[Simulation quantique du modèle de Hubbard avec des fermions ultrafroids dans des réseaux optiques]
Les gaz atomiques ultrafroids offrent une excellente plateforme pour réaliser des simulateurs quantiques et étudier une grande diversité de modèles introduits initialement en physique de la matière condensée ou d'autres domaines. L'une des applications les plus prometteuses de la simulation quantique est l'étude des gaz de Fermi fortement corrélés, pour lesquels des résultats théoriques exacts ne sont pas toujours disponibles. Nous présentons ici une revue des progrès réalisés récemment sur la simulation quantique de l'emblématique modèle de Fermi–Hubbard avec des atomes ultrafroids. Après avoir présenté le modèle de Fermi–Hubbard dans le contexte de la matière condensée, sa réalisation avec des atomes ultrafroids et son diagramme de phase, nous présentons les réalisations expérimentales les plus marquantes, de l'observation initiale de l'apparition de la dégénérescence quantique et de la superfluidité fermioniques à la mise en évidence du régime de l'isolant de Mott et de l'émergence d'un ordre anti-ferromagnétique à longue portée. Nous concluons par une discussion des défis futurs, dont la possibilité d'observer la supraconductivité à haute température, les propriétés de transport et la compétition de fortes corrélations et du désordre ou de la topologie.
Ultracold atomic gases provide a fantastic platform to implement quantum simulators and investigate a variety of models initially introduced in condensed matter physics or other areas. One of the most promising applications of quantum simulation is the study of strongly correlated Fermi gases, for which exact theoretical results are not always possible with state-of-the-art approaches. Here, we review recent progress of the quantum simulation of the emblematic Fermi–Hubbard model with ultracold atoms. After introducing the Fermi–Hubbard model in the context of condensed matter, its implementation in ultracold atom systems, and its phase diagram, we review landmark experimental achievements, from the early observation of the onset of quantum degeneracy and superfluidity to the demonstration of the Mott insulator regime and the emergence of long-range anti-ferromagnetic order. We conclude by discussing future challenges, including the possible observation of high-
Mots-clés : Gaz de Fermi, Réseaux optiques, Transition de Mott, Magnétisme quantique
Leticia Tarruell 1 ; Laurent Sanchez-Palencia 2
@article{CRPHYS_2018__19_6_365_0, author = {Leticia Tarruell and Laurent Sanchez-Palencia}, title = {Quantum simulation of the {Hubbard} model with ultracold fermions in optical lattices}, journal = {Comptes Rendus. Physique}, pages = {365--393}, publisher = {Elsevier}, volume = {19}, number = {6}, year = {2018}, doi = {10.1016/j.crhy.2018.10.013}, language = {en}, }
TY - JOUR AU - Leticia Tarruell AU - Laurent Sanchez-Palencia TI - Quantum simulation of the Hubbard model with ultracold fermions in optical lattices JO - Comptes Rendus. Physique PY - 2018 SP - 365 EP - 393 VL - 19 IS - 6 PB - Elsevier DO - 10.1016/j.crhy.2018.10.013 LA - en ID - CRPHYS_2018__19_6_365_0 ER -
Leticia Tarruell; Laurent Sanchez-Palencia. Quantum simulation of the Hubbard model with ultracold fermions in optical lattices. Comptes Rendus. Physique, Quantum simulation / Simulation quantique, Volume 19 (2018) no. 6, pp. 365-393. doi : 10.1016/j.crhy.2018.10.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.10.013/
[1] Simulating physics with computers, Int. J. Theor. Phys., Volume 21 (1982), pp. 467-488
[2] Universal quantum simulators, Science, Volume 273 (1996), pp. 1073-1078
[3] et al. Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond, Adv. Phys., Volume 56 (2007), pp. 243-379
[4] Many-body physics with ultracold gases, Rev. Mod. Phys., Volume 80 (2008), pp. 885-964
[5] Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems, Oxford University Press, Oxford, UK, 2012
[6] Quantum simulations with ultracold quantum gases, Nat. Phys., Volume 8 (2012), pp. 267-276
[7] Onset of Fermi degeneracy in a trapped atomic gas, Science, Volume 285 (1999), pp. 1703-1706
[8] Observation of Fermi pressure in a gas of trapped atoms, Science, Volume 291 (2001), pp. 2570-2572
[9] et al. Quasipure Bose–Einstein condensate immersed in a Fermi sea, Phys. Rev. Lett., Volume 87 (2001)
[10] Degenerate Bose–Fermi mixture of metastable atoms, Phys. Rev. Lett., Volume 97 (2006)
[11] Degenerate Fermi gases of ytterbium, Phys. Rev. Lett., Volume 98 (2007)
[12] Degenerate Fermi gas of
[13] Double-degenerate Bose–Fermi mixture of strontium, Phys. Rev. A, Volume 82 (2010)
[14] Quantum degenerate dipolar Fermi gas, Phys. Rev. Lett., Volume 108 (2012)
[15] et al. Reaching Fermi degeneracy via universal dipolar scattering, Phys. Rev. Lett., Volume 112 (2014)
[16] et al. Chromium dipolar Fermi sea, Phys. Rev. A, Volume 91 (2015) 011603(R)
[17] Feshbach resonances in ultracold gases, Rev. Mod. Phys., Volume 82 (2010), pp. 1225-1286
[18] The BCS–BEC Crossover and the Unitary Fermi Gas, Lecture Notes in Physics, Springer, Berlin, 2011
[19] Emergence of a molecular Bose–Einstein condensate from a Fermi gas, Nature (London), Volume 426 (2003), pp. 537-540
[20] et al. Bose–Einstein condensation of molecules, Science, Volume 302 (2003), pp. 2101-2103
[21] et al. Observation of Bose–Einstein condensation of molecules, Phys. Rev. Lett., Volume 91 (2003)
[22] et al. Observation of the pairing gap in a strongly interacting Fermi gas, Science, Volume 305 (2004), pp. 1128-1130
[23] Observation of resonance condensation of fermionic atom pairs, Phys. Rev. Lett., Volume 92 (2004)
[24] et al. Condensation of pairs of fermionic atoms near a Feshbach resonance, Phys. Rev. Lett., Volume 92 (2004)
[25] et al. Experimental study of the BEC–BCS crossover region in Lithium 6, Phys. Rev. Lett., Volume 93 (2004)
[26] Exploring the thermodynamics of a universal Fermi gas, Nature (London), Volume 463 (2009), pp. 1057-1060
[27] Exploring the thermodynamics of a universal Fermi gas, Nature (London), Volume 463 (2010), p. 1057
[28] The equation of state of a low-temperature Fermi gas with tunable interactions, Science, Volume 328 (2010), pp. 729-732
[29] et al. Feynman diagrams versus Fermi-gas Feynman emulator, Nat. Phys., Volume 8 (2012), pp. 366-370
[30] Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas, Science, Volume 335 (2012), pp. 563-567
[31] Cold atoms in dissipative optical lattices, Phys. Rep., Volume 355 (2001), pp. 335-451
[32] Ultracold quantum gases in optical lattices, Nat. Phys., Volume 1 (2005), pp. 23-30
[33] Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature (London), Volume 415 (2002), pp. 39-44
[34] Lattice of double wells for manipulating pairs of cold atoms, Phys. Rev. A, Volume 73 (2006)
[35] et al. Controlled exchange interaction between pairs of neutral atoms in an optical lattice, Nature (London), Volume 448 (2007), pp. 452-456
[36] et al. Direct observation of second-order atom tunnelling, Nature (London), Volume 448 (2007), pp. 1029-1032
[37] et al. Ultracold quantum gases in triangular optical lattices, New J. Phys., Volume 12 (2010)
[38] et al. Direct observation of second-order atom tunnelling, Nat. Phys., Volume 7 (2011), p. 434
[39] Creating moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice, Nature (London), Volume 483 (2012), p. 302
[40] et al. Ultracold atoms in a tunable optical kagome lattice, Phys. Rev. Lett., Volume 108 (2012)
[41] et al. Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice, Sci. Adv., Volume 1 (2015)
[42] Engineering novel optical lattices, Rep. Prog. Phys., Volume 76 (2013)
[43] Absence of Mott transition in an exact solution of the short-range one-band model in one dimension, Phys. Rev. Lett., Volume 20 (1968), pp. 1445-1448
[44] The one-dimensional Hubbard model: a reminiscence, J. Phys. A, Volume 321 (2003), pp. 1-27
[45] Hubbard model in infinite dimensions, Phys. Rev. B, Volume 45 (1992), p. 6479
[46] Quantum Monte Carlo Methods in Condensed Matter Physics, World Scientific, 1993
[47] Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys., Volume 68 (1996), pp. 13-125
[48] The resonating valence bond state in La2CuO4 and superconductivity, Science, Volume 235 (1987), pp. 1196-1198
[49] Superconductivity in narrow-band systems with local nonretarded attractive interactions, Rev. Mod. Phys., Volume 62 (1990), pp. 113-171
[50] High-temperature superfluidity of fermionic atoms in optical lattices, Phys. Rev. Lett., Volume 89 (2002)
[51] Fermi–Hubbard physics with atoms in an optical lattice, Annu. Rev. Condens. Matter Phys., Volume 1 (2010), pp. 129-152
[52] Quantum simulation of strongly correlated condensed matter systems, J. Phys. B, At. Mol. Opt. Phys., Volume 51 (2018)
[53] Effect of correlation on the ferromagnetism of transition metals, Phys. Rev. Lett., Volume 10 (1963), pp. 159-162
[54] Electron correlations in narrow energy bands, Proc. R. Soc. A, Math. Phys. Eng. Sci., Volume 276 (1963), pp. 238-257
[55] Effect of correlation on the ferromagnetism of transition metals, Phys. Rev., Volume 134 (1964), p. A923-A941
[56] Many Particle Physics, Springer, New York, 2000
[57] Quantum Phase Transitions, Cambridge University Press, Cambridge, UK, 2001
[58] Exploring Many-Body Physics with Ultracold Atoms, University of Toronto, Toronto, 2011 http://ultracold.physics.utoronto.ca/reprints/LeBlanc40K.pdf
[59] Measurement of positive and negative scattering lengths in a Fermi gas of atoms, Phys. Rev. Lett., Volume 90 (2003)
[60] Cold bosonic atoms in optical lattices, Phys. Rev. Lett., Volume 81 (1998), pp. 3108-3111
[61] The cold atoms Hubbard toolbox, Ann. Phys. (NY), Volume 315 (2005), pp. 52-79
[62] Nobel lecture: the manipulation of neutral particles, Rev. Mod. Phys., Volume 70 (1998), pp. 685-706
[63] Nobel lecture: manipulating atoms with photons, Rev. Mod. Phys., Volume 70 (1998), pp. 707-719
[64] Nobel lecture: laser cooling and trapping of neutral atoms, Rev. Mod. Phys., Volume 70 (1998), pp. 721-741
[65] Evaporative cooling of trapped atoms, Adv. At. Mol. Opt. Phys., Volume 37 (1996), pp. 181-236
[66] Making, Probing and Understanding Bose–Einstein Condensates, Proceedings of the International School of Physics Enrico Fermi, 1999 (Course CXL)
[67] Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys., Volume 71 (1999), pp. 463-512
[68] Making probing and understanding ultracold Fermi gases, Riv. Nuovo Cimento, Volume 31 (2008), pp. 247-422
[69] Theory of ultracold atomic Fermi gases, Rev. Mod. Phys., Volume 80 (2008), pp. 1215-1274
[70] Spin-dependent Hubbard model and a quantum phase transition in cold atoms, Phys. Rev. A, Volume 70 (2004)
[71] An
[72] et al. A one-dimensional liquid of fermions with tunable spin, Nat. Phys., Volume 10 (2014), pp. 198-201
[73] et al. Direct probing of the Mott crossover in the
[74] The physics of dipolar bosonic quantum gases, Rep. Prog. Phys., Volume 72 (2009)
[75] A toolbox for lattice-spin models with polar molecules, Nat. Phys., Volume 2 (2006), pp. 341-347
[76] Optical dipole traps for neutral atoms, Adv. At. Mol. Opt. Phys., Volume 42 (2000), pp. 95-170
[77] Atomic diffusion in an optical quasicrystal with five-fold symmetry, Phys. Rev. A, Volume 60 (1999), p. R4233-R4236
[78] Anderson localization in Bose–Einstein condensates, Rep. Prog. Phys., Volume 73 (2010)
[79] Bose–Einstein condensates in optical quasicrystal lattices, Phys. Rev. A, Volume 72 (2005)
[80] Bose–Einstein condensates in disordered potentials, Adv. At. Mol. Opt. Phys., Volume 56 (2008), pp. 119-160
[81] Disordered quantum gases under control, Nat. Phys., Volume 6 (2010), pp. 87-95
[82] Cold atoms in the presence of disorder, J. Phys. A, Math. Theor., Volume 45 (2012)
[83] Solid State Physics, Thomson Learning, Toronto, 1976
[84] Théorie Générale de l'équation de Mathieu, Masson et cie, Paris, 1955
[85] Weakly bound dimers of fermionic atoms, Phys. Rev. Lett., Volume 93 (2004)
[86] et al. A cold-atom Fermi–Hubbard antiferromagnet, Nature (London), Volume 545 (2017), p. 462
[87] Bose–Einstein condensation of atoms in a uniform potential, Phys. Rev. Lett., Volume 110 (2013)
[88] et al. Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas, Nat. Commun., Volume 6 (2015), p. 6162
[89] et al. Homogeneous atomic Fermi gases, Phys. Rev. Lett., Volume 118 (2017)
[90] et al. Two-dimensional homogeneous Fermi gases, Phys. Rev. Lett., Volume 120 (2018)
[91] Magnetic effects and the Hartree–Fock equation, Phys. Rev., Volume 82 (1951), pp. 538-541
[92] Interacting Electrons and Quantum Magnetism, Springer, New York, 1994
[93] Quantum Field Theory in Strongly Correlated Electronic Systems, Springer-Verlag, Berlin, 1999
[94] Simulations of the three-dimensional Hubbard model: half-filled band sector, Phys. Rev. B, Volume 35 (1987), pp. 1851-1859
[95] Phase diagram of the half-filled 3D Hubbard model, Phys. Rev. B, Volume 39 (1989), pp. 4711-4714
[96] Thermodynamic properties of the one-dimensional half-filled-band Hubbard model ii: application of the grand canonical method, Prog. Theor. Phys., Volume 48 (1972), pp. 2171-2186
[97] Quantum simulation of the Hubbard model: the attractive route, Phys. Rev. A, Volume 79 (2009)
[98] Production of a Fermi gas of atoms in an optical lattice, Phys. Rev. A, Volume 68 (2003)
[99] Fermionic atoms in a three dimensional optical lattice: observing Fermi surfaces, dynamics, and interactions, Phys. Rev. Lett., Volume 94 (2005)
[100] Confinement control by optical lattices, Phys. Rev. A, Volume 70 (2004)
[101] et al. Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice, Nature (London), Volume 444 (2006), pp. 733-736
[102] et al. Evidence for superfluidity of ultracold fermions in an optical lattice, Nature (London), Volume 443 (2006), p. 961
[103] Superfluid–insulator transition of strongly interacting Fermi gases in optical lattices, Phys. Rev. Lett., Volume 99 (2007)
[104] Superfluid–insulator transitions of the Fermi gas with near-unitary interactions in a periodic potential, Phys. Rev. Lett., Volume 99 (2007)
[105] et al. Evidence for a critical velocity in a Bose–Einstein condensed gas, Phys. Rev. Lett., Volume 83 (1999), pp. 2502-2505
[106] Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett., Volume 84 (2000), pp. 806-809
[107] Vortices and superfluidity in a strongly interacting Fermi gas, Nature (London), Volume 435 (2005), pp. 1047-1051
[108] et al. Superfluid behaviour of a two-dimensional Bose gases, Nat. Phys., Volume 8 (2012), p. 645
[109] et al. Interaction-controlled transport of an ultracold Fermi gas, Phys. Rev. Lett., Volume 99 (2007)
[110] et al. Anomalous expansion of attractively interacting fermionic atoms in an optical lattice, Science, Volume 327 (2010), pp. 1621-1624
[111] et al. Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms, Nat. Phys., Volume 8 (2012), pp. 213-218
[112] et al. Quantum gas microscopy of an attractive Fermi–Hubbard system, Nat. Phys., Volume 14 (2018), pp. 173-177
[113] A Mott insulator of fermionic atoms in an optical lattice, Nature (London), Volume 455 (2008), pp. 204-207
[114] et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice, Science, Volume 322 (2008), pp. 1520-1525
[115] et al. Quantitative determination of temperature in the approach to magnetic order of ultracold fermions in an optical lattice, Phys. Rev. Lett., Volume 104 (2010)
[116] Discerning incompressible and compressible phases of cold atoms in optical lattices, Phys. Rev. Lett., Volume 102 (2009)
[117] Thermodynamics of the three-dimensional Hubbard model: implications for cooling cold atomic gases in optical lattices, Phys. Rev. A, Volume 83 (2011)
[118] Probing nearest-neighbor correlations of ultracold fermions in an optical lattice, Phys. Rev. Lett., Volume 106 (2011)
[119] et al. Artificial graphene with tunable interactions, Phys. Rev. Lett., Volume 111 (2013)
[120] et al. Exploring competing density order in the ionic Hubbard model with ultracold fermions, Phys. Rev. Lett., Volume 115 (2015)
[121] The Fourier Transform and its Applications, McGraw–Hill, New York, 1965
[122] Reconstruction of Abel-transformable images: the Gaussian basis-set expansion Abel transform method, Rev. Sci. Instrum., Volume 73 (2002), p. 2634
[123] et al. Compressibility of a fermionic Mott insulator of ultracold atoms, Phys. Rev. Lett., Volume 114 (2015)
[124] et al. Equation of state of the two-dimensional Hubbard model, Phys. Rev. Lett., Volume 116 (2016)
[125] Thermodynamics of strongly interacting fermions in two-dimensional optical lattices, Phys. Rev. A, Volume 84 (2011)
[126] et al. Measuring entropy and short-range correlations in the two-dimensional Hubbard model, Phys. Rev. X, Volume 7 (2017)
[127] et al. Thermodynamics versus local density fluctuations in the metal–Mott-insulator crossover, Phys. Rev. Lett., Volume 117 (2016)
[128] A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice, Nature (London), Volume 462 (2009), pp. 74-77
[129] et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator, Nature (London), Volume 467 (2010), pp. 68-72
[130] et al. Single-atom imaging of fermions in a quantum-gas microscope, Nat. Phys., Volume 1 (2015), pp. 738-743
[131] et al. Quantum-gas microscope for fermionic atoms, Phys. Rev. Lett., Volume 114 (2015)
[132] et al. Site-resolved imaging of fermionic
[133] et al. Microscopic observation of Pauli blocking in degenerate fermionic lattice gases, Phys. Rev. Lett., Volume 115 (2015)
[134] et al. Imaging and addressing of individual fermionic atoms in an optical lattice, Phys. Rev. A, Volume 92 (2015)
[135] Ground state laser cooling using electromagnetically induced transparency, Phys. Rev. Lett., Volume 85 (2000), pp. 4458-4461
[136] et al. Resolved-sideband Raman cooling to the ground state of an optical lattice, Phys. Rev. Lett., Volume 80 (1998), pp. 4149-4152
[137] et al. Site-resolved imaging of a fermionic Mott insulator, Science, Volume 351 (2016), pp. 953-957
[138] et al. Observation of 2D fermionic Mott insulators of
[139] et al. Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi–Hubbard chains, Science, Volume 353 (2016), pp. 1257-1260
[140] Short-range quantum magnetism of ultracold fermions in an optical lattice, Science, Volume 340 (2013), pp. 1307-1310
[141] et al. Competition of spin and charge excitations in the one-dimensional Hubbard model, Phys. Rev. A, Volume 88 (2013)
[142] et al. Thermodynamics and magnetic properties of the anisotropic 3D Hubbard model, Phys. Rev. Lett., Volume 112 (2014)
[143] Formation and dynamics of antiferromagnetic correlations in tunable optical lattices, Phys. Rev. Lett., Volume 115 (2015)
[144] et al. Enhancement and sign change of magnetic correlations in a driven quantum many-body system, Nature (London), Volume 553 (2018), pp. 481-485
[145] Antiferromagnetic spin correlation of SU(
[146] et al. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms, Nature (London), Volume 519 (2015), pp. 211-214
[147] et al. Bragg scattering as a probe of atomic wave functions and quantum phase transitions in optical lattices, Phys. Rev. Lett., Volume 107 (2011)
[148] et al. Coherent light scattering from a two-dimensional Mott insulator, Phys. Rev. Lett., Volume 106 (2011)
[149] Detecting antiferromagnetism of atoms in an optical lattice via optical Bragg scattering, Phys. Rev. A, Volume 81 (2010)
[150] et al. Site-resolved measurement of the spin-correlation function in the Fermi–Hubbard model, Science, Volume 353 (2016), pp. 1253-1256
[151] et al. Observation of spatial charge and spin correlations in the 2D Fermi–Hubbard model, Science, Volume 353 (2016), pp. 1260-1264
[152] et al. Spin-imbalance in a 2D Fermi–Hubbard system, Science, Volume 357 (2017), pp. 1385-1388
[153] et al. Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators, Science, Volume 357 (2017), pp. 484-487
[154] et al. Direct observation of incommensurate magnetism in Hubbard chains, 2018 (e-prints) | arXiv
[155] et al. Antiferromagnetic correlations in two-dimensional fermionic Mott-insulating and metallic phases, Phys. Rev. Lett., Volume 118 (2017)
[156] et al. Coherent manipulation of spin correlations in the Hubbard model, Phys. Rev. A, Volume 97 (2018)
[157] Limits of sympathetic cooling of fermions by zero-temperature bosons due to particle losses, Phys. Rev. A, Volume 69 (2004)
[158] Enlarging and cooling the Néel state in an optical lattice, Phys. Rev. A, Volume 86 (2012)
[159] Universal cooling scheme for quantum simulation, 2009 | arXiv
[160] The spin-1/2 Heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides, Rev. Mod. Phys., Volume 63 (1991), p. 1
[161] Spin waves in the half-filled Hubbard model beyond the random phase approximation, Europhys. Lett., Volume 22 (1993), p. 413
[162] Dynamical cluster approximation with continuous lattice self-energy, Phys. Rev. B, Volume 88 (2013)
[163] Possible high-Tc superconductivity in the Ba–La–Cu–O system, Z. Phys. B, Volume 64 (1986), pp. 189-193
[164] Doping a Mott insulator: physics of high-temperature superconductivity, Rev. Mod. Phys., Volume 78 (2006), pp. 17-85
[165] The remarkable underlying ground states of cuprate superconductors, 2018 | arXiv
[166] et al. Cooling fermionic atoms in optical lattices by shaping the confinement, Phys. Rev. A, Volume 79 (2009)
[167] Peltier cooling of fermionic quantum gases, Phys. Rev. Lett., Volume 113 (2014)
[168] Quantum state engineering of a Hubbard system with ultracold fermions, Phys. Rev. Lett., Volume 120 (2018)
[169] et al. Collisionally induced transport in periodic potentials, Phys. Rev. Lett., Volume 92 (2004)
[170] et al. Optical conductivity of a quantum gas, 2017 (preprint) | arXiv
[171] et al. Bad metallic transport in a cold atom Fermi–Hubbard system, 2018 (preprint) | arXiv
[172] et al. Spin transport in a Mott insulator of ultracold fermions, 2018 (preprint) | arXiv
[173] Bad metal in a Fermi lattice gas, 2016 (preprint) | arXiv
[174] et al. Observation of elastic doublon decay in the Fermi–Hubbard model, Phys. Rev. Lett., Volume 104 (2010)
[175] et al. Relaxation dynamics of a Fermi gas in an optical superlattice, Phys. Rev. Lett., Volume 113 (2014)
[176] et al. Nonequilibrium mass transport in the 1D Fermi–Hubbard model, Phys. Rev. Lett., Volume 121 (2018)
[177] Disorder-induced localization in a strongly correlated atomic Hubbard gas, Phys. Rev. Lett., Volume 114 (2015)
[178] et al. Observation of many-body localization of interacting fermions in a quasi-random optical lattice, Science, Volume 349 (2015), pp. 842-845
[179] et al. Experimental realization of the topological Haldane model with ultracold fermions, Nature (London), Volume 515 (2014), pp. 237-240
[180] et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons, Science, Volume 349 (2015), pp. 1510-1513
[181] et al. Experimental reconstruction of the Berry curvature in a Floquet Bloch band, Science, Volume 352 (2016), pp. 1091-1094
[182] et al. Topological Thouless pumping of ultracold fermions, Nat. Phys., Volume 12 (2016), pp. 296-300
- Three-Phase Confusion Learning, Entropy, Volume 27 (2025) no. 2, p. 199 | DOI:10.3390/e27020199
- Emergent symmetries in prethermal phases of periodically driven quantum systems, Journal of Physics: Condensed Matter, Volume 37 (2025) no. 13, p. 133002 | DOI:10.1088/1361-648x/ada860
- A New Era of Excitonic Insulators, Journal of the Physical Society of Japan, Volume 94 (2025) no. 1 | DOI:10.7566/jpsj.94.012001
- Spatiotemporal quenches for efficient critical ground state preparation in the two-dimensional transverse field Ising model, Physical Review B, Volume 111 (2025) no. 5 | DOI:10.1103/physrevb.111.054311
- Emergent spinon-holon Feshbach resonance in a doped Majumdar-Ghosh model, Physical Review B, Volume 111 (2025) no. 5 | DOI:10.1103/physrevb.111.054430
- Magnetic Phase Diagram of the Three-Dimensional Doped Hubbard Model, Physical Review Letters, Volume 134 (2025) no. 6 | DOI:10.1103/physrevlett.134.066502
- Hamiltonian and Liouvillian learning in weakly-dissipative quantum many-body systems, Quantum Science and Technology, Volume 10 (2025) no. 1, p. 015065 | DOI:10.1088/2058-9565/ad9ed5
- Digital-analog quantum computing of fermion-boson models in superconducting circuits, npj Quantum Information, Volume 11 (2025) no. 1 | DOI:10.1038/s41534-025-01001-4
- Quantum Hamiltonian Learning for the Fermi-Hubbard Model, Acta Applicandae Mathematicae, Volume 191 (2024) no. 1 | DOI:10.1007/s10440-024-00651-4
- Superfluid transition in quasi-two-dimensional disordered dipolar Fermi gases, Comptes Rendus. Physique, Volume 24 (2024) no. S3, p. 101 | DOI:10.5802/crphys.158
- Characteristic features of strong correlation: lessons from a 3-fermion one-dimensional harmonic trap, Journal of Physics: Materials, Volume 7 (2024) no. 3, p. 035011 | DOI:10.1088/2515-7639/ad63cb
- Lattice polaron in a Bose–Einstein condensate of hard-core bosons, New Journal of Physics, Volume 26 (2024) no. 6, p. 063015 | DOI:10.1088/1367-2630/ad503e
- Localization and spectral structure in two-dimensional quasicrystal potentials, Physical Review A, Volume 109 (2024) no. 1 | DOI:10.1103/physreva.109.013314
- Hubbard parameters for programmable tweezer arrays, Physical Review A, Volume 109 (2024) no. 1 | DOI:10.1103/physreva.109.013318
- Nagaoka ferromagnetism in doped Hubbard models in optical lattices, Physical Review A, Volume 110 (2024) no. 2 | DOI:10.1103/physreva.110.l021303
- Increasing superconducting Tc by layering in the attractive Hubbard model, Physical Review A, Volume 110 (2024) no. 5 | DOI:10.1103/physreva.110.053315
- Hubbard physics with Rydberg atoms: Using a quantum spin simulator to simulate strong fermionic correlations, Physical Review B, Volume 109 (2024) no. 17 | DOI:10.1103/physrevb.109.174409
- Phase diagram of the interacting Haldane model with spin-dependent sublattice potentials, Physical Review B, Volume 109 (2024) no. 23 | DOI:10.1103/physrevb.109.235101
- Polaronic mechanism of Nagaoka ferromagnetism in Hubbard models, Physical Review B, Volume 109 (2024) no. 23 | DOI:10.1103/physrevb.109.235128
- Magnetic correlations of a doped and frustrated Hubbard model: Benchmarking the two-particle self-consistent theory against a quantum simulator, Physical Review B, Volume 110 (2024) no. 10 | DOI:10.1103/physrevb.110.l100406
- Doping the Mott insulating state of the triangular-lattice Hubbard model reveals the Sordi transition, Physical Review B, Volume 110 (2024) no. 12 | DOI:10.1103/physrevb.110.l121109
- Simulating chiral spin liquids with fermionic projected entangled pair states, Physical Review B, Volume 110 (2024) no. 6 | DOI:10.1103/physrevb.110.064402
- Engineering the Kitaev Spin Liquid in a Quantum Dot System, Physical Review Letters, Volume 132 (2024) no. 18 | DOI:10.1103/physrevlett.132.186501
- Symmetry-Broken Perturbation Theory to Large Orders in Antiferromagnetic Phases, Physical Review Letters, Volume 132 (2024) no. 24 | DOI:10.1103/physrevlett.132.246505
- Mott Transition for a Lieb-Liniger Gas in a Shallow Quasiperiodic Potential: Delocalization Induced by Disorder, Physical Review Letters, Volume 133 (2024) no. 12 | DOI:10.1103/physrevlett.133.123401
- Floquet-Driven Crossover from Density-Assisted Tunneling to Enhanced Pair Tunneling, Physical Review Letters, Volume 133 (2024) no. 25 | DOI:10.1103/physrevlett.133.253402
- Weak superfluidity in twisted optical potentials, Physical Review Research, Volume 6 (2024) no. 4 | DOI:10.1103/physrevresearch.6.l042066
- Light-induced insulator–metal transition in Sr 2 IrO 4 reveals the nature of the insulating ground state, Proceedings of the National Academy of Sciences, Volume 121 (2024) no. 29 | DOI:10.1073/pnas.2323013121
- Digital quantum simulation of lattice fermion theories with local encoding, Quantum, Volume 8 (2024), p. 1460 | DOI:10.22331/q-2024-09-04-1460
- Efficient preparation of the AKLT State with Measurement-based Imaginary Time Evolution, Quantum, Volume 8 (2024), p. 1557 | DOI:10.22331/q-2024-12-10-1557
- Suppression of scattering from slow to fast subsystems and application to resonantly Floquet-driven impurities in strongly interacting systems, SciPost Physics, Volume 16 (2024) no. 1 | DOI:10.21468/scipostphys.16.1.005
- Phase diagram for strong-coupling Bose polarons, SciPost Physics, Volume 16 (2024) no. 3 | DOI:10.21468/scipostphys.16.3.067
- Two
-linear scattering-rate regimes in the triangular lattice Hubbard model, SciPost Physics, Volume 17 (2024) no. 3 | DOI:10.21468/scipostphys.17.3.072 - Atomic Quantum Technologies for Quantum Matter and Fundamental Physics Applications, Technologies, Volume 12 (2024) no. 5, p. 64 | DOI:10.3390/technologies12050064
- 1/4 is the new 1/2 when topology is intertwined with Mottness, Nature Communications, Volume 14 (2023) no. 1 | DOI:10.1038/s41467-023-41465-6
- Dichotomy of heavy and light pairs of holes in the t−J model, Nature Communications, Volume 14 (2023) no. 1 | DOI:10.1038/s41467-023-43453-2
- Ferromagnetism and skyrmions in the Hofstadter–Fermi–Hubbard model, New Journal of Physics, Volume 25 (2023) no. 2, p. 023021 | DOI:10.1088/1367-2630/acb963
- Detecting High-Dimensional Entanglement in Cold-Atom Quantum Simulators, PRX Quantum, Volume 4 (2023) no. 4 | DOI:10.1103/prxquantum.4.040338
- Band topology and Bloch oscillation in an extended Creutz ladder, Physica Scripta, Volume 98 (2023) no. 7, p. 075403 | DOI:10.1088/1402-4896/acd88b
- Quantum phases of constrained bosons on a two-leg Bose-Hubbard ladder, Physical Review A, Volume 108 (2023) no. 1 | DOI:10.1103/physreva.108.013316
- Repulsion-driven metallic phase in the ground state of the half-filled t−t′ ionic Hubbard chain, Physical Review A, Volume 108 (2023) no. 6 | DOI:10.1103/physreva.108.063307
- Digital-Analog Quantum Simulation of Fermionic Models, Physical Review Applied, Volume 19 (2023) no. 6 | DOI:10.1103/physrevapplied.19.064086
- Dynamical detection of mean-field topological phases in an interacting Chern insulator, Physical Review B, Volume 107 (2023) no. 12 | DOI:10.1103/physrevb.107.125132
- Probing many-body effects in harmonic traps with twisted light, Physical Review B, Volume 107 (2023) no. 8 | DOI:10.1103/physrevb.107.l081111
- Magnetic properties of moiré quantum dot arrays, Physical Review B, Volume 108 (2023) no. 16 | DOI:10.1103/physrevb.108.165152
- Spatiotemporal quenches in long-range Hamiltonians, Physical Review B, Volume 108 (2023) no. 2 | DOI:10.1103/physrevb.108.024310
- Robust stripes in the mixed-dimensional t−J model, Physical Review Research, Volume 5 (2023) no. 2 | DOI:10.1103/physrevresearch.5.l022027
- Chirped Bloch-harmonic oscillations in a parametrically forced optical lattice, Physical Review Research, Volume 5 (2023) no. 4 | DOI:10.1103/physrevresearch.5.043152
- Pairing of holes by confining strings in antiferromagnets, SciPost Physics, Volume 14 (2023) no. 5 | DOI:10.21468/scipostphys.14.5.090
- Dynamical localization and slow thermalization in a class of disorder-free periodically driven one-dimensional interacting systems, SciPost Physics Core, Volume 6 (2023) no. 4 | DOI:10.21468/scipostphyscore.6.4.083
- Long distance entanglement and high-dimensional quantum teleportation in the Fermi–Hubbard model, Scientific Reports, Volume 13 (2023) no. 1 | DOI:10.1038/s41598-023-28180-4
- Fermionic-propagator and alternating-basis quantum Monte Carlo methods for correlated electrons on a lattice, The Journal of Chemical Physics, Volume 158 (2023) no. 4 | DOI:10.1063/5.0133597
- Moiré straintronics: a universal platform for reconfigurable quantum materials, npj 2D Materials and Applications, Volume 7 (2023) no. 1 | DOI:10.1038/s41699-023-00382-4
- Error-mitigated quantum simulation of interacting fermions with trapped ions, npj Quantum Information, Volume 9 (2023) no. 1 | DOI:10.1038/s41534-023-00784-8
- The Magnetic Genome of Two-Dimensional van der Waals Materials, ACS Nano, Volume 16 (2022) no. 5, p. 6960 | DOI:10.1021/acsnano.1c09150
- Exact and many-body perturbation solutions of the Hubbard model applied to linear chains, AIP Advances, Volume 12 (2022) no. 3 | DOI:10.1063/5.0082681
- Optimal Temperature Estimation in Polariton Bose‐Einstein Condensate, Advanced Quantum Technologies, Volume 5 (2022) no. 11 | DOI:10.1002/qute.202200085
- Löwdin's symmetry dilemma within Green functions theory for the one‐dimensional Hubbard model, Contributions to Plasma Physics, Volume 62 (2022) no. 2 | DOI:10.1002/ctpp.202000220
- Quantum-Dot Spin Chains, Entanglement in Spin Chains (2022), p. 505 | DOI:10.1007/978-3-031-03998-0_17
- Out-of-Time-Order correlators in driven conformal field theories, Journal of High Energy Physics, Volume 2022 (2022) no. 8 | DOI:10.1007/jhep08(2022)221
- Variational quantum eigensolver for SU(N) fermions, Journal of Physics A: Mathematical and Theoretical, Volume 55 (2022) no. 26, p. 265301 | DOI:10.1088/1751-8121/ac7016
- Quantum dynamics research in India: a perspective, Journal of Physics: Condensed Matter, Volume 34 (2022) no. 10, p. 100401 | DOI:10.1088/1361-648x/ac410a
- Dynamical quantum phase transitions in the one-dimensional extended Fermi–Hubbard model, Journal of Statistical Mechanics: Theory and Experiment, Volume 2022 (2022) no. 4, p. 043101 | DOI:10.1088/1742-5468/ac6031
- Strong pairing in mixed-dimensional bilayer antiferromagnetic Mott insulators, Nature Physics, Volume 18 (2022) no. 6, p. 651 | DOI:10.1038/s41567-022-01561-8
- Expanding variational quantum eigensolvers to larger systems by dividing the calculations between classical and quantum hardware, Physical Review A, Volume 105 (2022) no. 2 | DOI:10.1103/physreva.105.022438
- Schrieffer-Wolff transformations for experiments: Dynamically suppressing virtual doublon-hole excitations in a Fermi-Hubbard simulator, Physical Review A, Volume 106 (2022) no. 1 | DOI:10.1103/physreva.106.012428
- Two ultracold highly magnetic atoms in a one-dimensional harmonic trap, Physical Review A, Volume 106 (2022) no. 4 | DOI:10.1103/physreva.106.043324
- Phase Measurement Beyond the Standard Quantum Limit Using a Quantum Neuromorphic Platform, Physical Review Applied, Volume 18 (2022) no. 3 | DOI:10.1103/physrevapplied.18.034011
- Dynamical relaxation of correlators in periodically driven integrable quantum systems, Physical Review B, Volume 105 (2022) no. 10 | DOI:10.1103/physrevb.105.104303
- Simulating Lindbladian evolution with non-Abelian symmetries: Ballistic front propagation in the SU(2) Hubbard model with a localized loss, Physical Review B, Volume 105 (2022) no. 19 | DOI:10.1103/physrevb.105.195144
- Signatures of multifractality in a periodically driven interacting Aubry-André model, Physical Review B, Volume 105 (2022) no. 2 | DOI:10.1103/physrevb.105.024301
- Finite-temperature tensor network study of the Hubbard model on an infinite square lattice, Physical Review B, Volume 106 (2022) no. 19 | DOI:10.1103/physrevb.106.195105
- Formation of spin and charge ordering in the extended Hubbard model during a finite-time quantum quench, Physical Review B, Volume 106 (2022) no. 19 | DOI:10.1103/physrevb.106.195405
- Periodically driven Rydberg chains with staggered detuning, Physical Review B, Volume 106 (2022) no. 6 | DOI:10.1103/physrevb.106.064305
- Magnetic excitations, nonclassicality, and quantum wake spin dynamics in the Hubbard chain, Physical Review B, Volume 106 (2022) no. 8 | DOI:10.1103/physrevb.106.085110
- Realization of a Fermi-Hubbard Optical Tweezer Array, Physical Review Letters, Volume 128 (2022) no. 22 | DOI:10.1103/physrevlett.128.223202
- Evaluating Second-Order Phase Transitions with Diagrammatic Monte Carlo: Néel Transition in the Doped Three-Dimensional Hubbard Model, Physical Review Letters, Volume 129 (2022) no. 10 | DOI:10.1103/physrevlett.129.107202
- Computing Free Energies with Fluctuation Relations on Quantum Computers, Physical Review Letters, Volume 129 (2022) no. 13 | DOI:10.1103/physrevlett.129.130603
- Quantum critical points and the sign problem, Science, Volume 375 (2022) no. 6579, p. 418 | DOI:10.1126/science.abg9299
- Exploration of doped quantum magnets with ultracold atoms, Annals of Physics, Volume 435 (2021), p. 168651 | DOI:10.1016/j.aop.2021.168651
- Realising and compressing quantum circuits with quantum reservoir computing, Communications Physics, Volume 4 (2021) no. 1 | DOI:10.1038/s42005-021-00606-3
- Mixed temperature-dependent order parameters in the extended Hubbard model, Journal of Physics: Condensed Matter, Volume 33 (2021) no. 6, p. 065603 | DOI:10.1088/1361-648x/abc801
- Creating and concentrating quantum resource states in noisy environments using a quantum neural network, Neural Networks, Volume 136 (2021), p. 141 | DOI:10.1016/j.neunet.2021.01.003
- Strong boundary and trap potential effects on emergent physics in ultra-cold fermionic gases, New Journal of Physics, Volume 23 (2021) no. 6, p. 063015 | DOI:10.1088/1367-2630/abfe1e
- Theoretical and Experimental Perspectives of Quantum Verification, PRX Quantum, Volume 2 (2021) no. 1 | DOI:10.1103/prxquantum.2.010102
- Inferring Nonlinear Many-Body Bell Inequalities From Average Two-Body Correlations: Systematic Approach for Arbitrary Spin- j Ensembles, PRX Quantum, Volume 2 (2021) no. 3 | DOI:10.1103/prxquantum.2.030329
- Structural superfluid–Mott-insulator transition for a Bose gas in multirods, Physical Review A, Volume 103 (2021) no. 1 | DOI:10.1103/physreva.103.013311
- Exact k -body representation of the Jaynes-Cummings interaction in the dressed basis: Insight into many-body phenomena with light, Physical Review A, Volume 104 (2021) no. 1 | DOI:10.1103/physreva.104.013707
- Interacting-fermion dynamics in Majorana phase space, Physical Review A, Volume 104 (2021) no. 6 | DOI:10.1103/physreva.104.062208
- Many-body physics in small systems: Observing the onset and saturation of correlation in linear atomic chains, Physical Review B, Volume 103 (2021) no. 19 | DOI:10.1103/physrevb.103.195429
- Analytical solution for the steady states of the driven Hubbard model, Physical Review B, Volume 103 (2021) no. 3 | DOI:10.1103/physrevb.103.035146
- Emergence of gaussianity in the thermodynamic limit of interacting fermions, Physical Review B, Volume 104 (2021) no. 18 | DOI:10.1103/physrevb.104.l180408
- Quantum Degenerate Fermi Gas in an Orbital Optical Lattice, Physical Review Letters, Volume 127 (2021) no. 3 | DOI:10.1103/physrevlett.127.033201
- Spreading of correlations and entanglement in the long-range transverse Ising chain, Physical Review Research, Volume 3 (2021) no. 1 | DOI:10.1103/physrevresearch.3.l012022
- From entanglement certification with quench dynamics to multipartite entanglement of interacting fermions, Physical Review Research, Volume 3 (2021) no. 3 | DOI:10.1103/physrevresearch.3.l032051
- Higher-order spin-hole correlations around a localized charge impurity, Physical Review Research, Volume 3 (2021) no. 3 | DOI:10.1103/physrevresearch.3.033204
- Voltage-controlled Hubbard spin transistor, Physical Review Research, Volume 3 (2021) no. 4 | DOI:10.1103/physrevresearch.3.043142
- Lieb's Theorem and Maximum Entropy Condensates, Quantum, Volume 5 (2021), p. 610 | DOI:10.22331/q-2021-12-23-610
- Finite-temperature transport in one-dimensional quantum lattice models, Reviews of Modern Physics, Volume 93 (2021) no. 2 | DOI:10.1103/revmodphys.93.025003
- Quasi-1D exciton channels in strain-engineered 2D materials, Science Advances, Volume 7 (2021) no. 44 | DOI:10.1126/sciadv.abj3066
- Layer-by-layer assembly of multilayer optical lattices: A theoretical proposal, The European Physical Journal D, Volume 75 (2021) no. 5 | DOI:10.1140/epjd/s10053-021-00161-0
- Two‐Channel Kondo Physics: From Engineered Structures to Quantum Materials Realizations, Advanced Quantum Technologies, Volume 3 (2020) no. 5 | DOI:10.1002/qute.201900128
- Fermi–Hubbard model on nonbipartite lattices: flux problem and emergent chirality, Journal of Statistical Mechanics: Theory and Experiment, Volume 2020 (2020) no. 7, p. 073103 | DOI:10.1088/1742-5468/ab99bf
- Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices, Nature, Volume 579 (2020) no. 7799, p. 353 | DOI:10.1038/s41586-020-2085-3
- Tools for quantum simulation with ultracold atoms in optical lattices, Nature Reviews Physics, Volume 2 (2020) no. 8, p. 411 | DOI:10.1038/s42254-020-0195-3
- Controllable finite-momenta dynamical quasicondensation in the periodically driven one-dimensional Fermi-Hubbard model, Physical Review A, Volume 101 (2020) no. 3 | DOI:10.1103/physreva.101.033604
- Simulating quantum transport with ultracold atoms and interaction effects, Physical Review A, Volume 102 (2020) no. 3 | DOI:10.1103/physreva.102.031302
- Thermodynamics and magnetism in the two-dimensional to three-dimensional crossover of the Hubbard model, Physical Review A, Volume 102 (2020) no. 3 | DOI:10.1103/physreva.102.033340
- Strategies for solving the Fermi-Hubbard model on near-term quantum computers, Physical Review B, Volume 102 (2020) no. 23 | DOI:10.1103/physrevb.102.235122
- Floquet perturbation theory for periodically driven weakly interacting fermions, Physical Review B, Volume 102 (2020) no. 23 | DOI:10.1103/physrevb.102.235114
- Achieving the Scaling Limit for Nonequilibrium Green Functions Simulations, Physical Review Letters, Volume 124 (2020) no. 7 | DOI:10.1103/physrevlett.124.076601
- In Situ Thermometry of a Cold Fermi Gas via Dephasing Impurities, Physical Review Letters, Volume 125 (2020) no. 8 | DOI:10.1103/physrevlett.125.080402
- Simulating quantum field theory in curved spacetime with quantum many-body systems, Physical Review Research, Volume 2 (2020) no. 2 | DOI:10.1103/physrevresearch.2.023107
- Attractive Hubbard model as an SO(3) system of competing phases: Supersolid order and its thermal melting, Physical Review Research, Volume 2 (2020) no. 2 | DOI:10.1103/physrevresearch.2.023304
- Unraveling the excitation spectrum of many-body systems from quantum quenches, Physical Review A, Volume 100 (2019) no. 6 | DOI:10.1103/physreva.100.063632
- Reaching the Continuum Limit in Finite-Temperature Ab Initio Field-Theory Computations in Many-Fermion Systems, Physical Review Letters, Volume 123 (2019) no. 13 | DOI:10.1103/physrevlett.123.136402
- Cavity-Mediated Unconventional Pairing in Ultracold Fermionic Atoms, Physical Review Letters, Volume 123 (2019) no. 13 | DOI:10.1103/physrevlett.123.133601
- Quantum Simulation Meets Nonequilibrium Dynamical Mean-Field Theory: Exploring the Periodically Driven, Strongly Correlated Fermi-Hubbard Model, Physical Review Letters, Volume 123 (2019) no. 19 | DOI:10.1103/physrevlett.123.193602
Cité par 118 documents. Sources : Crossref
Commentaires - Politique