Comptes Rendus
Quantum simulation of the Hubbard model with ultracold fermions in optical lattices
[Simulation quantique du modèle de Hubbard avec des fermions ultrafroids dans des réseaux optiques]
Comptes Rendus. Physique, Quantum simulation / Simulation quantique, Volume 19 (2018) no. 6, pp. 365-393.

Les gaz atomiques ultrafroids offrent une excellente plateforme pour réaliser des simulateurs quantiques et étudier une grande diversité de modèles introduits initialement en physique de la matière condensée ou d'autres domaines. L'une des applications les plus prometteuses de la simulation quantique est l'étude des gaz de Fermi fortement corrélés, pour lesquels des résultats théoriques exacts ne sont pas toujours disponibles. Nous présentons ici une revue des progrès réalisés récemment sur la simulation quantique de l'emblématique modèle de Fermi–Hubbard avec des atomes ultrafroids. Après avoir présenté le modèle de Fermi–Hubbard dans le contexte de la matière condensée, sa réalisation avec des atomes ultrafroids et son diagramme de phase, nous présentons les réalisations expérimentales les plus marquantes, de l'observation initiale de l'apparition de la dégénérescence quantique et de la superfluidité fermioniques à la mise en évidence du régime de l'isolant de Mott et de l'émergence d'un ordre anti-ferromagnétique à longue portée. Nous concluons par une discussion des défis futurs, dont la possibilité d'observer la supraconductivité à haute température, les propriétés de transport et la compétition de fortes corrélations et du désordre ou de la topologie.

Ultracold atomic gases provide a fantastic platform to implement quantum simulators and investigate a variety of models initially introduced in condensed matter physics or other areas. One of the most promising applications of quantum simulation is the study of strongly correlated Fermi gases, for which exact theoretical results are not always possible with state-of-the-art approaches. Here, we review recent progress of the quantum simulation of the emblematic Fermi–Hubbard model with ultracold atoms. After introducing the Fermi–Hubbard model in the context of condensed matter, its implementation in ultracold atom systems, and its phase diagram, we review landmark experimental achievements, from the early observation of the onset of quantum degeneracy and superfluidity to the demonstration of the Mott insulator regime and the emergence of long-range anti-ferromagnetic order. We conclude by discussing future challenges, including the possible observation of high-Tc superconductivity, transport properties, and the interplay of strong correlations and disorder or topology.

Publié le :
DOI : 10.1016/j.crhy.2018.10.013
Keywords: Fermi gases, Optical lattices, Mott transition, Quantum magnetism
Mots-clés : Gaz de Fermi, Réseaux optiques, Transition de Mott, Magnétisme quantique

Leticia Tarruell 1 ; Laurent Sanchez-Palencia 2

1 ICFO – Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
2 CPHT, École polytechnique, CNRS, Université Paris-Saclay, route de Saclay, 91128 Palaiseau cedex, France
@article{CRPHYS_2018__19_6_365_0,
     author = {Leticia Tarruell and Laurent Sanchez-Palencia},
     title = {Quantum simulation of the {Hubbard} model with ultracold fermions in optical lattices},
     journal = {Comptes Rendus. Physique},
     pages = {365--393},
     publisher = {Elsevier},
     volume = {19},
     number = {6},
     year = {2018},
     doi = {10.1016/j.crhy.2018.10.013},
     language = {en},
}
TY  - JOUR
AU  - Leticia Tarruell
AU  - Laurent Sanchez-Palencia
TI  - Quantum simulation of the Hubbard model with ultracold fermions in optical lattices
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 365
EP  - 393
VL  - 19
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.10.013
LA  - en
ID  - CRPHYS_2018__19_6_365_0
ER  - 
%0 Journal Article
%A Leticia Tarruell
%A Laurent Sanchez-Palencia
%T Quantum simulation of the Hubbard model with ultracold fermions in optical lattices
%J Comptes Rendus. Physique
%D 2018
%P 365-393
%V 19
%N 6
%I Elsevier
%R 10.1016/j.crhy.2018.10.013
%G en
%F CRPHYS_2018__19_6_365_0
Leticia Tarruell; Laurent Sanchez-Palencia. Quantum simulation of the Hubbard model with ultracold fermions in optical lattices. Comptes Rendus. Physique, Quantum simulation / Simulation quantique, Volume 19 (2018) no. 6, pp. 365-393. doi : 10.1016/j.crhy.2018.10.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.10.013/

[1] R.P. Feynman Simulating physics with computers, Int. J. Theor. Phys., Volume 21 (1982), pp. 467-488

[2] S. Lloyd Universal quantum simulators, Science, Volume 273 (1996), pp. 1073-1078

[3] M. Lewenstein et al. Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond, Adv. Phys., Volume 56 (2007), pp. 243-379

[4] I. Bloch; J. Dalibard; W. Zwerger Many-body physics with ultracold gases, Rev. Mod. Phys., Volume 80 (2008), pp. 885-964

[5] M. Lewenstein; A. Sanpera; V. Ahufinger Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems, Oxford University Press, Oxford, UK, 2012

[6] I. Bloch; J. Dalibard; S. Nascimbène Quantum simulations with ultracold quantum gases, Nat. Phys., Volume 8 (2012), pp. 267-276

[7] B. DeMarco; D.S. Jin Onset of Fermi degeneracy in a trapped atomic gas, Science, Volume 285 (1999), pp. 1703-1706

[8] A.G. Truscott; K.E. Strecker; W.I. McAlexander; G.B. Partridge; R.G. Hulet Observation of Fermi pressure in a gas of trapped atoms, Science, Volume 291 (2001), pp. 2570-2572

[9] F. Schreck et al. Quasipure Bose–Einstein condensate immersed in a Fermi sea, Phys. Rev. Lett., Volume 87 (2001)

[10] J.M. McNamara; T. Jeltes; A.S. Tychkov; W. Hogervorst; W. Vassen Degenerate Bose–Fermi mixture of metastable atoms, Phys. Rev. Lett., Volume 97 (2006)

[11] T. Fukuhara; Y. Takasu; M. Kumakura; Y. Takahashi Degenerate Fermi gases of ytterbium, Phys. Rev. Lett., Volume 98 (2007)

[12] B.J. DeSalvo; M. Yan; P.G. Mickelson; Y.N. Martinez de Escobar; T.C. Killian Degenerate Fermi gas of Sr87, Phys. Rev. Lett., Volume 105 (2010)

[13] M.K. Tey; S. Stellmer; R. Grimm; F. Schreck Double-degenerate Bose–Fermi mixture of strontium, Phys. Rev. A, Volume 82 (2010)

[14] M. Lu; N.Q. Burdick; B.L. Lev Quantum degenerate dipolar Fermi gas, Phys. Rev. Lett., Volume 108 (2012)

[15] K. Aikawa et al. Reaching Fermi degeneracy via universal dipolar scattering, Phys. Rev. Lett., Volume 112 (2014)

[16] B. Naylor et al. Chromium dipolar Fermi sea, Phys. Rev. A, Volume 91 (2015) 011603(R)

[17] C. Chin; R. Grimm; P. Julienne; E. Tiesinga Feshbach resonances in ultracold gases, Rev. Mod. Phys., Volume 82 (2010), pp. 1225-1286

[18] W. Zwerger The BCS–BEC Crossover and the Unitary Fermi Gas, Lecture Notes in Physics, Springer, Berlin, 2011

[19] M. Greiner; C.A. Regal; D.S. Jin Emergence of a molecular Bose–Einstein condensate from a Fermi gas, Nature (London), Volume 426 (2003), pp. 537-540

[20] S. Jochim et al. Bose–Einstein condensation of molecules, Science, Volume 302 (2003), pp. 2101-2103

[21] M.W. Zwierlein et al. Observation of Bose–Einstein condensation of molecules, Phys. Rev. Lett., Volume 91 (2003)

[22] C. Chin et al. Observation of the pairing gap in a strongly interacting Fermi gas, Science, Volume 305 (2004), pp. 1128-1130

[23] C.A. Regal; M. Greiner; D.S. Jin Observation of resonance condensation of fermionic atom pairs, Phys. Rev. Lett., Volume 92 (2004)

[24] M.W. Zwierlein et al. Condensation of pairs of fermionic atoms near a Feshbach resonance, Phys. Rev. Lett., Volume 92 (2004)

[25] T. Bourdel et al. Experimental study of the BEC–BCS crossover region in Lithium 6, Phys. Rev. Lett., Volume 93 (2004)

[26] S. Nascimbène; N. Navon; K. Jiang; F. Chevy; C. Salomon Exploring the thermodynamics of a universal Fermi gas, Nature (London), Volume 463 (2009), pp. 1057-1060

[27] S. Nascimbène; N. Navon; K. Jiang; F. Chevy; C. Salomon Exploring the thermodynamics of a universal Fermi gas, Nature (London), Volume 463 (2010), p. 1057

[28] N. Navon; S. Nascimbène; F. Chevy; C. Salomon The equation of state of a low-temperature Fermi gas with tunable interactions, Science, Volume 328 (2010), pp. 729-732

[29] K.V. Houcke et al. Feynman diagrams versus Fermi-gas Feynman emulator, Nat. Phys., Volume 8 (2012), pp. 366-370

[30] M.J. Ku; A.T. Sommer; L.W. Cheuk; M.W. Zwierlein Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas, Science, Volume 335 (2012), pp. 563-567

[31] G. Grynberg; C. Robilliard Cold atoms in dissipative optical lattices, Phys. Rep., Volume 355 (2001), pp. 335-451

[32] I. Bloch Ultracold quantum gases in optical lattices, Nat. Phys., Volume 1 (2005), pp. 23-30

[33] M. Greiner; O. Mandel; T. Esslinger; T.W. Hänsch; I. Bloch Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature (London), Volume 415 (2002), pp. 39-44

[34] J. Sebby-Strabley; M. Anderlini; P.S. Jessen; J.V. Porto Lattice of double wells for manipulating pairs of cold atoms, Phys. Rev. A, Volume 73 (2006)

[35] M. Anderlini et al. Controlled exchange interaction between pairs of neutral atoms in an optical lattice, Nature (London), Volume 448 (2007), pp. 452-456

[36] S. Fölling et al. Direct observation of second-order atom tunnelling, Nature (London), Volume 448 (2007), pp. 1029-1032

[37] C. Becker et al. Ultracold quantum gases in triangular optical lattices, New J. Phys., Volume 12 (2010)

[38] P. Soltan-Panahi et al. Direct observation of second-order atom tunnelling, Nat. Phys., Volume 7 (2011), p. 434

[39] L. Tarruell; D. Greif; T. Uehlinger; G. Jotzu; T. Esslinger Creating moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice, Nature (London), Volume 483 (2012), p. 302

[40] G.-B. Jo et al. Ultracold atoms in a tunable optical kagome lattice, Phys. Rev. Lett., Volume 108 (2012)

[41] S. Taie et al. Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice, Sci. Adv., Volume 1 (2015)

[42] P. Windpassinger; K. Sengstock Engineering novel optical lattices, Rep. Prog. Phys., Volume 76 (2013)

[43] E.H. Lieb; F.Y. Wu Absence of Mott transition in an exact solution of the short-range one-band model in one dimension, Phys. Rev. Lett., Volume 20 (1968), pp. 1445-1448

[44] E.H. Lieb; F.Y. Wu The one-dimensional Hubbard model: a reminiscence, J. Phys. A, Volume 321 (2003), pp. 1-27

[45] A. Georges; G. Kotliar Hubbard model in infinite dimensions, Phys. Rev. B, Volume 45 (1992), p. 6479

[46] M. Suzuki Quantum Monte Carlo Methods in Condensed Matter Physics, World Scientific, 1993

[47] A. Georges; G. Kotliar; W. Krauth; M.J. Rozenberg Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys., Volume 68 (1996), pp. 13-125

[48] P.W. Anderson The resonating valence bond state in La2CuO4 and superconductivity, Science, Volume 235 (1987), pp. 1196-1198

[49] R. Micnas; J. Ranninger; S. Robaszkiewicz Superconductivity in narrow-band systems with local nonretarded attractive interactions, Rev. Mod. Phys., Volume 62 (1990), pp. 113-171

[50] W. Hofstetter; J.I. Cirac; P. Zoller; E. Demler; M. Lukin High-temperature superfluidity of fermionic atoms in optical lattices, Phys. Rev. Lett., Volume 89 (2002)

[51] T. Esslinger Fermi–Hubbard physics with atoms in an optical lattice, Annu. Rev. Condens. Matter Phys., Volume 1 (2010), pp. 129-152

[52] W. Hofstetter; T. Qin Quantum simulation of strongly correlated condensed matter systems, J. Phys. B, At. Mol. Opt. Phys., Volume 51 (2018)

[53] M.C. Gutzwiller Effect of correlation on the ferromagnetism of transition metals, Phys. Rev. Lett., Volume 10 (1963), pp. 159-162

[54] J. Hubbard Electron correlations in narrow energy bands, Proc. R. Soc. A, Math. Phys. Eng. Sci., Volume 276 (1963), pp. 238-257

[55] M.C. Gutzwiller Effect of correlation on the ferromagnetism of transition metals, Phys. Rev., Volume 134 (1964), p. A923-A941

[56] G. Mahan Many Particle Physics, Springer, New York, 2000

[57] S. Sachdev Quantum Phase Transitions, Cambridge University Press, Cambridge, UK, 2001

[58] L.J. LeBlanc Exploring Many-Body Physics with Ultracold Atoms, University of Toronto, Toronto, 2011 http://ultracold.physics.utoronto.ca/reprints/LeBlanc40K.pdf

[59] C.A. Regal; D.S. Jin Measurement of positive and negative scattering lengths in a Fermi gas of atoms, Phys. Rev. Lett., Volume 90 (2003)

[60] D. Jaksch; C. Bruder; J.I. Cirac; C.W. Gardiner; P. Zoller Cold bosonic atoms in optical lattices, Phys. Rev. Lett., Volume 81 (1998), pp. 3108-3111

[61] D. Jaksch; P. Zoller The cold atoms Hubbard toolbox, Ann. Phys. (NY), Volume 315 (2005), pp. 52-79

[62] S. Chu Nobel lecture: the manipulation of neutral particles, Rev. Mod. Phys., Volume 70 (1998), pp. 685-706

[63] C.N. Cohen-Tannoudji Nobel lecture: manipulating atoms with photons, Rev. Mod. Phys., Volume 70 (1998), pp. 707-719

[64] W.D. Phillips Nobel lecture: laser cooling and trapping of neutral atoms, Rev. Mod. Phys., Volume 70 (1998), pp. 721-741

[65] W. Ketterle; N.J. van Druten Evaporative cooling of trapped atoms, Adv. At. Mol. Opt. Phys., Volume 37 (1996), pp. 181-236

[66] W. Ketterle; D.S. Durfee; D.M. Stamper-Kurn Making, Probing and Understanding Bose–Einstein Condensates, Proceedings of the International School of Physics Enrico Fermi, 1999 (Course CXL)

[67] F. Dalfovo; S. Giorgini; L.P. Pitaevskii; S. Stringari Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys., Volume 71 (1999), pp. 463-512

[68] W. Ketterle; M.W. Zwierlein Making probing and understanding ultracold Fermi gases, Riv. Nuovo Cimento, Volume 31 (2008), pp. 247-422

[69] S. Giorgini; L.P. Pitaevskii; S. Stringari Theory of ultracold atomic Fermi gases, Rev. Mod. Phys., Volume 80 (2008), pp. 1215-1274

[70] W.V. Liu; F. Wilczek; P. Zoller Spin-dependent Hubbard model and a quantum phase transition in cold atoms, Phys. Rev. A, Volume 70 (2004)

[71] S. Taie; R. Yamazaki; S. Sugawa; Y. Takahashi An su(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling, Nat. Phys., Volume 8 (2012), p. 825

[72] G. Pagano et al. A one-dimensional liquid of fermions with tunable spin, Nat. Phys., Volume 10 (2014), pp. 198-201

[73] C. Hofrichter et al. Direct probing of the Mott crossover in the SU(n) Fermi–Hubbard model, Phys. Rev. X, Volume 6 (2016)

[74] T. Lahaye; C. Menotti; L. Santos; M. Lewenstein; T. Pfau The physics of dipolar bosonic quantum gases, Rep. Prog. Phys., Volume 72 (2009)

[75] A. Micheli; G.K. Brennen; P. Zoller A toolbox for lattice-spin models with polar molecules, Nat. Phys., Volume 2 (2006), pp. 341-347

[76] R. Grimm; M. Weidemüller; Y.B. Ovchinnikov Optical dipole traps for neutral atoms, Adv. At. Mol. Opt. Phys., Volume 42 (2000), pp. 95-170

[77] L. Guidoni; B. Dépret; A. di Stefano; P. Verkerk Atomic diffusion in an optical quasicrystal with five-fold symmetry, Phys. Rev. A, Volume 60 (1999), p. R4233-R4236

[78] G. Modugno Anderson localization in Bose–Einstein condensates, Rep. Prog. Phys., Volume 73 (2010)

[79] L. Sanchez-Palencia; L. Santos Bose–Einstein condensates in optical quasicrystal lattices, Phys. Rev. A, Volume 72 (2005)

[80] L. Fallani; C. Fort; M. Inguscio Bose–Einstein condensates in disordered potentials, Adv. At. Mol. Opt. Phys., Volume 56 (2008), pp. 119-160

[81] L. Sanchez-Palencia; M. Lewenstein Disordered quantum gases under control, Nat. Phys., Volume 6 (2010), pp. 87-95

[82] B. Shapiro Cold atoms in the presence of disorder, J. Phys. A, Math. Theor., Volume 45 (2012)

[83] N.W. Ashcroft; D.N. Mermin Solid State Physics, Thomson Learning, Toronto, 1976

[84] R. Campbell Théorie Générale de l'équation de Mathieu, Masson et cie, Paris, 1955

[85] D.S. Petrov; C. Salomon; G.V. Shlyapnikov Weakly bound dimers of fermionic atoms, Phys. Rev. Lett., Volume 93 (2004)

[86] A. Mazurenko et al. A cold-atom Fermi–Hubbard antiferromagnet, Nature (London), Volume 545 (2017), p. 462

[87] A.L. Gaunt; T.F. Schmidutz; I. Gotlibovych; R.P. Smith; Z. Hadzibabic Bose–Einstein condensation of atoms in a uniform potential, Phys. Rev. Lett., Volume 110 (2013)

[88] L. Chomaz et al. Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas, Nat. Commun., Volume 6 (2015), p. 6162

[89] B. Mukherjee et al. Homogeneous atomic Fermi gases, Phys. Rev. Lett., Volume 118 (2017)

[90] K. Hueck et al. Two-dimensional homogeneous Fermi gases, Phys. Rev. Lett., Volume 120 (2018)

[91] J.C. Slater Magnetic effects and the Hartree–Fock equation, Phys. Rev., Volume 82 (1951), pp. 538-541

[92] A. Auerbach Interacting Electrons and Quantum Magnetism, Springer, New York, 1994

[93] N. Nagaosa Quantum Field Theory in Strongly Correlated Electronic Systems, Springer-Verlag, Berlin, 1999

[94] J.E. Hirsch Simulations of the three-dimensional Hubbard model: half-filled band sector, Phys. Rev. B, Volume 35 (1987), pp. 1851-1859

[95] R.T. Scalettar; D.J. Scalapino; R.L. Sugar; D. Toussaint Phase diagram of the half-filled 3D Hubbard model, Phys. Rev. B, Volume 39 (1989), pp. 4711-4714

[96] H. Shiba Thermodynamic properties of the one-dimensional half-filled-band Hubbard model ii: application of the grand canonical method, Prog. Theor. Phys., Volume 48 (1972), pp. 2171-2186

[97] A.F. Ho; M.A. Cazalilla; T. Giamarchi Quantum simulation of the Hubbard model: the attractive route, Phys. Rev. A, Volume 79 (2009)

[98] G. Modugno; F. Ferlaino; R. Heidemann; G. Roati; M. Inguscio Production of a Fermi gas of atoms in an optical lattice, Phys. Rev. A, Volume 68 (2003)

[99] M. Köhl; H. Moritz; T. Stöferle; K. Günter; T. Esslinger Fermionic atoms in a three dimensional optical lattice: observing Fermi surfaces, dynamics, and interactions, Phys. Rev. Lett., Volume 94 (2005)

[100] M. Rigol; A. Muramatsu Confinement control by optical lattices, Phys. Rev. A, Volume 70 (2004)

[101] T. Rom et al. Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice, Nature (London), Volume 444 (2006), pp. 733-736

[102] J.K. Chin et al. Evidence for superfluidity of ultracold fermions in an optical lattice, Nature (London), Volume 443 (2006), p. 961

[103] H. Zhai; T.-L. Ho Superfluid–insulator transition of strongly interacting Fermi gases in optical lattices, Phys. Rev. Lett., Volume 99 (2007)

[104] E.G. Moon; P. Nikolić; S. Sachdev Superfluid–insulator transitions of the Fermi gas with near-unitary interactions in a periodic potential, Phys. Rev. Lett., Volume 99 (2007)

[105] C. Raman et al. Evidence for a critical velocity in a Bose–Einstein condensed gas, Phys. Rev. Lett., Volume 83 (1999), pp. 2502-2505

[106] K.W. Madison; F. Chevy; W. Wohlleben; J. Dalibard Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett., Volume 84 (2000), pp. 806-809

[107] M.W. Zwierlein; J.R. Abo-Shaeer; A. Schirotzek; C.H. Schunck; W. Ketterle Vortices and superfluidity in a strongly interacting Fermi gas, Nature (London), Volume 435 (2005), pp. 1047-1051

[108] R. Desbuquois et al. Superfluid behaviour of a two-dimensional Bose gases, Nat. Phys., Volume 8 (2012), p. 645

[109] N. Strohmaier et al. Interaction-controlled transport of an ultracold Fermi gas, Phys. Rev. Lett., Volume 99 (2007)

[110] L. Hackermüller et al. Anomalous expansion of attractively interacting fermionic atoms in an optical lattice, Science, Volume 327 (2010), pp. 1621-1624

[111] U. Schneider et al. Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms, Nat. Phys., Volume 8 (2012), pp. 213-218

[112] D. Mitra et al. Quantum gas microscopy of an attractive Fermi–Hubbard system, Nat. Phys., Volume 14 (2018), pp. 173-177

[113] R. Jördens; N. Strohmaier; K. Günter; H. Moritz; T. Esslinger A Mott insulator of fermionic atoms in an optical lattice, Nature (London), Volume 455 (2008), pp. 204-207

[114] U. Schneider et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice, Science, Volume 322 (2008), pp. 1520-1525

[115] Jördens et al. Quantitative determination of temperature in the approach to magnetic order of ultracold fermions in an optical lattice, Phys. Rev. Lett., Volume 104 (2010)

[116] V.W. Scarola; L. Pollet; J. Oitmaa; M. Troyer Discerning incompressible and compressible phases of cold atoms in optical lattices, Phys. Rev. Lett., Volume 102 (2009)

[117] L. De Leo; J.-S. Bernier; C. Kollath; A. Georges; V.W. Scarola Thermodynamics of the three-dimensional Hubbard model: implications for cooling cold atomic gases in optical lattices, Phys. Rev. A, Volume 83 (2011)

[118] D. Greif; L. Tarruell; T. Uehlinger; R. Jördens; T. Esslinger Probing nearest-neighbor correlations of ultracold fermions in an optical lattice, Phys. Rev. Lett., Volume 106 (2011)

[119] T. Uehlinger et al. Artificial graphene with tunable interactions, Phys. Rev. Lett., Volume 111 (2013)

[120] M. Messer et al. Exploring competing density order in the ionic Hubbard model with ultracold fermions, Phys. Rev. Lett., Volume 115 (2015)

[121] R. Bracewell The Fourier Transform and its Applications, McGraw–Hill, New York, 1965

[122] V. Dribinski; A. Ossadtchi; V.A. Mandelshtam; H. Reisler Reconstruction of Abel-transformable images: the Gaussian basis-set expansion Abel transform method, Rev. Sci. Instrum., Volume 73 (2002), p. 2634

[123] P.M. Duarte et al. Compressibility of a fermionic Mott insulator of ultracold atoms, Phys. Rev. Lett., Volume 114 (2015)

[124] E. Cocchi et al. Equation of state of the two-dimensional Hubbard model, Phys. Rev. Lett., Volume 116 (2016)

[125] E. Khatami; M. Rigol Thermodynamics of strongly interacting fermions in two-dimensional optical lattices, Phys. Rev. A, Volume 84 (2011)

[126] E. Cocchi et al. Measuring entropy and short-range correlations in the two-dimensional Hubbard model, Phys. Rev. X, Volume 7 (2017)

[127] J.H. Drewes et al. Thermodynamics versus local density fluctuations in the metal–Mott-insulator crossover, Phys. Rev. Lett., Volume 117 (2016)

[128] W.S. Bakr; J.I. Gillen; A. Peng; S. Fölling; M. Greiner A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice, Nature (London), Volume 462 (2009), pp. 74-77

[129] J.F. Sherson et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator, Nature (London), Volume 467 (2010), pp. 68-72

[130] E. Haller et al. Single-atom imaging of fermions in a quantum-gas microscope, Nat. Phys., Volume 1 (2015), pp. 738-743

[131] L.W. Cheuk et al. Quantum-gas microscope for fermionic atoms, Phys. Rev. Lett., Volume 114 (2015)

[132] M.F. Parsons et al. Site-resolved imaging of fermionic Li6 in an optical lattice, Phys. Rev. Lett., Volume 114 (2015)

[133] A. Omran et al. Microscopic observation of Pauli blocking in degenerate fermionic lattice gases, Phys. Rev. Lett., Volume 115 (2015)

[134] G.J.A. Edge et al. Imaging and addressing of individual fermionic atoms in an optical lattice, Phys. Rev. A, Volume 92 (2015)

[135] G. Morigi; J. Eschner; C.H. Keitel Ground state laser cooling using electromagnetically induced transparency, Phys. Rev. Lett., Volume 85 (2000), pp. 4458-4461

[136] S.E. Hamann et al. Resolved-sideband Raman cooling to the ground state of an optical lattice, Phys. Rev. Lett., Volume 80 (1998), pp. 4149-4152

[137] D. Greif et al. Site-resolved imaging of a fermionic Mott insulator, Science, Volume 351 (2016), pp. 953-957

[138] L.W. Cheuk et al. Observation of 2D fermionic Mott insulators of K40 with single-site resolution, Phys. Rev. Lett., Volume 116 (2016)

[139] M. Boll et al. Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi–Hubbard chains, Science, Volume 353 (2016), pp. 1257-1260

[140] D. Greif; T. Uehlinger; G. Jotzu; L. Tarruell; T. Esslinger Short-range quantum magnetism of ultracold fermions in an optical lattice, Science, Volume 340 (2013), pp. 1307-1310

[141] B. Sciolla et al. Competition of spin and charge excitations in the one-dimensional Hubbard model, Phys. Rev. A, Volume 88 (2013)

[142] J. Imriška et al. Thermodynamics and magnetic properties of the anisotropic 3D Hubbard model, Phys. Rev. Lett., Volume 112 (2014)

[143] D. Greif; G. Jotzu; M. Messer; R. Desbuquois; T. Esslinger Formation and dynamics of antiferromagnetic correlations in tunable optical lattices, Phys. Rev. Lett., Volume 115 (2015)

[144] F. Görg et al. Enhancement and sign change of magnetic correlations in a driven quantum many-body system, Nature (London), Volume 553 (2018), pp. 481-485

[145] H. Ozawa; S. Taie; Y. Takasu; Y. Takahashi Antiferromagnetic spin correlation of SU(N) Fermi gas in an optical dimerized lattice, 2018 (e-prints) | arXiv

[146] R.A. Hart et al. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms, Nature (London), Volume 519 (2015), pp. 211-214

[147] H. Miyake et al. Bragg scattering as a probe of atomic wave functions and quantum phase transitions in optical lattices, Phys. Rev. Lett., Volume 107 (2011)

[148] C. Weitenberg et al. Coherent light scattering from a two-dimensional Mott insulator, Phys. Rev. Lett., Volume 106 (2011)

[149] T.A. Corcovilos; S.K. Baur; J.M. Hitchcock; E.J. Mueller; R.G. Hulet Detecting antiferromagnetism of atoms in an optical lattice via optical Bragg scattering, Phys. Rev. A, Volume 81 (2010)

[150] M.F. Parsons et al. Site-resolved measurement of the spin-correlation function in the Fermi–Hubbard model, Science, Volume 353 (2016), pp. 1253-1256

[151] L.W. Cheuk et al. Observation of spatial charge and spin correlations in the 2D Fermi–Hubbard model, Science, Volume 353 (2016), pp. 1260-1264

[152] P.T. Brown et al. Spin-imbalance in a 2D Fermi–Hubbard system, Science, Volume 357 (2017), pp. 1385-1388

[153] T.A. Hilker et al. Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators, Science, Volume 357 (2017), pp. 484-487

[154] G. Salomon et al. Direct observation of incommensurate magnetism in Hubbard chains, 2018 (e-prints) | arXiv

[155] J.H. Drewes et al. Antiferromagnetic correlations in two-dimensional fermionic Mott-insulating and metallic phases, Phys. Rev. Lett., Volume 118 (2017)

[156] N. Wurz et al. Coherent manipulation of spin correlations in the Hubbard model, Phys. Rev. A, Volume 97 (2018)

[157] L.D. Carr; T. Bourdel; Y. Castin Limits of sympathetic cooling of fermions by zero-temperature bosons due to particle losses, Phys. Rev. A, Volume 69 (2004)

[158] C.J.M. Mathy; D.A. Huse; R.G. Hulet Enlarging and cooling the Néel state in an optical lattice, Phys. Rev. A, Volume 86 (2012)

[159] T.-L. Ho; Q. Zhou Universal cooling scheme for quantum simulation, 2009 | arXiv

[160] E. Manousakis The spin-1/2 Heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides, Rev. Mod. Phys., Volume 63 (1991), p. 1

[161] P.J.H. Denteneer; J.M.J. Van Leeuwen Spin waves in the half-filled Hubbard model beyond the random phase approximation, Europhys. Lett., Volume 22 (1993), p. 413

[162] P. Staar; T. Maier; T.C. Schulthess Dynamical cluster approximation with continuous lattice self-energy, Phys. Rev. B, Volume 88 (2013)

[163] J.G. Bednorz; K.A. Müller Possible high-Tc superconductivity in the Ba–La–Cu–O system, Z. Phys. B, Volume 64 (1986), pp. 189-193

[164] P.A. Lee; N. Nagaosa; X.-G. Wen Doping a Mott insulator: physics of high-temperature superconductivity, Rev. Mod. Phys., Volume 78 (2006), pp. 17-85

[165] C. Proust; L. Taillefer The remarkable underlying ground states of cuprate superconductors, 2018 | arXiv

[166] J.-S. Bernier et al. Cooling fermionic atoms in optical lattices by shaping the confinement, Phys. Rev. A, Volume 79 (2009)

[167] C. Grenier; A. Georges; C. Kollath Peltier cooling of fermionic quantum gases, Phys. Rev. Lett., Volume 113 (2014)

[168] C.S. Chiu; G. Ji; A. Mazurenko; D. Greif; M. Greiner Quantum state engineering of a Hubbard system with ultracold fermions, Phys. Rev. Lett., Volume 120 (2018)

[169] H. Ott et al. Collisionally induced transport in periodic potentials, Phys. Rev. Lett., Volume 92 (2004)

[170] R. Anderson et al. Optical conductivity of a quantum gas, 2017 (preprint) | arXiv

[171] P.T. Brown et al. Bad metallic transport in a cold atom Fermi–Hubbard system, 2018 (preprint) | arXiv

[172] M.A. Nichols et al. Spin transport in a Mott insulator of ultracold fermions, 2018 (preprint) | arXiv

[173] W. Xu; W. McGehee; W. Morong; B. DeMarco Bad metal in a Fermi lattice gas, 2016 (preprint) | arXiv

[174] N. Strohmaier et al. Observation of elastic doublon decay in the Fermi–Hubbard model, Phys. Rev. Lett., Volume 104 (2010)

[175] D. Pertot et al. Relaxation dynamics of a Fermi gas in an optical superlattice, Phys. Rev. Lett., Volume 113 (2014)

[176] S. Scherg et al. Nonequilibrium mass transport in the 1D Fermi–Hubbard model, Phys. Rev. Lett., Volume 121 (2018)

[177] S. Kondov; W. McGehee; W. Xu; B. DeMarco Disorder-induced localization in a strongly correlated atomic Hubbard gas, Phys. Rev. Lett., Volume 114 (2015)

[178] M. Schreiber et al. Observation of many-body localization of interacting fermions in a quasi-random optical lattice, Science, Volume 349 (2015), pp. 842-845

[179] G. Jotzu et al. Experimental realization of the topological Haldane model with ultracold fermions, Nature (London), Volume 515 (2014), pp. 237-240

[180] M. Mancini et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons, Science, Volume 349 (2015), pp. 1510-1513

[181] N. Fläschner et al. Experimental reconstruction of the Berry curvature in a Floquet Bloch band, Science, Volume 352 (2016), pp. 1091-1094

[182] S. Nakajima et al. Topological Thouless pumping of ultracold fermions, Nat. Phys., Volume 12 (2016), pp. 296-300

  • Filippo Caleca; Simone Tibaldi; Elisa Ercolessi Three-Phase Confusion Learning, Entropy, Volume 27 (2025) no. 2, p. 199 | DOI:10.3390/e27020199
  • Tista Banerjee; K Sengupta Emergent symmetries in prethermal phases of periodically driven quantum systems, Journal of Physics: Condensed Matter, Volume 37 (2025) no. 13, p. 133002 | DOI:10.1088/1361-648x/ada860
  • Tatsuya Kaneko; Yukinori Ohta A New Era of Excitonic Insulators, Journal of the Physical Society of Japan, Volume 94 (2025) no. 1 | DOI:10.7566/jpsj.94.012001
  • Simon Bernier; Kartiek Agarwal Spatiotemporal quenches for efficient critical ground state preparation in the two-dimensional transverse field Ising model, Physical Review B, Volume 111 (2025) no. 5 | DOI:10.1103/physrevb.111.054311
  • Simon M. Linsel; Ulrich Schollwöck; Annabelle Bohrdt; Fabian Grusdt Emergent spinon-holon Feshbach resonance in a doped Majumdar-Ghosh model, Physical Review B, Volume 111 (2025) no. 5 | DOI:10.1103/physrevb.111.054430
  • Liam Rampon; Fedor Šimkovic; Michel Ferrero Magnetic Phase Diagram of the Three-Dimensional Doped Hubbard Model, Physical Review Letters, Volume 134 (2025) no. 6 | DOI:10.1103/physrevlett.134.066502
  • Tobias Olsacher; Tristan Kraft; Christian Kokail; Barbara Kraus; Peter Zoller Hamiltonian and Liouvillian learning in weakly-dissipative quantum many-body systems, Quantum Science and Technology, Volume 10 (2025) no. 1, p. 015065 | DOI:10.1088/2058-9565/ad9ed5
  • Shubham Kumar; Narendra N. Hegade; Anne-Maria Visuri; Balaganchi A. Bhargava; Juan F. R. Hernandez; E. Solano; F. Albarrán-Arriagada; G. Alvarado Barrios Digital-analog quantum computing of fermion-boson models in superconducting circuits, npj Quantum Information, Volume 11 (2025) no. 1 | DOI:10.1038/s41534-025-01001-4
  • Hongkang Ni; Haoya Li; Lexing Ying Quantum Hamiltonian Learning for the Fermi-Hubbard Model, Acta Applicandae Mathematicae, Volume 191 (2024) no. 1 | DOI:10.1007/s10440-024-00651-4
  • Victoria Y. Pinchenkova; Sergey I. Matveenko; Vladimir I. Yudson; Georgy V. Shlyapnikov Superfluid transition in quasi-two-dimensional disordered dipolar Fermi gases, Comptes Rendus. Physique, Volume 24 (2024) no. S3, p. 101 | DOI:10.5802/crphys.158
  • Victor Caliva; Johanna I Fuks Characteristic features of strong correlation: lessons from a 3-fermion one-dimensional harmonic trap, Journal of Physics: Materials, Volume 7 (2024) no. 3, p. 035011 | DOI:10.1088/2515-7639/ad63cb
  • Moroni Santiago-García; Shunashi G Castillo-López; Arturo Camacho-Guardian Lattice polaron in a Bose–Einstein condensate of hard-core bosons, New Journal of Physics, Volume 26 (2024) no. 6, p. 063015 | DOI:10.1088/1367-2630/ad503e
  • Zhaoxuan Zhu; Shengjie Yu; Dean Johnstone; Laurent Sanchez-Palencia Localization and spectral structure in two-dimensional quasicrystal potentials, Physical Review A, Volume 109 (2024) no. 1 | DOI:10.1103/physreva.109.013314
  • Hao-Tian Wei; Eduardo Ibarra-García-Padilla; Michael L. Wall; Kaden R. A. Hazzard Hubbard parameters for programmable tweezer arrays, Physical Review A, Volume 109 (2024) no. 1 | DOI:10.1103/physreva.109.013318
  • Rhine Samajdar; R. N. Bhatt Nagaoka ferromagnetism in doped Hubbard models in optical lattices, Physical Review A, Volume 110 (2024) no. 2 | DOI:10.1103/physreva.110.l021303
  • Rodrigo A. Fontenele; Natanael C. Costa; Thereza Paiva; Raimundo R. dos Santos Increasing superconducting Tc by layering in the attractive Hubbard model, Physical Review A, Volume 110 (2024) no. 5 | DOI:10.1103/physreva.110.053315
  • Antoine Michel; Loïc Henriet; Christophe Domain; Antoine Browaeys; Thomas Ayral Hubbard physics with Rydberg atoms: Using a quantum spin simulator to simulate strong fermionic correlations, Physical Review B, Volume 109 (2024) no. 17 | DOI:10.1103/physrevb.109.174409
  • Can Shao; Hong-Gang Luo Phase diagram of the interacting Haldane model with spin-dependent sublattice potentials, Physical Review B, Volume 109 (2024) no. 23 | DOI:10.1103/physrevb.109.235101
  • Rhine Samajdar; R. N. Bhatt Polaronic mechanism of Nagaoka ferromagnetism in Hubbard models, Physical Review B, Volume 109 (2024) no. 23 | DOI:10.1103/physrevb.109.235128
  • Guan-Hua Huang; Zhigang Wu Magnetic correlations of a doped and frustrated Hubbard model: Benchmarking the two-particle self-consistent theory against a quantum simulator, Physical Review B, Volume 110 (2024) no. 10 | DOI:10.1103/physrevb.110.l100406
  • P.-O. Downey; O. Gingras; C.-D. Hébert; M. Charlebois; A.-M. S. Tremblay Doping the Mott insulating state of the triangular-lattice Hubbard model reveals the Sordi transition, Physical Review B, Volume 110 (2024) no. 12 | DOI:10.1103/physrevb.110.l121109
  • Sasank Budaraju; Didier Poilblanc; Sen Niu Simulating chiral spin liquids with fermionic projected entangled pair states, Physical Review B, Volume 110 (2024) no. 6 | DOI:10.1103/physrevb.110.064402
  • Tessa Cookmeyer; Sankar Das Sarma Engineering the Kitaev Spin Liquid in a Quantum Dot System, Physical Review Letters, Volume 132 (2024) no. 18 | DOI:10.1103/physrevlett.132.186501
  • Renaud Garioud; Fedor Šimkovic; Riccardo Rossi; Gabriele Spada; Thomas Schäfer; Félix Werner; Michel Ferrero Symmetry-Broken Perturbation Theory to Large Orders in Antiferromagnetic Phases, Physical Review Letters, Volume 132 (2024) no. 24 | DOI:10.1103/physrevlett.132.246505
  • Hepeng Yao; Luca Tanzi; Laurent Sanchez-Palencia; Thierry Giamarchi; Giovanni Modugno; Chiara D’Errico Mott Transition for a Lieb-Liniger Gas in a Shallow Quasiperiodic Potential: Delocalization Induced by Disorder, Physical Review Letters, Volume 133 (2024) no. 12 | DOI:10.1103/physrevlett.133.123401
  • Nick Klemmer; Janek Fleper; Valentin Jonas; Ameneh Sheikhan; Corinna Kollath; Michael Köhl; Andrea Bergschneider Floquet-Driven Crossover from Density-Assisted Tunneling to Enhanced Pair Tunneling, Physical Review Letters, Volume 133 (2024) no. 25 | DOI:10.1103/physrevlett.133.253402
  • Dean Johnstone; Shanya Mishra; Zhaoxuan Zhu; Hepeng Yao; Laurent Sanchez-Palencia Weak superfluidity in twisted optical potentials, Physical Review Research, Volume 6 (2024) no. 4 | DOI:10.1103/physrevresearch.6.l042066
  • Dongsung Choi; Changming Yue; Doron Azoury; Zachary Porter; Jiyu Chen; Francesco Petocchi; Edoardo Baldini; Baiqing Lv; Masataka Mogi; Yifan Su; Stephen D. Wilson; Martin Eckstein; Philipp Werner; Nuh Gedik Light-induced insulator–metal transition in Sr 2 IrO 4 reveals the nature of the insulating ground state, Proceedings of the National Academy of Sciences, Volume 121 (2024) no. 29 | DOI:10.1073/pnas.2323013121
  • Marco Ballarin; Giovanni Cataldi; Giuseppe Magnifico; Daniel Jaschke; Marco Di Liberto; Ilaria Siloi; Simone Montangero; Pietro Silvi Digital quantum simulation of lattice fermion theories with local encoding, Quantum, Volume 8 (2024), p. 1460 | DOI:10.22331/q-2024-09-04-1460
  • Tianqi Chen; Tim Byrnes Efficient preparation of the AKLT State with Measurement-based Imaginary Time Evolution, Quantum, Volume 8 (2024), p. 1557 | DOI:10.22331/q-2024-12-10-1557
  • Friedrich Hübner Suppression of scattering from slow to fast subsystems and application to resonantly Floquet-driven impurities in strongly interacting systems, SciPost Physics, Volume 16 (2024) no. 1 | DOI:10.21468/scipostphys.16.1.005
  • Arthur Christianen; J. Ignacio Cirac; Richard Schmidt Phase diagram for strong-coupling Bose polarons, SciPost Physics, Volume 16 (2024) no. 3 | DOI:10.21468/scipostphys.16.3.067
  • Jérôme Fournier; Pierre-Olivier Downey; Charles-David Hébert; Maxime Charlebois; André-Marie Tremblay Two T-linear scattering-rate regimes in the triangular lattice Hubbard model, SciPost Physics, Volume 17 (2024) no. 3 | DOI:10.21468/scipostphys.17.3.072
  • Jorge Yago Malo; Luca Lepori; Laura Gentini; Maria Luisa (Marilù) Chiofalo Atomic Quantum Technologies for Quantum Matter and Fundamental Physics Applications, Technologies, Volume 12 (2024) no. 5, p. 64 | DOI:10.3390/technologies12050064
  • Peizhi Mai; Jinchao Zhao; Benjamin E. Feldman; Philip W. Phillips 1/4 is the new 1/2 when topology is intertwined with Mottness, Nature Communications, Volume 14 (2023) no. 1 | DOI:10.1038/s41467-023-41465-6
  • A. Bohrdt; E. Demler; F. Grusdt Dichotomy of heavy and light pairs of holes in the t−J model, Nature Communications, Volume 14 (2023) no. 1 | DOI:10.1038/s41467-023-43453-2
  • F A Palm; M Kurttutan; A Bohrdt; U Schollwöck; F Grusdt Ferromagnetism and skyrmions in the Hofstadter–Fermi–Hubbard model, New Journal of Physics, Volume 25 (2023) no. 2, p. 023021 | DOI:10.1088/1367-2630/acb963
  • Niklas Euler; Martin Gärttner Detecting High-Dimensional Entanglement in Cold-Atom Quantum Simulators, PRX Quantum, Volume 4 (2023) no. 4 | DOI:10.1103/prxquantum.4.040338
  • Yi Zheng; Tongyue Sun; Shi-Jie Yang Band topology and Bloch oscillation in an extended Creutz ladder, Physica Scripta, Volume 98 (2023) no. 7, p. 075403 | DOI:10.1088/1402-4896/acd88b
  • Ashirbad Padhan; Rajashri Parida; Sayan Lahiri; Mrinal Kanti Giri; Tapan Mishra Quantum phases of constrained bosons on a two-leg Bose-Hubbard ladder, Physical Review A, Volume 108 (2023) no. 1 | DOI:10.1103/physreva.108.013316
  • Gerardo L. Rossini; George I. Japaridze Repulsion-driven metallic phase in the ground state of the half-filled t−t′ ionic Hubbard chain, Physical Review A, Volume 108 (2023) no. 6 | DOI:10.1103/physreva.108.063307
  • Lucas C. Céleri; Daniel Huerga; Francisco Albarrán-Arriagada; Enrique Solano; Mikel Garcia de Andoin; Mikel Sanz Digital-Analog Quantum Simulation of Fermionic Models, Physical Review Applied, Volume 19 (2023) no. 6 | DOI:10.1103/physrevapplied.19.064086
  • Wei Jia; Long Zhang; Lin Zhang; Xiong-Jun Liu Dynamical detection of mean-field topological phases in an interacting Chern insulator, Physical Review B, Volume 107 (2023) no. 12 | DOI:10.1103/physrevb.107.125132
  • J. I. Fuks; G. F. Quinteiro Rosen; H. Appel; P. I. Tamborenea Probing many-body effects in harmonic traps with twisted light, Physical Review B, Volume 107 (2023) no. 8 | DOI:10.1103/physrevb.107.l081111
  • Weronika Pasek; Michal Kupczynski; Pawel Potasz Magnetic properties of moiré quantum dot arrays, Physical Review B, Volume 108 (2023) no. 16 | DOI:10.1103/physrevb.108.165152
  • Simon Bernier; Kartiek Agarwal Spatiotemporal quenches in long-range Hamiltonians, Physical Review B, Volume 108 (2023) no. 2 | DOI:10.1103/physrevb.108.024310
  • Henning Schlömer; Annabelle Bohrdt; Lode Pollet; Ulrich Schollwöck; Fabian Grusdt Robust stripes in the mixed-dimensional t−J model, Physical Review Research, Volume 5 (2023) no. 2 | DOI:10.1103/physrevresearch.5.l022027
  • Usman Ali; Martin Holthaus; Torsten Meier Chirped Bloch-harmonic oscillations in a parametrically forced optical lattice, Physical Review Research, Volume 5 (2023) no. 4 | DOI:10.1103/physrevresearch.5.043152
  • Fabian Grusdt; Eugene Demler; Annabelle Bohrdt Pairing of holes by confining strings in antiferromagnets, SciPost Physics, Volume 14 (2023) no. 5 | DOI:10.21468/scipostphys.14.5.090
  • Sreemayee Aditya; Diptiman Sen Dynamical localization and slow thermalization in a class of disorder-free periodically driven one-dimensional interacting systems, SciPost Physics Core, Volume 6 (2023) no. 4 | DOI:10.21468/scipostphyscore.6.4.083
  • Sanaa Abaach; Zakaria Mzaouali; Morad El Baz Long distance entanglement and high-dimensional quantum teleportation in the Fermi–Hubbard model, Scientific Reports, Volume 13 (2023) no. 1 | DOI:10.1038/s41598-023-28180-4
  • Veljko Janković; Jakša Vučičević Fermionic-propagator and alternating-basis quantum Monte Carlo methods for correlated electrons on a lattice, The Journal of Chemical Physics, Volume 158 (2023) no. 4 | DOI:10.1063/5.0133597
  • M. Kögl; P. Soubelet; M. Brotons-Gisbert; A. V. Stier; B. D. Gerardot; J. J. Finley Moiré straintronics: a universal platform for reconfigurable quantum materials, npj 2D Materials and Applications, Volume 7 (2023) no. 1 | DOI:10.1038/s41699-023-00382-4
  • Wentao Chen; Shuaining Zhang; Jialiang Zhang; Xiaolu Su; Yao Lu; Kuan Zhang; Mu Qiao; Ying Li; Jing-Ning Zhang; Kihwan Kim Error-mitigated quantum simulation of interacting fermions with trapped ions, npj Quantum Information, Volume 9 (2023) no. 1 | DOI:10.1038/s41534-023-00784-8
  • Qing Hua Wang; Amilcar Bedoya-Pinto; Mark Blei; Avalon H. Dismukes; Assaf Hamo; Sarah Jenkins; Maciej Koperski; Yu Liu; Qi-Chao Sun; Evan J. Telford; Hyun Ho Kim; Mathias Augustin; Uri Vool; Jia-Xin Yin; Lu Hua Li; Alexey Falin; Cory R. Dean; Fèlix Casanova; Richard F. L. Evans; Mairbek Chshiev; Artem Mishchenko; Cedomir Petrovic; Rui He; Liuyan Zhao; Adam W. Tsen; Brian D. Gerardot; Mauro Brotons-Gisbert; Zurab Guguchia; Xavier Roy; Sefaattin Tongay; Ziwei Wang; M. Zahid Hasan; Joerg Wrachtrup; Amir Yacoby; Albert Fert; Stuart Parkin; Kostya S. Novoselov; Pengcheng Dai; Luis Balicas; Elton J. G. Santos The Magnetic Genome of Two-Dimensional van der Waals Materials, ACS Nano, Volume 16 (2022) no. 5, p. 6960 | DOI:10.1021/acsnano.1c09150
  • Antoine Honet; Luc Henrard; Vincent Meunier Exact and many-body perturbation solutions of the Hubbard model applied to linear chains, AIP Advances, Volume 12 (2022) no. 3 | DOI:10.1063/5.0082681
  • Dong Xie; Chunling Xu Optimal Temperature Estimation in Polariton Bose‐Einstein Condensate, Advanced Quantum Technologies, Volume 5 (2022) no. 11 | DOI:10.1002/qute.202200085
  • J.‐P. Joost; N. Schlünzen; S. Hese; M. Bonitz; C. Verdozzi; P. Schmitteckert; M. Hopjan Löwdin's symmetry dilemma within Green functions theory for the one‐dimensional Hubbard model, Contributions to Plasma Physics, Volume 62 (2022) no. 2 | DOI:10.1002/ctpp.202000220
  • John M. Nichol Quantum-Dot Spin Chains, Entanglement in Spin Chains (2022), p. 505 | DOI:10.1007/978-3-031-03998-0_17
  • Suchetan Das; Bobby Ezhuthachan; Arnab Kundu; Somnath Porey; Baishali Roy; K. Sengupta Out-of-Time-Order correlators in driven conformal field theories, Journal of High Energy Physics, Volume 2022 (2022) no. 8 | DOI:10.1007/jhep08(2022)221
  • Mirko Consiglio; Wayne J Chetcuti; Carlos Bravo-Prieto; Sergi Ramos-Calderer; Anna Minguzzi; José I Latorre; Luigi Amico; Tony J G Apollaro Variational quantum eigensolver for SU(N) fermions, Journal of Physics A: Mathematical and Theoretical, Volume 55 (2022) no. 26, p. 265301 | DOI:10.1088/1751-8121/ac7016
  • Amit Dutta; Krishnendu Sengupta Quantum dynamics research in India: a perspective, Journal of Physics: Condensed Matter, Volume 34 (2022) no. 10, p. 100401 | DOI:10.1088/1361-648x/ac410a
  • Juan José Mendoza-Arenas Dynamical quantum phase transitions in the one-dimensional extended Fermi–Hubbard model, Journal of Statistical Mechanics: Theory and Experiment, Volume 2022 (2022) no. 4, p. 043101 | DOI:10.1088/1742-5468/ac6031
  • Annabelle Bohrdt; Lukas Homeier; Immanuel Bloch; Eugene Demler; Fabian Grusdt Strong pairing in mixed-dimensional bilayer antiferromagnetic Mott insulators, Nature Physics, Volume 18 (2022) no. 6, p. 651 | DOI:10.1038/s41567-022-01561-8
  • John P. T. Stenger; Daniel Gunlycke; C. Stephen Hellberg Expanding variational quantum eigensolvers to larger systems by dividing the calculations between classical and quantum hardware, Physical Review A, Volume 105 (2022) no. 2 | DOI:10.1103/physreva.105.022438
  • Anant Kale; Jakob Hendrik Huhn; Muqing Xu; Lev Haldar Kendrick; Martin Lebrat; Christie Chiu; Geoffrey Ji; Fabian Grusdt; Annabelle Bohrdt; Markus Greiner Schrieffer-Wolff transformations for experiments: Dynamically suppressing virtual doublon-hole excitations in a Fermi-Hubbard simulator, Physical Review A, Volume 106 (2022) no. 1 | DOI:10.1103/physreva.106.012428
  • Michał Suchorowski; Anna Dawid; Michał Tomza Two ultracold highly magnetic atoms in a one-dimensional harmonic trap, Physical Review A, Volume 106 (2022) no. 4 | DOI:10.1103/physreva.106.043324
  • Tanjung Krisnanda; Sanjib Ghosh; Tomasz Paterek; Wiesław Laskowski; Timothy C.H. Liew Phase Measurement Beyond the Standard Quantum Limit Using a Quantum Neuromorphic Platform, Physical Review Applied, Volume 18 (2022) no. 3 | DOI:10.1103/physrevapplied.18.034011
  • Sreemayee Aditya; Sutapa Samanta; Arnab Sen; K. Sengupta; Diptiman Sen Dynamical relaxation of correlators in periodically driven integrable quantum systems, Physical Review B, Volume 105 (2022) no. 10 | DOI:10.1103/physrevb.105.104303
  • Cătălin Paşcu Moca; Miklós Antal Werner; Örs Legeza; Tomaž Prosen; Márton Kormos; Gergely Zaránd Simulating Lindbladian evolution with non-Abelian symmetries: Ballistic front propagation in the SU(2) Hubbard model with a localized loss, Physical Review B, Volume 105 (2022) no. 19 | DOI:10.1103/physrevb.105.195144
  • Madhumita Sarkar; Roopayan Ghosh; Arnab Sen; K. Sengupta Signatures of multifractality in a periodically driven interacting Aubry-André model, Physical Review B, Volume 105 (2022) no. 2 | DOI:10.1103/physrevb.105.024301
  • Aritra Sinha; Marek M. Rams; Piotr Czarnik; Jacek Dziarmaga Finite-temperature tensor network study of the Hubbard model on an infinite square lattice, Physical Review B, Volume 106 (2022) no. 19 | DOI:10.1103/physrevb.106.195105
  • Isaac M. Carvalho; Helena Bragança; Walber H. Brito; Maria C. O. Aguiar Formation of spin and charge ordering in the extended Hubbard model during a finite-time quantum quench, Physical Review B, Volume 106 (2022) no. 19 | DOI:10.1103/physrevb.106.195405
  • Bhaskar Mukherjee; Arnab Sen; K. Sengupta Periodically driven Rydberg chains with staggered detuning, Physical Review B, Volume 106 (2022) no. 6 | DOI:10.1103/physrevb.106.064305
  • Pontus Laurell; Allen Scheie; D. Alan Tennant; Satoshi Okamoto; Gonzalo Alvarez; Elbio Dagotto Magnetic excitations, nonclassicality, and quantum wake spin dynamics in the Hubbard chain, Physical Review B, Volume 106 (2022) no. 8 | DOI:10.1103/physrevb.106.085110
  • Benjamin M. Spar; Elmer Guardado-Sanchez; Sungjae Chi; Zoe Z. Yan; Waseem S. Bakr Realization of a Fermi-Hubbard Optical Tweezer Array, Physical Review Letters, Volume 128 (2022) no. 22 | DOI:10.1103/physrevlett.128.223202
  • Connor Lenihan; Aaram J. Kim; Fedor Šimkovic; Evgeny Kozik Evaluating Second-Order Phase Transitions with Diagrammatic Monte Carlo: Néel Transition in the Doped Three-Dimensional Hubbard Model, Physical Review Letters, Volume 129 (2022) no. 10 | DOI:10.1103/physrevlett.129.107202
  • Lindsay Bassman Oftelie; Katherine Klymko; Diyi Liu; Norm M. Tubman; Wibe A. de Jong Computing Free Energies with Fluctuation Relations on Quantum Computers, Physical Review Letters, Volume 129 (2022) no. 13 | DOI:10.1103/physrevlett.129.130603
  • R. Mondaini; S. Tarat; R. T. Scalettar Quantum critical points and the sign problem, Science, Volume 375 (2022) no. 6579, p. 418 | DOI:10.1126/science.abg9299
  • Annabelle Bohrdt; Lukas Homeier; Christian Reinmoser; Eugene Demler; Fabian Grusdt Exploration of doped quantum magnets with ultracold atoms, Annals of Physics, Volume 435 (2021), p. 168651 | DOI:10.1016/j.aop.2021.168651
  • Sanjib Ghosh; Tanjung Krisnanda; Tomasz Paterek; Timothy C. H. Liew Realising and compressing quantum circuits with quantum reservoir computing, Communications Physics, Volume 4 (2021) no. 1 | DOI:10.1038/s42005-021-00606-3
  • Joel Hutchinson; Frank Marsiglio Mixed temperature-dependent order parameters in the extended Hubbard model, Journal of Physics: Condensed Matter, Volume 33 (2021) no. 6, p. 065603 | DOI:10.1088/1361-648x/abc801
  • Tanjung Krisnanda; Sanjib Ghosh; Tomasz Paterek; Timothy C.H. Liew Creating and concentrating quantum resource states in noisy environments using a quantum neural network, Neural Networks, Volume 136 (2021), p. 141 | DOI:10.1016/j.neunet.2021.01.003
  • J B Hauck; C Honerkamp; D M Kennes Strong boundary and trap potential effects on emergent physics in ultra-cold fermionic gases, New Journal of Physics, Volume 23 (2021) no. 6, p. 063015 | DOI:10.1088/1367-2630/abfe1e
  • Jose Carrasco; Andreas Elben; Christian Kokail; Barbara Kraus; Peter Zoller Theoretical and Experimental Perspectives of Quantum Verification, PRX Quantum, Volume 2 (2021) no. 1 | DOI:10.1103/prxquantum.2.010102
  • Guillem Müller-Rigat; Albert Aloy; Maciej Lewenstein; Irénée Frérot Inferring Nonlinear Many-Body Bell Inequalities From Average Two-Body Correlations: Systematic Approach for Arbitrary Spin- j Ensembles, PRX Quantum, Volume 2 (2021) no. 3 | DOI:10.1103/prxquantum.2.030329
  • Omar Abel Rodríguez-López; M. A. Solís; J. Boronat Structural superfluid–Mott-insulator transition for a Bose gas in multirods, Physical Review A, Volume 103 (2021) no. 1 | DOI:10.1103/physreva.103.013311
  • Kevin C. Smith; Aniruddha Bhattacharya; David J. Masiello Exact k -body representation of the Jaynes-Cummings interaction in the dressed basis: Insight into many-body phenomena with light, Physical Review A, Volume 104 (2021) no. 1 | DOI:10.1103/physreva.104.013707
  • Ria Rushin Joseph; Peter D. Drummond; Laura E. C. Rosales-Zárate Interacting-fermion dynamics in Majorana phase space, Physical Review A, Volume 104 (2021) no. 6 | DOI:10.1103/physreva.104.062208
  • Emily Townsend; Tomáš Neuman; Alex Debrecht; Javier Aizpurua; Garnett W. Bryant Many-body physics in small systems: Observing the onset and saturation of correlation in linear atomic chains, Physical Review B, Volume 103 (2021) no. 19 | DOI:10.1103/physrevb.103.195429
  • J. Tindall; F. Schlawin; M. A. Sentef; D. Jaksch Analytical solution for the steady states of the driven Hubbard model, Physical Review B, Volume 103 (2021) no. 3 | DOI:10.1103/physrevb.103.035146
  • Gabriel Matos; Andrew Hallam; Aydin Deger; Zlatko Papić; Jiannis K. Pachos Emergence of gaussianity in the thermodynamic limit of interacting fermions, Physical Review B, Volume 104 (2021) no. 18 | DOI:10.1103/physrevb.104.l180408
  • M. Hachmann; Y. Kiefer; J. Riebesehl; R. Eichberger; A. Hemmerich Quantum Degenerate Fermi Gas in an Orbital Optical Lattice, Physical Review Letters, Volume 127 (2021) no. 3 | DOI:10.1103/physrevlett.127.033201
  • J. T. Schneider; J. Despres; S. J. Thomson; L. Tagliacozzo; L. Sanchez-Palencia Spreading of correlations and entanglement in the long-range transverse Ising chain, Physical Review Research, Volume 3 (2021) no. 1 | DOI:10.1103/physrevresearch.3.l012022
  • Ricardo Costa de Almeida; Philipp Hauke From entanglement certification with quench dynamics to multipartite entanglement of interacting fermions, Physical Review Research, Volume 3 (2021) no. 3 | DOI:10.1103/physrevresearch.3.l032051
  • Yao Wang; Annabelle Bohrdt; Shuhan Ding; Joannis Koepsell; Eugene Demler; Fabian Grusdt Higher-order spin-hole correlations around a localized charge impurity, Physical Review Research, Volume 3 (2021) no. 3 | DOI:10.1103/physrevresearch.3.033204
  • Rozhin Yousefjani; Sougato Bose; Abolfazl Bayat Voltage-controlled Hubbard spin transistor, Physical Review Research, Volume 3 (2021) no. 4 | DOI:10.1103/physrevresearch.3.043142
  • Joseph Tindall; Frank Schlawin; Michael Sentef; Dieter Jaksch Lieb's Theorem and Maximum Entropy Condensates, Quantum, Volume 5 (2021), p. 610 | DOI:10.22331/q-2021-12-23-610
  • B. Bertini; F. Heidrich-Meisner; C. Karrasch; T. Prosen; R. Steinigeweg; M. Žnidarič Finite-temperature transport in one-dimensional quantum lattice models, Reviews of Modern Physics, Volume 93 (2021) no. 2 | DOI:10.1103/revmodphys.93.025003
  • Florian Dirnberger; Jonas D. Ziegler; Paulo E. Faria Junior; Rezlind Bushati; Takashi Taniguchi; Kenji Watanabe; Jaroslav Fabian; Dominique Bougeard; Alexey Chernikov; Vinod M. Menon Quasi-1D exciton channels in strain-engineered 2D materials, Science Advances, Volume 7 (2021) no. 44 | DOI:10.1126/sciadv.abj3066
  • Lei Hao Layer-by-layer assembly of multilayer optical lattices: A theoretical proposal, The European Physical Journal D, Volume 75 (2021) no. 5 | DOI:10.1140/epjd/s10053-021-00161-0
  • Stefan Kirchner Two‐Channel Kondo Physics: From Engineered Structures to Quantum Materials Realizations, Advanced Quantum Technologies, Volume 3 (2020) no. 5 | DOI:10.1002/qute.201900128
  • Wayne Zheng Fermi–Hubbard model on nonbipartite lattices: flux problem and emergent chirality, Journal of Statistical Mechanics: Theory and Experiment, Volume 2020 (2020) no. 7, p. 073103 | DOI:10.1088/1742-5468/ab99bf
  • Yanhao Tang; Lizhong Li; Tingxin Li; Yang Xu; Song Liu; Katayun Barmak; Kenji Watanabe; Takashi Taniguchi; Allan H. MacDonald; Jie Shan; Kin Fai Mak Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices, Nature, Volume 579 (2020) no. 7799, p. 353 | DOI:10.1038/s41586-020-2085-3
  • Florian Schäfer; Takeshi Fukuhara; Seiji Sugawa; Yosuke Takasu; Yoshiro Takahashi Tools for quantum simulation with ultracold atoms in optical lattices, Nature Reviews Physics, Volume 2 (2020) no. 8, p. 411 | DOI:10.1038/s42254-020-0195-3
  • Matthew W. Cook; Stephen R. Clark Controllable finite-momenta dynamical quasicondensation in the periodically driven one-dimensional Fermi-Hubbard model, Physical Review A, Volume 101 (2020) no. 3 | DOI:10.1103/physreva.101.033604
  • Sho Nakada; Shun Uchino; Yusuke Nishida Simulating quantum transport with ultracold atoms and interaction effects, Physical Review A, Volume 102 (2020) no. 3 | DOI:10.1103/physreva.102.031302
  • Eduardo Ibarra-García-Padilla; Rick Mukherjee; Randall G. Hulet; Kaden R. A. Hazzard; Thereza Paiva; Richard T. Scalettar Thermodynamics and magnetism in the two-dimensional to three-dimensional crossover of the Hubbard model, Physical Review A, Volume 102 (2020) no. 3 | DOI:10.1103/physreva.102.033340
  • Chris Cade; Lana Mineh; Ashley Montanaro; Stasja Stanisic Strategies for solving the Fermi-Hubbard model on near-term quantum computers, Physical Review B, Volume 102 (2020) no. 23 | DOI:10.1103/physrevb.102.235122
  • Roopayan Ghosh; Bhaskar Mukherjee; K. Sengupta Floquet perturbation theory for periodically driven weakly interacting fermions, Physical Review B, Volume 102 (2020) no. 23 | DOI:10.1103/physrevb.102.235114
  • Niclas Schlünzen; Jan-Philip Joost; Michael Bonitz Achieving the Scaling Limit for Nonequilibrium Green Functions Simulations, Physical Review Letters, Volume 124 (2020) no. 7 | DOI:10.1103/physrevlett.124.076601
  • Mark T. Mitchison; Thomás Fogarty; Giacomo Guarnieri; Steve Campbell; Thomas Busch; John Goold In Situ Thermometry of a Cold Fermi Gas via Dephasing Impurities, Physical Review Letters, Volume 125 (2020) no. 8 | DOI:10.1103/physrevlett.125.080402
  • Run-Qiu Yang; Hui Liu; Shining Zhu; Le Luo; Rong-Gen Cai Simulating quantum field theory in curved spacetime with quantum many-body systems, Physical Review Research, Volume 2 (2020) no. 2 | DOI:10.1103/physrevresearch.2.023107
  • Madhuparna Karmakar; R. Ganesh Attractive Hubbard model as an SO(3) system of competing phases: Supersolid order and its thermal melting, Physical Review Research, Volume 2 (2020) no. 2 | DOI:10.1103/physrevresearch.2.023304
  • Louis Villa; Julien Despres; Laurent Sanchez-Palencia Unraveling the excitation spectrum of many-body systems from quantum quenches, Physical Review A, Volume 100 (2019) no. 6 | DOI:10.1103/physreva.100.063632
  • Yuan-Yao He; Hao Shi; Shiwei Zhang Reaching the Continuum Limit in Finite-Temperature Ab Initio Field-Theory Computations in Many-Fermion Systems, Physical Review Letters, Volume 123 (2019) no. 13 | DOI:10.1103/physrevlett.123.136402
  • Frank Schlawin; Dieter Jaksch Cavity-Mediated Unconventional Pairing in Ultracold Fermionic Atoms, Physical Review Letters, Volume 123 (2019) no. 13 | DOI:10.1103/physrevlett.123.133601
  • Kilian Sandholzer; Yuta Murakami; Frederik Görg; Joaquín Minguzzi; Michael Messer; Rémi Desbuquois; Martin Eckstein; Philipp Werner; Tilman Esslinger Quantum Simulation Meets Nonequilibrium Dynamical Mean-Field Theory: Exploring the Periodically Driven, Strongly Correlated Fermi-Hubbard Model, Physical Review Letters, Volume 123 (2019) no. 19 | DOI:10.1103/physrevlett.123.193602

Cité par 118 documents. Sources : Crossref

Commentaires - Politique