Physique, Volume 19 (2018) no. 5, pp. 316-336. doi : 10.1016/j.crhy.2018.04.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.04.001/

[1] R. Schmied; J.-D. Bancal; B. Allard; M. Fadel; V. Scarani; P. Treutlein; N. Sangouard Bell correlations in a Bose–Einstein condensate, Science, Volume 352 (2016), p. 441

[2] W. Muessel; H. Strobel; D. Linnemann; D.B. Hume; M.K. Oberthaler Scalable spin squeezing for quantum-enhanced magnetometry with Bose–Einstein condensates, Phys. Rev. Lett., Volume 113 (2014)

[3] T. Berrada; S. van Frank; R. Bücker; T. Schumm; J.-F. Schaff; J. Schmiedmayer Integrated Mach-Zehnder interferometer for Bose–Einstein condensates, Nat. Commun., Volume 4 (2013), p. 2077

[4] M.H. Anderson; J.R. Ensher; M.R. Matthews; C.E. Wieman; E.A. Cornell Observation of Bose–Einstein condensation in a dilute atomic vapor, Science, Volume 269 (1995), p. 198

[5] K.B. Davis; M.-O. Mewes; M.R. Andrews; N.J. van Druten; D.S. Durfee; D.M. Kurn; W. Ketterle Bose–Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., Volume 75 (1995), p. 3969

[6] F. Dalfovo; S. Giorgini; L.P. Pitaevskii; S. Stringari Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys., Volume 71 (1999), p. 463

[7] H. Deng; G. Weihs; C. Santori; J. Bloch; Y. Yamamoto Condensation of semiconductor microcavity exciton polaritons, Science, Volume 298 (2002), p. 199

[8] J. Kasprzak; M. Richard; S. Kundermann; A. Baas; P. Jeambrun; J.M.J. Keeling; F.M. Marchetti; M.H. Szymańska; R. André; J.L. Staehli; V. Savona; P.B. Littlewood; B. Deveaud; L.S. Dang Bose–Einstein condensation of exciton polaritons, Nature, Volume 443 (2006), p. 409

[9] A. Amo; J. Lefrère; S. Pigeon; C. Adrados; C. Ciuti; I. Carusotto; R. Houdré; E. Giacobino; A. Bramati Superfluidity of polaritons in semiconductor microcavities, Nat. Phys., Volume 5 (2009), p. 805

[10] M. Alloing; M. Beian; M. Lewenstein; D. Fuster; Y. González; L. González; R. Combescot; M. Combescot; F. Dubin Evidence for a Bose–Einstein condensate of excitons, Europhys. Lett., Volume 107 (2014)

[11] D. Jaksch; C.W. Gardiner; K.M. Gheri; P. Zoller Quantum kinetic theory. IV. Intensity and amplitude fluctuations of a Bose–Einstein condensate at finite temperature including trap loss, Phys. Rev. A, Volume 58 (1998), p. 1450

[12] R. Graham Decoherence of Bose–Einstein condensates in traps at finite temperature, Phys. Rev. Lett., Volume 81 (1998), p. 5262

[13] A.B. Kuklov; J.L. Birman Orthogonality catastrophe and decoherence of a confined Bose–Einstein condensate at finite temperature, Phys. Rev. A, Volume 63 (2000)

[14] A. Sinatra; Y. Castin; E. Witkowska Nondiffusive phase spreading of a Bose–Einstein condensate at finite temperature, Phys. Rev. A, Volume 75 (2007)

[15] A. Sinatra; Y. Castin Genuine phase diffusion of a Bose–Einstein condensate in the microcanonical ensemble: a classical field study, Phys. Rev. A, Volume 78 (2008)

[16] A. Sinatra; Y. Castin; E. Witkowska Coherence time of a Bose–Einstein condensate, Phys. Rev. A, Volume 80 (2009)

[17] A. Sinatra; Y. Castin Spatial and temporal coherence of a Bose-condensed gas (M. Modugno; A. Bramati, eds.), Physics of Quantum Fluids: New Trends and Hot Topics in Atomic and Polariton Condensates, Springer Ser. Solid-State Sci., vol. 177, Springer, Berlin, 2013

[18] H. Kurkjian; Y. Castin; A. Sinatra Brouillage thermique d'un gaz cohérent de fermions, C. R. Phys., Volume 17 (2016), p. 789 | DOI

[19] A.L. Gaunt; T.F. Schmidutz; I. Gotlibovych; R.P. Smith; Z. Hadzibabic Bose–Einstein condensation of atoms in a uniform potential, Phys. Rev. Lett., Volume 110 (2013)

[20] P.O. Fedichev; G.V. Shlyapnikov; J.T.M. Walraven Damping of low-energy excitations of a trapped Bose–Einstein condensate at finite temperatures, Phys. Rev. Lett., Volume 80 (1998), p. 2269

[21] A. Sinatra; Y. Castin; E. Witkowska Limit of spin squeezing in trapped Bose–Einstein condensates, Europhys. Lett., Volume 102 (2013)

[22] M. Fliesser; A. Csordás; R. Graham; P. Szépfalusy Classical quasiparticle dynamics in trapped Bose condensates, Phys. Rev. A, Volume 56 (1997), p. 4879

[23] M. Fliesser; R. Graham Classical quasiparticle dynamics and chaos in trapped Bose condensates, Physica D, Volume 131 (1999), p. 141

[24] Y. Castin; R. Dum Low temperature Bose–Einstein condensates in time dependent traps: beyond the U(1)-symmetry breaking approach, Phys. Rev. A, Volume 57 (1998), p. 3008

[25] J.M. Deutsch Quantum statistical mechanics in a closed system, Phys. Rev. A, Volume 43 (1991), p. 2046

[26] M. Srednicki Chaos and quantum thermalization, Phys. Rev. E, Volume 50 (1994), p. 888

[27] M. Rigol; V. Dunjko; M. Olshanii Thermalization and its mechanism for generic isolated quantum systems, Nature, Volume 452 (2008), p. 854

[28] T.D. Lee; C.N. Yang Many-body problem in quantum mechanics and quantum statistical mechanics, Phys. Rev., Volume 105 (1957), p. 1119

[29] L. Carr; Y. Castin; G. Shlyapnikov Achieving a BCS transition in an atomic Fermi gas, Phys. Rev. Lett., Volume 92 (2004)

[30] E.M. Wright; D.F. Walls; J.C. Garrison Collapses and revivals of Bose–Einstein condensates formed in small atomic samples, Phys. Rev. Lett., Volume 77 (1996), p. 2158

[31] Y. Castin; J. Dalibard Relative phase of two Bose–Einstein condensates, Phys. Rev. A, Volume 55 (1997), p. 4330

[32] S. Giorgini Damping in dilute Bose gases: a mean-field approach, Phys. Rev. A, Volume 57 (1998), p. 2949

[33] P.A. Willems; K.G. Libbrecht Creating long-lived neutral atom traps in a cryogenic environment, Phys. Rev. A, Volume 51 (1995), p. 1403

[34] The ALPHA collaboration Confinement of anti-hydrogen for 1000 seconds, Nat. Phys., Volume 7 (2011), p. 558

[35] A. Sinatra; Y. Castin Phase dynamics of Bose–Einstein condensates: losses versus revivals, Eur. Phys. J. D, Volume 4 (1998), p. 247

[36] Z. Shotan; O. Machtey; S. Kokkelmans; L. Khaykovich Three-body recombination at vanishing scattering lengths in an ultracold Bose gas, Phys. Rev. Lett., Volume 113 (2014)

[37] M. Egorov; B. Opanchuk; P. Drummond; B.V. Hall; P. Hannaford; A.I. Sidorov Measurement of s-wave scattering lengths in a two-component Bose–Einstein condensate, Phys. Rev. A, Volume 87 (2013)

[38] W.H. Press; S.A. Teukolsky; W.T. Vetterling; B.P. Flannery Numerical Recipes, Cambridge University Press, Cambridge, UK, 1988

[39] P.O. Fedichev; G.V. Shlyapnikov Finite-temperature perturbation theory for a spatially inhomogeneous Bose-condensed gas, Phys. Rev. A, Volume 58 (1998), p. 3146

Cited by Sources:

Comments - Policy