Ultracold atomic gases provide a fantastic platform to implement quantum simulators and investigate a variety of models initially introduced in condensed matter physics or other areas. One of the most promising applications of quantum simulation is the study of strongly correlated Fermi gases, for which exact theoretical results are not always possible with state-of-the-art approaches. Here, we review recent progress of the quantum simulation of the emblematic Fermi–Hubbard model with ultracold atoms. After introducing the Fermi–Hubbard model in the context of condensed matter, its implementation in ultracold atom systems, and its phase diagram, we review landmark experimental achievements, from the early observation of the onset of quantum degeneracy and superfluidity to the demonstration of the Mott insulator regime and the emergence of long-range anti-ferromagnetic order. We conclude by discussing future challenges, including the possible observation of high- superconductivity, transport properties, and the interplay of strong correlations and disorder or topology.
Les gaz atomiques ultrafroids offrent une excellente plateforme pour réaliser des simulateurs quantiques et étudier une grande diversité de modèles introduits initialement en physique de la matière condensée ou d'autres domaines. L'une des applications les plus prometteuses de la simulation quantique est l'étude des gaz de Fermi fortement corrélés, pour lesquels des résultats théoriques exacts ne sont pas toujours disponibles. Nous présentons ici une revue des progrès réalisés récemment sur la simulation quantique de l'emblématique modèle de Fermi–Hubbard avec des atomes ultrafroids. Après avoir présenté le modèle de Fermi–Hubbard dans le contexte de la matière condensée, sa réalisation avec des atomes ultrafroids et son diagramme de phase, nous présentons les réalisations expérimentales les plus marquantes, de l'observation initiale de l'apparition de la dégénérescence quantique et de la superfluidité fermioniques à la mise en évidence du régime de l'isolant de Mott et de l'émergence d'un ordre anti-ferromagnétique à longue portée. Nous concluons par une discussion des défis futurs, dont la possibilité d'observer la supraconductivité à haute température, les propriétés de transport et la compétition de fortes corrélations et du désordre ou de la topologie.
Mot clés : Gaz de Fermi, Réseaux optiques, Transition de Mott, Magnétisme quantique
Leticia Tarruell 1; Laurent Sanchez-Palencia 2
@article{CRPHYS_2018__19_6_365_0, author = {Leticia Tarruell and Laurent Sanchez-Palencia}, title = {Quantum simulation of the {Hubbard} model with ultracold fermions in optical lattices}, journal = {Comptes Rendus. Physique}, pages = {365--393}, publisher = {Elsevier}, volume = {19}, number = {6}, year = {2018}, doi = {10.1016/j.crhy.2018.10.013}, language = {en}, }
TY - JOUR AU - Leticia Tarruell AU - Laurent Sanchez-Palencia TI - Quantum simulation of the Hubbard model with ultracold fermions in optical lattices JO - Comptes Rendus. Physique PY - 2018 SP - 365 EP - 393 VL - 19 IS - 6 PB - Elsevier DO - 10.1016/j.crhy.2018.10.013 LA - en ID - CRPHYS_2018__19_6_365_0 ER -
Leticia Tarruell; Laurent Sanchez-Palencia. Quantum simulation of the Hubbard model with ultracold fermions in optical lattices. Comptes Rendus. Physique, Volume 19 (2018) no. 6, pp. 365-393. doi : 10.1016/j.crhy.2018.10.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.10.013/
[1] Simulating physics with computers, Int. J. Theor. Phys., Volume 21 (1982), pp. 467-488
[2] Universal quantum simulators, Science, Volume 273 (1996), pp. 1073-1078
[3] et al. Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond, Adv. Phys., Volume 56 (2007), pp. 243-379
[4] Many-body physics with ultracold gases, Rev. Mod. Phys., Volume 80 (2008), pp. 885-964
[5] Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems, Oxford University Press, Oxford, UK, 2012
[6] Quantum simulations with ultracold quantum gases, Nat. Phys., Volume 8 (2012), pp. 267-276
[7] Onset of Fermi degeneracy in a trapped atomic gas, Science, Volume 285 (1999), pp. 1703-1706
[8] Observation of Fermi pressure in a gas of trapped atoms, Science, Volume 291 (2001), pp. 2570-2572
[9] et al. Quasipure Bose–Einstein condensate immersed in a Fermi sea, Phys. Rev. Lett., Volume 87 (2001)
[10] Degenerate Bose–Fermi mixture of metastable atoms, Phys. Rev. Lett., Volume 97 (2006)
[11] Degenerate Fermi gases of ytterbium, Phys. Rev. Lett., Volume 98 (2007)
[12] Degenerate Fermi gas of , Phys. Rev. Lett., Volume 105 (2010)
[13] Double-degenerate Bose–Fermi mixture of strontium, Phys. Rev. A, Volume 82 (2010)
[14] Quantum degenerate dipolar Fermi gas, Phys. Rev. Lett., Volume 108 (2012)
[15] et al. Reaching Fermi degeneracy via universal dipolar scattering, Phys. Rev. Lett., Volume 112 (2014)
[16] et al. Chromium dipolar Fermi sea, Phys. Rev. A, Volume 91 (2015) 011603(R)
[17] Feshbach resonances in ultracold gases, Rev. Mod. Phys., Volume 82 (2010), pp. 1225-1286
[18] The BCS–BEC Crossover and the Unitary Fermi Gas, Lecture Notes in Physics, Springer, Berlin, 2011
[19] Emergence of a molecular Bose–Einstein condensate from a Fermi gas, Nature (London), Volume 426 (2003), pp. 537-540
[20] et al. Bose–Einstein condensation of molecules, Science, Volume 302 (2003), pp. 2101-2103
[21] et al. Observation of Bose–Einstein condensation of molecules, Phys. Rev. Lett., Volume 91 (2003)
[22] et al. Observation of the pairing gap in a strongly interacting Fermi gas, Science, Volume 305 (2004), pp. 1128-1130
[23] Observation of resonance condensation of fermionic atom pairs, Phys. Rev. Lett., Volume 92 (2004)
[24] et al. Condensation of pairs of fermionic atoms near a Feshbach resonance, Phys. Rev. Lett., Volume 92 (2004)
[25] et al. Experimental study of the BEC–BCS crossover region in Lithium 6, Phys. Rev. Lett., Volume 93 (2004)
[26] Exploring the thermodynamics of a universal Fermi gas, Nature (London), Volume 463 (2009), pp. 1057-1060
[27] Exploring the thermodynamics of a universal Fermi gas, Nature (London), Volume 463 (2010), p. 1057
[28] The equation of state of a low-temperature Fermi gas with tunable interactions, Science, Volume 328 (2010), pp. 729-732
[29] et al. Feynman diagrams versus Fermi-gas Feynman emulator, Nat. Phys., Volume 8 (2012), pp. 366-370
[30] Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas, Science, Volume 335 (2012), pp. 563-567
[31] Cold atoms in dissipative optical lattices, Phys. Rep., Volume 355 (2001), pp. 335-451
[32] Ultracold quantum gases in optical lattices, Nat. Phys., Volume 1 (2005), pp. 23-30
[33] Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature (London), Volume 415 (2002), pp. 39-44
[34] Lattice of double wells for manipulating pairs of cold atoms, Phys. Rev. A, Volume 73 (2006)
[35] et al. Controlled exchange interaction between pairs of neutral atoms in an optical lattice, Nature (London), Volume 448 (2007), pp. 452-456
[36] et al. Direct observation of second-order atom tunnelling, Nature (London), Volume 448 (2007), pp. 1029-1032
[37] et al. Ultracold quantum gases in triangular optical lattices, New J. Phys., Volume 12 (2010)
[38] et al. Direct observation of second-order atom tunnelling, Nat. Phys., Volume 7 (2011), p. 434
[39] Creating moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice, Nature (London), Volume 483 (2012), p. 302
[40] et al. Ultracold atoms in a tunable optical kagome lattice, Phys. Rev. Lett., Volume 108 (2012)
[41] et al. Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice, Sci. Adv., Volume 1 (2015)
[42] Engineering novel optical lattices, Rep. Prog. Phys., Volume 76 (2013)
[43] Absence of Mott transition in an exact solution of the short-range one-band model in one dimension, Phys. Rev. Lett., Volume 20 (1968), pp. 1445-1448
[44] The one-dimensional Hubbard model: a reminiscence, J. Phys. A, Volume 321 (2003), pp. 1-27
[45] Hubbard model in infinite dimensions, Phys. Rev. B, Volume 45 (1992), p. 6479
[46] Quantum Monte Carlo Methods in Condensed Matter Physics, World Scientific, 1993
[47] Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys., Volume 68 (1996), pp. 13-125
[48] The resonating valence bond state in La2CuO4 and superconductivity, Science, Volume 235 (1987), pp. 1196-1198
[49] Superconductivity in narrow-band systems with local nonretarded attractive interactions, Rev. Mod. Phys., Volume 62 (1990), pp. 113-171
[50] High-temperature superfluidity of fermionic atoms in optical lattices, Phys. Rev. Lett., Volume 89 (2002)
[51] Fermi–Hubbard physics with atoms in an optical lattice, Annu. Rev. Condens. Matter Phys., Volume 1 (2010), pp. 129-152
[52] Quantum simulation of strongly correlated condensed matter systems, J. Phys. B, At. Mol. Opt. Phys., Volume 51 (2018)
[53] Effect of correlation on the ferromagnetism of transition metals, Phys. Rev. Lett., Volume 10 (1963), pp. 159-162
[54] Electron correlations in narrow energy bands, Proc. R. Soc. A, Math. Phys. Eng. Sci., Volume 276 (1963), pp. 238-257
[55] Effect of correlation on the ferromagnetism of transition metals, Phys. Rev., Volume 134 (1964), p. A923-A941
[56] Many Particle Physics, Springer, New York, 2000
[57] Quantum Phase Transitions, Cambridge University Press, Cambridge, UK, 2001
[58] Exploring Many-Body Physics with Ultracold Atoms, University of Toronto, Toronto, 2011 http://ultracold.physics.utoronto.ca/reprints/LeBlanc40K.pdf
[59] Measurement of positive and negative scattering lengths in a Fermi gas of atoms, Phys. Rev. Lett., Volume 90 (2003)
[60] Cold bosonic atoms in optical lattices, Phys. Rev. Lett., Volume 81 (1998), pp. 3108-3111
[61] The cold atoms Hubbard toolbox, Ann. Phys. (NY), Volume 315 (2005), pp. 52-79
[62] Nobel lecture: the manipulation of neutral particles, Rev. Mod. Phys., Volume 70 (1998), pp. 685-706
[63] Nobel lecture: manipulating atoms with photons, Rev. Mod. Phys., Volume 70 (1998), pp. 707-719
[64] Nobel lecture: laser cooling and trapping of neutral atoms, Rev. Mod. Phys., Volume 70 (1998), pp. 721-741
[65] Evaporative cooling of trapped atoms, Adv. At. Mol. Opt. Phys., Volume 37 (1996), pp. 181-236
[66] Making, Probing and Understanding Bose–Einstein Condensates, Proceedings of the International School of Physics Enrico Fermi, 1999 (Course CXL)
[67] Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys., Volume 71 (1999), pp. 463-512
[68] Making probing and understanding ultracold Fermi gases, Riv. Nuovo Cimento, Volume 31 (2008), pp. 247-422
[69] Theory of ultracold atomic Fermi gases, Rev. Mod. Phys., Volume 80 (2008), pp. 1215-1274
[70] Spin-dependent Hubbard model and a quantum phase transition in cold atoms, Phys. Rev. A, Volume 70 (2004)
[71] An Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling, Nat. Phys., Volume 8 (2012), p. 825
[72] et al. A one-dimensional liquid of fermions with tunable spin, Nat. Phys., Volume 10 (2014), pp. 198-201
[73] et al. Direct probing of the Mott crossover in the Fermi–Hubbard model, Phys. Rev. X, Volume 6 (2016)
[74] The physics of dipolar bosonic quantum gases, Rep. Prog. Phys., Volume 72 (2009)
[75] A toolbox for lattice-spin models with polar molecules, Nat. Phys., Volume 2 (2006), pp. 341-347
[76] Optical dipole traps for neutral atoms, Adv. At. Mol. Opt. Phys., Volume 42 (2000), pp. 95-170
[77] Atomic diffusion in an optical quasicrystal with five-fold symmetry, Phys. Rev. A, Volume 60 (1999), p. R4233-R4236
[78] Anderson localization in Bose–Einstein condensates, Rep. Prog. Phys., Volume 73 (2010)
[79] Bose–Einstein condensates in optical quasicrystal lattices, Phys. Rev. A, Volume 72 (2005)
[80] Bose–Einstein condensates in disordered potentials, Adv. At. Mol. Opt. Phys., Volume 56 (2008), pp. 119-160
[81] Disordered quantum gases under control, Nat. Phys., Volume 6 (2010), pp. 87-95
[82] Cold atoms in the presence of disorder, J. Phys. A, Math. Theor., Volume 45 (2012)
[83] Solid State Physics, Thomson Learning, Toronto, 1976
[84] Théorie Générale de l'équation de Mathieu, Masson et cie, Paris, 1955
[85] Weakly bound dimers of fermionic atoms, Phys. Rev. Lett., Volume 93 (2004)
[86] et al. A cold-atom Fermi–Hubbard antiferromagnet, Nature (London), Volume 545 (2017), p. 462
[87] Bose–Einstein condensation of atoms in a uniform potential, Phys. Rev. Lett., Volume 110 (2013)
[88] et al. Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas, Nat. Commun., Volume 6 (2015), p. 6162
[89] et al. Homogeneous atomic Fermi gases, Phys. Rev. Lett., Volume 118 (2017)
[90] et al. Two-dimensional homogeneous Fermi gases, Phys. Rev. Lett., Volume 120 (2018)
[91] Magnetic effects and the Hartree–Fock equation, Phys. Rev., Volume 82 (1951), pp. 538-541
[92] Interacting Electrons and Quantum Magnetism, Springer, New York, 1994
[93] Quantum Field Theory in Strongly Correlated Electronic Systems, Springer-Verlag, Berlin, 1999
[94] Simulations of the three-dimensional Hubbard model: half-filled band sector, Phys. Rev. B, Volume 35 (1987), pp. 1851-1859
[95] Phase diagram of the half-filled 3D Hubbard model, Phys. Rev. B, Volume 39 (1989), pp. 4711-4714
[96] Thermodynamic properties of the one-dimensional half-filled-band Hubbard model ii: application of the grand canonical method, Prog. Theor. Phys., Volume 48 (1972), pp. 2171-2186
[97] Quantum simulation of the Hubbard model: the attractive route, Phys. Rev. A, Volume 79 (2009)
[98] Production of a Fermi gas of atoms in an optical lattice, Phys. Rev. A, Volume 68 (2003)
[99] Fermionic atoms in a three dimensional optical lattice: observing Fermi surfaces, dynamics, and interactions, Phys. Rev. Lett., Volume 94 (2005)
[100] Confinement control by optical lattices, Phys. Rev. A, Volume 70 (2004)
[101] et al. Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice, Nature (London), Volume 444 (2006), pp. 733-736
[102] et al. Evidence for superfluidity of ultracold fermions in an optical lattice, Nature (London), Volume 443 (2006), p. 961
[103] Superfluid–insulator transition of strongly interacting Fermi gases in optical lattices, Phys. Rev. Lett., Volume 99 (2007)
[104] Superfluid–insulator transitions of the Fermi gas with near-unitary interactions in a periodic potential, Phys. Rev. Lett., Volume 99 (2007)
[105] et al. Evidence for a critical velocity in a Bose–Einstein condensed gas, Phys. Rev. Lett., Volume 83 (1999), pp. 2502-2505
[106] Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett., Volume 84 (2000), pp. 806-809
[107] Vortices and superfluidity in a strongly interacting Fermi gas, Nature (London), Volume 435 (2005), pp. 1047-1051
[108] et al. Superfluid behaviour of a two-dimensional Bose gases, Nat. Phys., Volume 8 (2012), p. 645
[109] et al. Interaction-controlled transport of an ultracold Fermi gas, Phys. Rev. Lett., Volume 99 (2007)
[110] et al. Anomalous expansion of attractively interacting fermionic atoms in an optical lattice, Science, Volume 327 (2010), pp. 1621-1624
[111] et al. Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms, Nat. Phys., Volume 8 (2012), pp. 213-218
[112] et al. Quantum gas microscopy of an attractive Fermi–Hubbard system, Nat. Phys., Volume 14 (2018), pp. 173-177
[113] A Mott insulator of fermionic atoms in an optical lattice, Nature (London), Volume 455 (2008), pp. 204-207
[114] et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice, Science, Volume 322 (2008), pp. 1520-1525
[115] et al. Quantitative determination of temperature in the approach to magnetic order of ultracold fermions in an optical lattice, Phys. Rev. Lett., Volume 104 (2010)
[116] Discerning incompressible and compressible phases of cold atoms in optical lattices, Phys. Rev. Lett., Volume 102 (2009)
[117] Thermodynamics of the three-dimensional Hubbard model: implications for cooling cold atomic gases in optical lattices, Phys. Rev. A, Volume 83 (2011)
[118] Probing nearest-neighbor correlations of ultracold fermions in an optical lattice, Phys. Rev. Lett., Volume 106 (2011)
[119] et al. Artificial graphene with tunable interactions, Phys. Rev. Lett., Volume 111 (2013)
[120] et al. Exploring competing density order in the ionic Hubbard model with ultracold fermions, Phys. Rev. Lett., Volume 115 (2015)
[121] The Fourier Transform and its Applications, McGraw–Hill, New York, 1965
[122] Reconstruction of Abel-transformable images: the Gaussian basis-set expansion Abel transform method, Rev. Sci. Instrum., Volume 73 (2002), p. 2634
[123] et al. Compressibility of a fermionic Mott insulator of ultracold atoms, Phys. Rev. Lett., Volume 114 (2015)
[124] et al. Equation of state of the two-dimensional Hubbard model, Phys. Rev. Lett., Volume 116 (2016)
[125] Thermodynamics of strongly interacting fermions in two-dimensional optical lattices, Phys. Rev. A, Volume 84 (2011)
[126] et al. Measuring entropy and short-range correlations in the two-dimensional Hubbard model, Phys. Rev. X, Volume 7 (2017)
[127] et al. Thermodynamics versus local density fluctuations in the metal–Mott-insulator crossover, Phys. Rev. Lett., Volume 117 (2016)
[128] A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice, Nature (London), Volume 462 (2009), pp. 74-77
[129] et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator, Nature (London), Volume 467 (2010), pp. 68-72
[130] et al. Single-atom imaging of fermions in a quantum-gas microscope, Nat. Phys., Volume 1 (2015), pp. 738-743
[131] et al. Quantum-gas microscope for fermionic atoms, Phys. Rev. Lett., Volume 114 (2015)
[132] et al. Site-resolved imaging of fermionic in an optical lattice, Phys. Rev. Lett., Volume 114 (2015)
[133] et al. Microscopic observation of Pauli blocking in degenerate fermionic lattice gases, Phys. Rev. Lett., Volume 115 (2015)
[134] et al. Imaging and addressing of individual fermionic atoms in an optical lattice, Phys. Rev. A, Volume 92 (2015)
[135] Ground state laser cooling using electromagnetically induced transparency, Phys. Rev. Lett., Volume 85 (2000), pp. 4458-4461
[136] et al. Resolved-sideband Raman cooling to the ground state of an optical lattice, Phys. Rev. Lett., Volume 80 (1998), pp. 4149-4152
[137] et al. Site-resolved imaging of a fermionic Mott insulator, Science, Volume 351 (2016), pp. 953-957
[138] et al. Observation of 2D fermionic Mott insulators of with single-site resolution, Phys. Rev. Lett., Volume 116 (2016)
[139] et al. Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi–Hubbard chains, Science, Volume 353 (2016), pp. 1257-1260
[140] Short-range quantum magnetism of ultracold fermions in an optical lattice, Science, Volume 340 (2013), pp. 1307-1310
[141] et al. Competition of spin and charge excitations in the one-dimensional Hubbard model, Phys. Rev. A, Volume 88 (2013)
[142] et al. Thermodynamics and magnetic properties of the anisotropic 3D Hubbard model, Phys. Rev. Lett., Volume 112 (2014)
[143] Formation and dynamics of antiferromagnetic correlations in tunable optical lattices, Phys. Rev. Lett., Volume 115 (2015)
[144] et al. Enhancement and sign change of magnetic correlations in a driven quantum many-body system, Nature (London), Volume 553 (2018), pp. 481-485
[145] Antiferromagnetic spin correlation of SU() Fermi gas in an optical dimerized lattice, 2018 (e-prints) | arXiv
[146] et al. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms, Nature (London), Volume 519 (2015), pp. 211-214
[147] et al. Bragg scattering as a probe of atomic wave functions and quantum phase transitions in optical lattices, Phys. Rev. Lett., Volume 107 (2011)
[148] et al. Coherent light scattering from a two-dimensional Mott insulator, Phys. Rev. Lett., Volume 106 (2011)
[149] Detecting antiferromagnetism of atoms in an optical lattice via optical Bragg scattering, Phys. Rev. A, Volume 81 (2010)
[150] et al. Site-resolved measurement of the spin-correlation function in the Fermi–Hubbard model, Science, Volume 353 (2016), pp. 1253-1256
[151] et al. Observation of spatial charge and spin correlations in the 2D Fermi–Hubbard model, Science, Volume 353 (2016), pp. 1260-1264
[152] et al. Spin-imbalance in a 2D Fermi–Hubbard system, Science, Volume 357 (2017), pp. 1385-1388
[153] et al. Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators, Science, Volume 357 (2017), pp. 484-487
[154] et al. Direct observation of incommensurate magnetism in Hubbard chains, 2018 (e-prints) | arXiv
[155] et al. Antiferromagnetic correlations in two-dimensional fermionic Mott-insulating and metallic phases, Phys. Rev. Lett., Volume 118 (2017)
[156] et al. Coherent manipulation of spin correlations in the Hubbard model, Phys. Rev. A, Volume 97 (2018)
[157] Limits of sympathetic cooling of fermions by zero-temperature bosons due to particle losses, Phys. Rev. A, Volume 69 (2004)
[158] Enlarging and cooling the Néel state in an optical lattice, Phys. Rev. A, Volume 86 (2012)
[159] Universal cooling scheme for quantum simulation, 2009 | arXiv
[160] The spin-1/2 Heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides, Rev. Mod. Phys., Volume 63 (1991), p. 1
[161] Spin waves in the half-filled Hubbard model beyond the random phase approximation, Europhys. Lett., Volume 22 (1993), p. 413
[162] Dynamical cluster approximation with continuous lattice self-energy, Phys. Rev. B, Volume 88 (2013)
[163] Possible high-Tc superconductivity in the Ba–La–Cu–O system, Z. Phys. B, Volume 64 (1986), pp. 189-193
[164] Doping a Mott insulator: physics of high-temperature superconductivity, Rev. Mod. Phys., Volume 78 (2006), pp. 17-85
[165] The remarkable underlying ground states of cuprate superconductors, 2018 | arXiv
[166] et al. Cooling fermionic atoms in optical lattices by shaping the confinement, Phys. Rev. A, Volume 79 (2009)
[167] Peltier cooling of fermionic quantum gases, Phys. Rev. Lett., Volume 113 (2014)
[168] Quantum state engineering of a Hubbard system with ultracold fermions, Phys. Rev. Lett., Volume 120 (2018)
[169] et al. Collisionally induced transport in periodic potentials, Phys. Rev. Lett., Volume 92 (2004)
[170] et al. Optical conductivity of a quantum gas, 2017 (preprint) | arXiv
[171] et al. Bad metallic transport in a cold atom Fermi–Hubbard system, 2018 (preprint) | arXiv
[172] et al. Spin transport in a Mott insulator of ultracold fermions, 2018 (preprint) | arXiv
[173] Bad metal in a Fermi lattice gas, 2016 (preprint) | arXiv
[174] et al. Observation of elastic doublon decay in the Fermi–Hubbard model, Phys. Rev. Lett., Volume 104 (2010)
[175] et al. Relaxation dynamics of a Fermi gas in an optical superlattice, Phys. Rev. Lett., Volume 113 (2014)
[176] et al. Nonequilibrium mass transport in the 1D Fermi–Hubbard model, Phys. Rev. Lett., Volume 121 (2018)
[177] Disorder-induced localization in a strongly correlated atomic Hubbard gas, Phys. Rev. Lett., Volume 114 (2015)
[178] et al. Observation of many-body localization of interacting fermions in a quasi-random optical lattice, Science, Volume 349 (2015), pp. 842-845
[179] et al. Experimental realization of the topological Haldane model with ultracold fermions, Nature (London), Volume 515 (2014), pp. 237-240
[180] et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons, Science, Volume 349 (2015), pp. 1510-1513
[181] et al. Experimental reconstruction of the Berry curvature in a Floquet Bloch band, Science, Volume 352 (2016), pp. 1091-1094
[182] et al. Topological Thouless pumping of ultracold fermions, Nat. Phys., Volume 12 (2016), pp. 296-300
Cited by Sources:
Comments - Policy