Comptes Rendus
Quantum simulation of the Hubbard model with ultracold fermions in optical lattices
Comptes Rendus. Physique, Volume 19 (2018) no. 6, pp. 365-393.

Ultracold atomic gases provide a fantastic platform to implement quantum simulators and investigate a variety of models initially introduced in condensed matter physics or other areas. One of the most promising applications of quantum simulation is the study of strongly correlated Fermi gases, for which exact theoretical results are not always possible with state-of-the-art approaches. Here, we review recent progress of the quantum simulation of the emblematic Fermi–Hubbard model with ultracold atoms. After introducing the Fermi–Hubbard model in the context of condensed matter, its implementation in ultracold atom systems, and its phase diagram, we review landmark experimental achievements, from the early observation of the onset of quantum degeneracy and superfluidity to the demonstration of the Mott insulator regime and the emergence of long-range anti-ferromagnetic order. We conclude by discussing future challenges, including the possible observation of high-Tc superconductivity, transport properties, and the interplay of strong correlations and disorder or topology.

Les gaz atomiques ultrafroids offrent une excellente plateforme pour réaliser des simulateurs quantiques et étudier une grande diversité de modèles introduits initialement en physique de la matière condensée ou d'autres domaines. L'une des applications les plus prometteuses de la simulation quantique est l'étude des gaz de Fermi fortement corrélés, pour lesquels des résultats théoriques exacts ne sont pas toujours disponibles. Nous présentons ici une revue des progrès réalisés récemment sur la simulation quantique de l'emblématique modèle de Fermi–Hubbard avec des atomes ultrafroids. Après avoir présenté le modèle de Fermi–Hubbard dans le contexte de la matière condensée, sa réalisation avec des atomes ultrafroids et son diagramme de phase, nous présentons les réalisations expérimentales les plus marquantes, de l'observation initiale de l'apparition de la dégénérescence quantique et de la superfluidité fermioniques à la mise en évidence du régime de l'isolant de Mott et de l'émergence d'un ordre anti-ferromagnétique à longue portée. Nous concluons par une discussion des défis futurs, dont la possibilité d'observer la supraconductivité à haute température, les propriétés de transport et la compétition de fortes corrélations et du désordre ou de la topologie.

Published online:
DOI: 10.1016/j.crhy.2018.10.013
Keywords: Fermi gases, Optical lattices, Mott transition, Quantum magnetism
Mot clés : Gaz de Fermi, Réseaux optiques, Transition de Mott, Magnétisme quantique

Leticia Tarruell 1; Laurent Sanchez-Palencia 2

1 ICFO – Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
2 CPHT, École polytechnique, CNRS, Université Paris-Saclay, route de Saclay, 91128 Palaiseau cedex, France
@article{CRPHYS_2018__19_6_365_0,
     author = {Leticia Tarruell and Laurent Sanchez-Palencia},
     title = {Quantum simulation of the {Hubbard} model with ultracold fermions in optical lattices},
     journal = {Comptes Rendus. Physique},
     pages = {365--393},
     publisher = {Elsevier},
     volume = {19},
     number = {6},
     year = {2018},
     doi = {10.1016/j.crhy.2018.10.013},
     language = {en},
}
TY  - JOUR
AU  - Leticia Tarruell
AU  - Laurent Sanchez-Palencia
TI  - Quantum simulation of the Hubbard model with ultracold fermions in optical lattices
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 365
EP  - 393
VL  - 19
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.10.013
LA  - en
ID  - CRPHYS_2018__19_6_365_0
ER  - 
%0 Journal Article
%A Leticia Tarruell
%A Laurent Sanchez-Palencia
%T Quantum simulation of the Hubbard model with ultracold fermions in optical lattices
%J Comptes Rendus. Physique
%D 2018
%P 365-393
%V 19
%N 6
%I Elsevier
%R 10.1016/j.crhy.2018.10.013
%G en
%F CRPHYS_2018__19_6_365_0
Leticia Tarruell; Laurent Sanchez-Palencia. Quantum simulation of the Hubbard model with ultracold fermions in optical lattices. Comptes Rendus. Physique, Volume 19 (2018) no. 6, pp. 365-393. doi : 10.1016/j.crhy.2018.10.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.10.013/

[1] R.P. Feynman Simulating physics with computers, Int. J. Theor. Phys., Volume 21 (1982), pp. 467-488

[2] S. Lloyd Universal quantum simulators, Science, Volume 273 (1996), pp. 1073-1078

[3] M. Lewenstein et al. Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond, Adv. Phys., Volume 56 (2007), pp. 243-379

[4] I. Bloch; J. Dalibard; W. Zwerger Many-body physics with ultracold gases, Rev. Mod. Phys., Volume 80 (2008), pp. 885-964

[5] M. Lewenstein; A. Sanpera; V. Ahufinger Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems, Oxford University Press, Oxford, UK, 2012

[6] I. Bloch; J. Dalibard; S. Nascimbène Quantum simulations with ultracold quantum gases, Nat. Phys., Volume 8 (2012), pp. 267-276

[7] B. DeMarco; D.S. Jin Onset of Fermi degeneracy in a trapped atomic gas, Science, Volume 285 (1999), pp. 1703-1706

[8] A.G. Truscott; K.E. Strecker; W.I. McAlexander; G.B. Partridge; R.G. Hulet Observation of Fermi pressure in a gas of trapped atoms, Science, Volume 291 (2001), pp. 2570-2572

[9] F. Schreck et al. Quasipure Bose–Einstein condensate immersed in a Fermi sea, Phys. Rev. Lett., Volume 87 (2001)

[10] J.M. McNamara; T. Jeltes; A.S. Tychkov; W. Hogervorst; W. Vassen Degenerate Bose–Fermi mixture of metastable atoms, Phys. Rev. Lett., Volume 97 (2006)

[11] T. Fukuhara; Y. Takasu; M. Kumakura; Y. Takahashi Degenerate Fermi gases of ytterbium, Phys. Rev. Lett., Volume 98 (2007)

[12] B.J. DeSalvo; M. Yan; P.G. Mickelson; Y.N. Martinez de Escobar; T.C. Killian Degenerate Fermi gas of Sr87, Phys. Rev. Lett., Volume 105 (2010)

[13] M.K. Tey; S. Stellmer; R. Grimm; F. Schreck Double-degenerate Bose–Fermi mixture of strontium, Phys. Rev. A, Volume 82 (2010)

[14] M. Lu; N.Q. Burdick; B.L. Lev Quantum degenerate dipolar Fermi gas, Phys. Rev. Lett., Volume 108 (2012)

[15] K. Aikawa et al. Reaching Fermi degeneracy via universal dipolar scattering, Phys. Rev. Lett., Volume 112 (2014)

[16] B. Naylor et al. Chromium dipolar Fermi sea, Phys. Rev. A, Volume 91 (2015) 011603(R)

[17] C. Chin; R. Grimm; P. Julienne; E. Tiesinga Feshbach resonances in ultracold gases, Rev. Mod. Phys., Volume 82 (2010), pp. 1225-1286

[18] W. Zwerger The BCS–BEC Crossover and the Unitary Fermi Gas, Lecture Notes in Physics, Springer, Berlin, 2011

[19] M. Greiner; C.A. Regal; D.S. Jin Emergence of a molecular Bose–Einstein condensate from a Fermi gas, Nature (London), Volume 426 (2003), pp. 537-540

[20] S. Jochim et al. Bose–Einstein condensation of molecules, Science, Volume 302 (2003), pp. 2101-2103

[21] M.W. Zwierlein et al. Observation of Bose–Einstein condensation of molecules, Phys. Rev. Lett., Volume 91 (2003)

[22] C. Chin et al. Observation of the pairing gap in a strongly interacting Fermi gas, Science, Volume 305 (2004), pp. 1128-1130

[23] C.A. Regal; M. Greiner; D.S. Jin Observation of resonance condensation of fermionic atom pairs, Phys. Rev. Lett., Volume 92 (2004)

[24] M.W. Zwierlein et al. Condensation of pairs of fermionic atoms near a Feshbach resonance, Phys. Rev. Lett., Volume 92 (2004)

[25] T. Bourdel et al. Experimental study of the BEC–BCS crossover region in Lithium 6, Phys. Rev. Lett., Volume 93 (2004)

[26] S. Nascimbène; N. Navon; K. Jiang; F. Chevy; C. Salomon Exploring the thermodynamics of a universal Fermi gas, Nature (London), Volume 463 (2009), pp. 1057-1060

[27] S. Nascimbène; N. Navon; K. Jiang; F. Chevy; C. Salomon Exploring the thermodynamics of a universal Fermi gas, Nature (London), Volume 463 (2010), p. 1057

[28] N. Navon; S. Nascimbène; F. Chevy; C. Salomon The equation of state of a low-temperature Fermi gas with tunable interactions, Science, Volume 328 (2010), pp. 729-732

[29] K.V. Houcke et al. Feynman diagrams versus Fermi-gas Feynman emulator, Nat. Phys., Volume 8 (2012), pp. 366-370

[30] M.J. Ku; A.T. Sommer; L.W. Cheuk; M.W. Zwierlein Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas, Science, Volume 335 (2012), pp. 563-567

[31] G. Grynberg; C. Robilliard Cold atoms in dissipative optical lattices, Phys. Rep., Volume 355 (2001), pp. 335-451

[32] I. Bloch Ultracold quantum gases in optical lattices, Nat. Phys., Volume 1 (2005), pp. 23-30

[33] M. Greiner; O. Mandel; T. Esslinger; T.W. Hänsch; I. Bloch Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature (London), Volume 415 (2002), pp. 39-44

[34] J. Sebby-Strabley; M. Anderlini; P.S. Jessen; J.V. Porto Lattice of double wells for manipulating pairs of cold atoms, Phys. Rev. A, Volume 73 (2006)

[35] M. Anderlini et al. Controlled exchange interaction between pairs of neutral atoms in an optical lattice, Nature (London), Volume 448 (2007), pp. 452-456

[36] S. Fölling et al. Direct observation of second-order atom tunnelling, Nature (London), Volume 448 (2007), pp. 1029-1032

[37] C. Becker et al. Ultracold quantum gases in triangular optical lattices, New J. Phys., Volume 12 (2010)

[38] P. Soltan-Panahi et al. Direct observation of second-order atom tunnelling, Nat. Phys., Volume 7 (2011), p. 434

[39] L. Tarruell; D. Greif; T. Uehlinger; G. Jotzu; T. Esslinger Creating moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice, Nature (London), Volume 483 (2012), p. 302

[40] G.-B. Jo et al. Ultracold atoms in a tunable optical kagome lattice, Phys. Rev. Lett., Volume 108 (2012)

[41] S. Taie et al. Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice, Sci. Adv., Volume 1 (2015)

[42] P. Windpassinger; K. Sengstock Engineering novel optical lattices, Rep. Prog. Phys., Volume 76 (2013)

[43] E.H. Lieb; F.Y. Wu Absence of Mott transition in an exact solution of the short-range one-band model in one dimension, Phys. Rev. Lett., Volume 20 (1968), pp. 1445-1448

[44] E.H. Lieb; F.Y. Wu The one-dimensional Hubbard model: a reminiscence, J. Phys. A, Volume 321 (2003), pp. 1-27

[45] A. Georges; G. Kotliar Hubbard model in infinite dimensions, Phys. Rev. B, Volume 45 (1992), p. 6479

[46] M. Suzuki Quantum Monte Carlo Methods in Condensed Matter Physics, World Scientific, 1993

[47] A. Georges; G. Kotliar; W. Krauth; M.J. Rozenberg Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys., Volume 68 (1996), pp. 13-125

[48] P.W. Anderson The resonating valence bond state in La2CuO4 and superconductivity, Science, Volume 235 (1987), pp. 1196-1198

[49] R. Micnas; J. Ranninger; S. Robaszkiewicz Superconductivity in narrow-band systems with local nonretarded attractive interactions, Rev. Mod. Phys., Volume 62 (1990), pp. 113-171

[50] W. Hofstetter; J.I. Cirac; P. Zoller; E. Demler; M. Lukin High-temperature superfluidity of fermionic atoms in optical lattices, Phys. Rev. Lett., Volume 89 (2002)

[51] T. Esslinger Fermi–Hubbard physics with atoms in an optical lattice, Annu. Rev. Condens. Matter Phys., Volume 1 (2010), pp. 129-152

[52] W. Hofstetter; T. Qin Quantum simulation of strongly correlated condensed matter systems, J. Phys. B, At. Mol. Opt. Phys., Volume 51 (2018)

[53] M.C. Gutzwiller Effect of correlation on the ferromagnetism of transition metals, Phys. Rev. Lett., Volume 10 (1963), pp. 159-162

[54] J. Hubbard Electron correlations in narrow energy bands, Proc. R. Soc. A, Math. Phys. Eng. Sci., Volume 276 (1963), pp. 238-257

[55] M.C. Gutzwiller Effect of correlation on the ferromagnetism of transition metals, Phys. Rev., Volume 134 (1964), p. A923-A941

[56] G. Mahan Many Particle Physics, Springer, New York, 2000

[57] S. Sachdev Quantum Phase Transitions, Cambridge University Press, Cambridge, UK, 2001

[58] L.J. LeBlanc Exploring Many-Body Physics with Ultracold Atoms, University of Toronto, Toronto, 2011 http://ultracold.physics.utoronto.ca/reprints/LeBlanc40K.pdf

[59] C.A. Regal; D.S. Jin Measurement of positive and negative scattering lengths in a Fermi gas of atoms, Phys. Rev. Lett., Volume 90 (2003)

[60] D. Jaksch; C. Bruder; J.I. Cirac; C.W. Gardiner; P. Zoller Cold bosonic atoms in optical lattices, Phys. Rev. Lett., Volume 81 (1998), pp. 3108-3111

[61] D. Jaksch; P. Zoller The cold atoms Hubbard toolbox, Ann. Phys. (NY), Volume 315 (2005), pp. 52-79

[62] S. Chu Nobel lecture: the manipulation of neutral particles, Rev. Mod. Phys., Volume 70 (1998), pp. 685-706

[63] C.N. Cohen-Tannoudji Nobel lecture: manipulating atoms with photons, Rev. Mod. Phys., Volume 70 (1998), pp. 707-719

[64] W.D. Phillips Nobel lecture: laser cooling and trapping of neutral atoms, Rev. Mod. Phys., Volume 70 (1998), pp. 721-741

[65] W. Ketterle; N.J. van Druten Evaporative cooling of trapped atoms, Adv. At. Mol. Opt. Phys., Volume 37 (1996), pp. 181-236

[66] W. Ketterle; D.S. Durfee; D.M. Stamper-Kurn Making, Probing and Understanding Bose–Einstein Condensates, Proceedings of the International School of Physics Enrico Fermi, 1999 (Course CXL)

[67] F. Dalfovo; S. Giorgini; L.P. Pitaevskii; S. Stringari Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys., Volume 71 (1999), pp. 463-512

[68] W. Ketterle; M.W. Zwierlein Making probing and understanding ultracold Fermi gases, Riv. Nuovo Cimento, Volume 31 (2008), pp. 247-422

[69] S. Giorgini; L.P. Pitaevskii; S. Stringari Theory of ultracold atomic Fermi gases, Rev. Mod. Phys., Volume 80 (2008), pp. 1215-1274

[70] W.V. Liu; F. Wilczek; P. Zoller Spin-dependent Hubbard model and a quantum phase transition in cold atoms, Phys. Rev. A, Volume 70 (2004)

[71] S. Taie; R. Yamazaki; S. Sugawa; Y. Takahashi An su(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling, Nat. Phys., Volume 8 (2012), p. 825

[72] G. Pagano et al. A one-dimensional liquid of fermions with tunable spin, Nat. Phys., Volume 10 (2014), pp. 198-201

[73] C. Hofrichter et al. Direct probing of the Mott crossover in the SU(n) Fermi–Hubbard model, Phys. Rev. X, Volume 6 (2016)

[74] T. Lahaye; C. Menotti; L. Santos; M. Lewenstein; T. Pfau The physics of dipolar bosonic quantum gases, Rep. Prog. Phys., Volume 72 (2009)

[75] A. Micheli; G.K. Brennen; P. Zoller A toolbox for lattice-spin models with polar molecules, Nat. Phys., Volume 2 (2006), pp. 341-347

[76] R. Grimm; M. Weidemüller; Y.B. Ovchinnikov Optical dipole traps for neutral atoms, Adv. At. Mol. Opt. Phys., Volume 42 (2000), pp. 95-170

[77] L. Guidoni; B. Dépret; A. di Stefano; P. Verkerk Atomic diffusion in an optical quasicrystal with five-fold symmetry, Phys. Rev. A, Volume 60 (1999), p. R4233-R4236

[78] G. Modugno Anderson localization in Bose–Einstein condensates, Rep. Prog. Phys., Volume 73 (2010)

[79] L. Sanchez-Palencia; L. Santos Bose–Einstein condensates in optical quasicrystal lattices, Phys. Rev. A, Volume 72 (2005)

[80] L. Fallani; C. Fort; M. Inguscio Bose–Einstein condensates in disordered potentials, Adv. At. Mol. Opt. Phys., Volume 56 (2008), pp. 119-160

[81] L. Sanchez-Palencia; M. Lewenstein Disordered quantum gases under control, Nat. Phys., Volume 6 (2010), pp. 87-95

[82] B. Shapiro Cold atoms in the presence of disorder, J. Phys. A, Math. Theor., Volume 45 (2012)

[83] N.W. Ashcroft; D.N. Mermin Solid State Physics, Thomson Learning, Toronto, 1976

[84] R. Campbell Théorie Générale de l'équation de Mathieu, Masson et cie, Paris, 1955

[85] D.S. Petrov; C. Salomon; G.V. Shlyapnikov Weakly bound dimers of fermionic atoms, Phys. Rev. Lett., Volume 93 (2004)

[86] A. Mazurenko et al. A cold-atom Fermi–Hubbard antiferromagnet, Nature (London), Volume 545 (2017), p. 462

[87] A.L. Gaunt; T.F. Schmidutz; I. Gotlibovych; R.P. Smith; Z. Hadzibabic Bose–Einstein condensation of atoms in a uniform potential, Phys. Rev. Lett., Volume 110 (2013)

[88] L. Chomaz et al. Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas, Nat. Commun., Volume 6 (2015), p. 6162

[89] B. Mukherjee et al. Homogeneous atomic Fermi gases, Phys. Rev. Lett., Volume 118 (2017)

[90] K. Hueck et al. Two-dimensional homogeneous Fermi gases, Phys. Rev. Lett., Volume 120 (2018)

[91] J.C. Slater Magnetic effects and the Hartree–Fock equation, Phys. Rev., Volume 82 (1951), pp. 538-541

[92] A. Auerbach Interacting Electrons and Quantum Magnetism, Springer, New York, 1994

[93] N. Nagaosa Quantum Field Theory in Strongly Correlated Electronic Systems, Springer-Verlag, Berlin, 1999

[94] J.E. Hirsch Simulations of the three-dimensional Hubbard model: half-filled band sector, Phys. Rev. B, Volume 35 (1987), pp. 1851-1859

[95] R.T. Scalettar; D.J. Scalapino; R.L. Sugar; D. Toussaint Phase diagram of the half-filled 3D Hubbard model, Phys. Rev. B, Volume 39 (1989), pp. 4711-4714

[96] H. Shiba Thermodynamic properties of the one-dimensional half-filled-band Hubbard model ii: application of the grand canonical method, Prog. Theor. Phys., Volume 48 (1972), pp. 2171-2186

[97] A.F. Ho; M.A. Cazalilla; T. Giamarchi Quantum simulation of the Hubbard model: the attractive route, Phys. Rev. A, Volume 79 (2009)

[98] G. Modugno; F. Ferlaino; R. Heidemann; G. Roati; M. Inguscio Production of a Fermi gas of atoms in an optical lattice, Phys. Rev. A, Volume 68 (2003)

[99] M. Köhl; H. Moritz; T. Stöferle; K. Günter; T. Esslinger Fermionic atoms in a three dimensional optical lattice: observing Fermi surfaces, dynamics, and interactions, Phys. Rev. Lett., Volume 94 (2005)

[100] M. Rigol; A. Muramatsu Confinement control by optical lattices, Phys. Rev. A, Volume 70 (2004)

[101] T. Rom et al. Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice, Nature (London), Volume 444 (2006), pp. 733-736

[102] J.K. Chin et al. Evidence for superfluidity of ultracold fermions in an optical lattice, Nature (London), Volume 443 (2006), p. 961

[103] H. Zhai; T.-L. Ho Superfluid–insulator transition of strongly interacting Fermi gases in optical lattices, Phys. Rev. Lett., Volume 99 (2007)

[104] E.G. Moon; P. Nikolić; S. Sachdev Superfluid–insulator transitions of the Fermi gas with near-unitary interactions in a periodic potential, Phys. Rev. Lett., Volume 99 (2007)

[105] C. Raman et al. Evidence for a critical velocity in a Bose–Einstein condensed gas, Phys. Rev. Lett., Volume 83 (1999), pp. 2502-2505

[106] K.W. Madison; F. Chevy; W. Wohlleben; J. Dalibard Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett., Volume 84 (2000), pp. 806-809

[107] M.W. Zwierlein; J.R. Abo-Shaeer; A. Schirotzek; C.H. Schunck; W. Ketterle Vortices and superfluidity in a strongly interacting Fermi gas, Nature (London), Volume 435 (2005), pp. 1047-1051

[108] R. Desbuquois et al. Superfluid behaviour of a two-dimensional Bose gases, Nat. Phys., Volume 8 (2012), p. 645

[109] N. Strohmaier et al. Interaction-controlled transport of an ultracold Fermi gas, Phys. Rev. Lett., Volume 99 (2007)

[110] L. Hackermüller et al. Anomalous expansion of attractively interacting fermionic atoms in an optical lattice, Science, Volume 327 (2010), pp. 1621-1624

[111] U. Schneider et al. Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms, Nat. Phys., Volume 8 (2012), pp. 213-218

[112] D. Mitra et al. Quantum gas microscopy of an attractive Fermi–Hubbard system, Nat. Phys., Volume 14 (2018), pp. 173-177

[113] R. Jördens; N. Strohmaier; K. Günter; H. Moritz; T. Esslinger A Mott insulator of fermionic atoms in an optical lattice, Nature (London), Volume 455 (2008), pp. 204-207

[114] U. Schneider et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice, Science, Volume 322 (2008), pp. 1520-1525

[115] Jördens et al. Quantitative determination of temperature in the approach to magnetic order of ultracold fermions in an optical lattice, Phys. Rev. Lett., Volume 104 (2010)

[116] V.W. Scarola; L. Pollet; J. Oitmaa; M. Troyer Discerning incompressible and compressible phases of cold atoms in optical lattices, Phys. Rev. Lett., Volume 102 (2009)

[117] L. De Leo; J.-S. Bernier; C. Kollath; A. Georges; V.W. Scarola Thermodynamics of the three-dimensional Hubbard model: implications for cooling cold atomic gases in optical lattices, Phys. Rev. A, Volume 83 (2011)

[118] D. Greif; L. Tarruell; T. Uehlinger; R. Jördens; T. Esslinger Probing nearest-neighbor correlations of ultracold fermions in an optical lattice, Phys. Rev. Lett., Volume 106 (2011)

[119] T. Uehlinger et al. Artificial graphene with tunable interactions, Phys. Rev. Lett., Volume 111 (2013)

[120] M. Messer et al. Exploring competing density order in the ionic Hubbard model with ultracold fermions, Phys. Rev. Lett., Volume 115 (2015)

[121] R. Bracewell The Fourier Transform and its Applications, McGraw–Hill, New York, 1965

[122] V. Dribinski; A. Ossadtchi; V.A. Mandelshtam; H. Reisler Reconstruction of Abel-transformable images: the Gaussian basis-set expansion Abel transform method, Rev. Sci. Instrum., Volume 73 (2002), p. 2634

[123] P.M. Duarte et al. Compressibility of a fermionic Mott insulator of ultracold atoms, Phys. Rev. Lett., Volume 114 (2015)

[124] E. Cocchi et al. Equation of state of the two-dimensional Hubbard model, Phys. Rev. Lett., Volume 116 (2016)

[125] E. Khatami; M. Rigol Thermodynamics of strongly interacting fermions in two-dimensional optical lattices, Phys. Rev. A, Volume 84 (2011)

[126] E. Cocchi et al. Measuring entropy and short-range correlations in the two-dimensional Hubbard model, Phys. Rev. X, Volume 7 (2017)

[127] J.H. Drewes et al. Thermodynamics versus local density fluctuations in the metal–Mott-insulator crossover, Phys. Rev. Lett., Volume 117 (2016)

[128] W.S. Bakr; J.I. Gillen; A. Peng; S. Fölling; M. Greiner A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice, Nature (London), Volume 462 (2009), pp. 74-77

[129] J.F. Sherson et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator, Nature (London), Volume 467 (2010), pp. 68-72

[130] E. Haller et al. Single-atom imaging of fermions in a quantum-gas microscope, Nat. Phys., Volume 1 (2015), pp. 738-743

[131] L.W. Cheuk et al. Quantum-gas microscope for fermionic atoms, Phys. Rev. Lett., Volume 114 (2015)

[132] M.F. Parsons et al. Site-resolved imaging of fermionic Li6 in an optical lattice, Phys. Rev. Lett., Volume 114 (2015)

[133] A. Omran et al. Microscopic observation of Pauli blocking in degenerate fermionic lattice gases, Phys. Rev. Lett., Volume 115 (2015)

[134] G.J.A. Edge et al. Imaging and addressing of individual fermionic atoms in an optical lattice, Phys. Rev. A, Volume 92 (2015)

[135] G. Morigi; J. Eschner; C.H. Keitel Ground state laser cooling using electromagnetically induced transparency, Phys. Rev. Lett., Volume 85 (2000), pp. 4458-4461

[136] S.E. Hamann et al. Resolved-sideband Raman cooling to the ground state of an optical lattice, Phys. Rev. Lett., Volume 80 (1998), pp. 4149-4152

[137] D. Greif et al. Site-resolved imaging of a fermionic Mott insulator, Science, Volume 351 (2016), pp. 953-957

[138] L.W. Cheuk et al. Observation of 2D fermionic Mott insulators of K40 with single-site resolution, Phys. Rev. Lett., Volume 116 (2016)

[139] M. Boll et al. Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi–Hubbard chains, Science, Volume 353 (2016), pp. 1257-1260

[140] D. Greif; T. Uehlinger; G. Jotzu; L. Tarruell; T. Esslinger Short-range quantum magnetism of ultracold fermions in an optical lattice, Science, Volume 340 (2013), pp. 1307-1310

[141] B. Sciolla et al. Competition of spin and charge excitations in the one-dimensional Hubbard model, Phys. Rev. A, Volume 88 (2013)

[142] J. Imriška et al. Thermodynamics and magnetic properties of the anisotropic 3D Hubbard model, Phys. Rev. Lett., Volume 112 (2014)

[143] D. Greif; G. Jotzu; M. Messer; R. Desbuquois; T. Esslinger Formation and dynamics of antiferromagnetic correlations in tunable optical lattices, Phys. Rev. Lett., Volume 115 (2015)

[144] F. Görg et al. Enhancement and sign change of magnetic correlations in a driven quantum many-body system, Nature (London), Volume 553 (2018), pp. 481-485

[145] H. Ozawa; S. Taie; Y. Takasu; Y. Takahashi Antiferromagnetic spin correlation of SU(N) Fermi gas in an optical dimerized lattice, 2018 (e-prints) | arXiv

[146] R.A. Hart et al. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms, Nature (London), Volume 519 (2015), pp. 211-214

[147] H. Miyake et al. Bragg scattering as a probe of atomic wave functions and quantum phase transitions in optical lattices, Phys. Rev. Lett., Volume 107 (2011)

[148] C. Weitenberg et al. Coherent light scattering from a two-dimensional Mott insulator, Phys. Rev. Lett., Volume 106 (2011)

[149] T.A. Corcovilos; S.K. Baur; J.M. Hitchcock; E.J. Mueller; R.G. Hulet Detecting antiferromagnetism of atoms in an optical lattice via optical Bragg scattering, Phys. Rev. A, Volume 81 (2010)

[150] M.F. Parsons et al. Site-resolved measurement of the spin-correlation function in the Fermi–Hubbard model, Science, Volume 353 (2016), pp. 1253-1256

[151] L.W. Cheuk et al. Observation of spatial charge and spin correlations in the 2D Fermi–Hubbard model, Science, Volume 353 (2016), pp. 1260-1264

[152] P.T. Brown et al. Spin-imbalance in a 2D Fermi–Hubbard system, Science, Volume 357 (2017), pp. 1385-1388

[153] T.A. Hilker et al. Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators, Science, Volume 357 (2017), pp. 484-487

[154] G. Salomon et al. Direct observation of incommensurate magnetism in Hubbard chains, 2018 (e-prints) | arXiv

[155] J.H. Drewes et al. Antiferromagnetic correlations in two-dimensional fermionic Mott-insulating and metallic phases, Phys. Rev. Lett., Volume 118 (2017)

[156] N. Wurz et al. Coherent manipulation of spin correlations in the Hubbard model, Phys. Rev. A, Volume 97 (2018)

[157] L.D. Carr; T. Bourdel; Y. Castin Limits of sympathetic cooling of fermions by zero-temperature bosons due to particle losses, Phys. Rev. A, Volume 69 (2004)

[158] C.J.M. Mathy; D.A. Huse; R.G. Hulet Enlarging and cooling the Néel state in an optical lattice, Phys. Rev. A, Volume 86 (2012)

[159] T.-L. Ho; Q. Zhou Universal cooling scheme for quantum simulation, 2009 | arXiv

[160] E. Manousakis The spin-1/2 Heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides, Rev. Mod. Phys., Volume 63 (1991), p. 1

[161] P.J.H. Denteneer; J.M.J. Van Leeuwen Spin waves in the half-filled Hubbard model beyond the random phase approximation, Europhys. Lett., Volume 22 (1993), p. 413

[162] P. Staar; T. Maier; T.C. Schulthess Dynamical cluster approximation with continuous lattice self-energy, Phys. Rev. B, Volume 88 (2013)

[163] J.G. Bednorz; K.A. Müller Possible high-Tc superconductivity in the Ba–La–Cu–O system, Z. Phys. B, Volume 64 (1986), pp. 189-193

[164] P.A. Lee; N. Nagaosa; X.-G. Wen Doping a Mott insulator: physics of high-temperature superconductivity, Rev. Mod. Phys., Volume 78 (2006), pp. 17-85

[165] C. Proust; L. Taillefer The remarkable underlying ground states of cuprate superconductors, 2018 | arXiv

[166] J.-S. Bernier et al. Cooling fermionic atoms in optical lattices by shaping the confinement, Phys. Rev. A, Volume 79 (2009)

[167] C. Grenier; A. Georges; C. Kollath Peltier cooling of fermionic quantum gases, Phys. Rev. Lett., Volume 113 (2014)

[168] C.S. Chiu; G. Ji; A. Mazurenko; D. Greif; M. Greiner Quantum state engineering of a Hubbard system with ultracold fermions, Phys. Rev. Lett., Volume 120 (2018)

[169] H. Ott et al. Collisionally induced transport in periodic potentials, Phys. Rev. Lett., Volume 92 (2004)

[170] R. Anderson et al. Optical conductivity of a quantum gas, 2017 (preprint) | arXiv

[171] P.T. Brown et al. Bad metallic transport in a cold atom Fermi–Hubbard system, 2018 (preprint) | arXiv

[172] M.A. Nichols et al. Spin transport in a Mott insulator of ultracold fermions, 2018 (preprint) | arXiv

[173] W. Xu; W. McGehee; W. Morong; B. DeMarco Bad metal in a Fermi lattice gas, 2016 (preprint) | arXiv

[174] N. Strohmaier et al. Observation of elastic doublon decay in the Fermi–Hubbard model, Phys. Rev. Lett., Volume 104 (2010)

[175] D. Pertot et al. Relaxation dynamics of a Fermi gas in an optical superlattice, Phys. Rev. Lett., Volume 113 (2014)

[176] S. Scherg et al. Nonequilibrium mass transport in the 1D Fermi–Hubbard model, Phys. Rev. Lett., Volume 121 (2018)

[177] S. Kondov; W. McGehee; W. Xu; B. DeMarco Disorder-induced localization in a strongly correlated atomic Hubbard gas, Phys. Rev. Lett., Volume 114 (2015)

[178] M. Schreiber et al. Observation of many-body localization of interacting fermions in a quasi-random optical lattice, Science, Volume 349 (2015), pp. 842-845

[179] G. Jotzu et al. Experimental realization of the topological Haldane model with ultracold fermions, Nature (London), Volume 515 (2014), pp. 237-240

[180] M. Mancini et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons, Science, Volume 349 (2015), pp. 1510-1513

[181] N. Fläschner et al. Experimental reconstruction of the Berry curvature in a Floquet Bloch band, Science, Volume 352 (2016), pp. 1091-1094

[182] S. Nakajima et al. Topological Thouless pumping of ultracold fermions, Nat. Phys., Volume 12 (2016), pp. 296-300

Cited by Sources:

Comments - Policy