Comptes Rendus
Artificial gauge fields in materials and engineered systems
Comptes Rendus. Physique, Volume 19 (2018) no. 6, pp. 394-432.

Artificial gauge fields are currently realized in a wide range of physical settings. This includes solid-state devices but also engineered systems, such as photonic crystals, ultracold gases and mechanical setups. It is the aim of this review to offer, for the first time, a unified view on these various forms of artificial electromagnetic fields and spin–orbit couplings for matter and light. This topical review provides a general introduction to the universal concept of engineered gauge fields, in a form that is accessible to young researchers entering the field. Moreover, this work aims to connect different communities, by revealing explicit links between the diverse forms and realizations of artificial gauge fields.

Les champs de jauge artificiels sont aujourd'hui réalisés dans une large gamme d'environnements physiques. Ceci inclut les dispositifs relatifs à la physique de l'état solide, mais aussi les systèmes « synthétiques » tels que les cristaux photoniques, les gaz ultrafroids et les systèmes mécaniques. C'est l'objet de cette revue d'offrir, pour la première fois, une vision unifiée de ces diverses formes de champs électromagnétiques artificiels et de couplages spin-orbite pour la matière et la lumière. Cette revue d'actualité fournit une introduction générale au concept universel de champ de jauge artificiel, dans une forme qui soit accessible aux jeunes chercheurs abordant le domaine. De plus, ce travail ambitionne de connecter différentes communautés, en révélant les liens explicites entre les différentes formes et réalisations de champs de jauge artificiels.

Published online:
DOI: 10.1016/j.crhy.2018.03.002
Keywords: Gauge fields, Quantum simulation, Condensed matter
Mot clés : Champs de jauge, Simulation quantique, Matière condensée

Monika Aidelsburger 1, 2, 3; Sylvain Nascimbene 1; Nathan Goldman 4

1 Laboratoire Kastler Brossel, College de France, CNRS, ENS-PSL Research University, UPMC–Sorbonne Universites, 11, place Marcelin-Berthelot, 75005 Paris, France
2 Fakultät für Physik, Ludwig-Maximilians-Universität München, Schellingstraße 4, 80799 Munich, Germany
3 Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
4 Center for Nonlinear Phenomena and Complex Systems, Université libre de Bruxelles, CP 231, Campus Plaine, B-1050 Brussels, Belgium
@article{CRPHYS_2018__19_6_394_0,
     author = {Monika Aidelsburger and Sylvain Nascimbene and Nathan Goldman},
     title = {Artificial gauge fields in materials and engineered systems},
     journal = {Comptes Rendus. Physique},
     pages = {394--432},
     publisher = {Elsevier},
     volume = {19},
     number = {6},
     year = {2018},
     doi = {10.1016/j.crhy.2018.03.002},
     language = {en},
}
TY  - JOUR
AU  - Monika Aidelsburger
AU  - Sylvain Nascimbene
AU  - Nathan Goldman
TI  - Artificial gauge fields in materials and engineered systems
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 394
EP  - 432
VL  - 19
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.03.002
LA  - en
ID  - CRPHYS_2018__19_6_394_0
ER  - 
%0 Journal Article
%A Monika Aidelsburger
%A Sylvain Nascimbene
%A Nathan Goldman
%T Artificial gauge fields in materials and engineered systems
%J Comptes Rendus. Physique
%D 2018
%P 394-432
%V 19
%N 6
%I Elsevier
%R 10.1016/j.crhy.2018.03.002
%G en
%F CRPHYS_2018__19_6_394_0
Monika Aidelsburger; Sylvain Nascimbene; Nathan Goldman. Artificial gauge fields in materials and engineered systems. Comptes Rendus. Physique, Volume 19 (2018) no. 6, pp. 394-432. doi : 10.1016/j.crhy.2018.03.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.03.002/

[1] Y. Aharonov; D. Bohm Significance of electromagnetic potentials in the quantum theory, Phys. Rev., Volume 115 (1959) no. 3, p. 485

[2] T.T. Wu; C.N. Yang Concept of nonintegrable phase factors and global formulation of gauge fields, Phys. Rev. D, Volume 12 (1975) no. 12, p. 3845

[3] B. Simon Holonomy, the quantum adiabatic theorem, and Berry's phase, Phys. Rev. Lett., Volume 51 (1983) no. 24, p. 2167

[4] M. Nakahara Geometry, Topology and Physics, CRC Press, 2003

[5] S. Pancharatnam Generalized theory of interference and its applications, Proceedings of the Indian Academy of Sciences-Section A, vol. 44, Springer, 1956, pp. 398-417

[6] C.A. Mead; D.G. Truhlar On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei, J. Chem. Phys., Volume 70 (1979) no. 5, pp. 2284-2296

[7] M.V. Berry Quantal phase factors accompanying adiabatic changes, Proc. R. Soc., Math. Phys. Eng. Sci., vol. 392, The Royal Society, 1984, pp. 45-57

[8] D.J. Thouless; M. Kohmoto; M.P. Nightingale; M. den Nijs Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., Volume 49 (1982), pp. 405-408

[9] M. Kohmoto Zero modes and the quantized Hall conductance of the two-dimensional lattice in a magnetic field, Phys. Rev. B, Volume 39 (1989) no. 16

[10] B.A. Bernevig; T.L. Hughes Topological Insulators and Topological Superconductors, Princeton University Press, 2013

[11] J. Dalibard; F. Gerbier; G. Juzeliūnas; P. Öhberg Colloquium, Rev. Mod. Phys., Volume 83 (2011), pp. 1523-1543

[12] N. Goldman; G. Juzeliūnas; P. Öhberg; I.B. Spielman Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys., Volume 77 (2014) no. 12

[13] J. Dalibard Introduction to the physics of artificial gauge fields | arXiv

[14] H. Zhai Degenerate quantum gases with spin–orbit coupling: a review, Rep. Prog. Phys., Volume 78 (2015) no. 2

[15] N. Goldman; J.C. Budich; P. Zoller Topological quantum matter with ultracold gases in optical lattices, Nat. Phys., Volume 12 (2016) no. 7, pp. 639-645

[16] N.R. Cooper; J. Dalibard; I.B. Spielman Topological bands for ultracold atoms, 2018 | arXiv

[17] L. Lu; J.D. Joannopoulos; M. Soljačić Topological photonics, Nat. Photonics, Volume 8 (2014) no. 11, pp. 821-829

[18] M. Hafezi Synthetic gauge fields with photons, Int. J. Mod. Phys. B, Volume 28 (2014) no. 02

[19] T. Ozawa; H.M. Price; A. Amo; N. Goldman; M. Hafezi; L. Lu; M. Rechtsman; D. Schuster; J. Simon; O. Zilberberg; I. Carusotto Topological photonics, 2018 | arXiv

[20] S.D. Huber Topological mechanics, Nat. Phys., Volume 12 (2016) no. 7, pp. 621-623

[21] A.H. Castro Neto; F. Guinea; N.M.R. Peres; K.S. Novoselov; A.K. Geim The electronic properties of graphene, Rev. Mod. Phys., Volume 81 (2009) no. 1, pp. 109-162

[22] M. Vozmediano; M.I. Katsnelson; F. Guinea Gauge fields in graphene, Phys. Rep., Volume 496 (2010) no. 4–5, pp. 109-148

[23] C. Si; Z. Sun; F. Liu Strain engineering of graphene: a review, Nanoscale, Volume 8 (2016), p. 3207

[24] B. Amorim; A. Cortijo; F. de Juan; A.G. Grushin; F. Guinea; A. Gutiérrez-Rubio; H. Ochoa; V. Parente; R. Roldán; R. San-Jose; J. Schiefele; M. Sturla; M.A.H. Vozmediano Novel effects of strains in graphene and other two dimensional materials, Phys. Rep., Volume 617 (2016), pp. 1-54

[25] U.-J. Wiese Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories, Ann. Phys., Volume 525 (2013) no. 10–11, pp. 777-796

[26] E. Zohar; J.I. Cirac; B. Reznik Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices, Rep. Prog. Phys., Volume 79 (2015) no. 1

[27] M. Dalmonte; S. Montangero Lattice gauge theory simulations in the quantum information era, Contemp. Phys., Volume 57 (2016) no. 3, pp. 388-412

[28] I. Žutić; J. Fabian; S. Das Sarma Spintronics: fundamentals and applications, Rev. Mod. Phys., Volume 76 (2004), pp. 323-410

[29] N. Nagaosa; J. Sinova; S. Onoda; A.H. MacDonald; N.P. Ong Anomalous Hall effect, Rev. Mod. Phys., Volume 82 (2010), pp. 1539-1592

[30] X.-L. Qi; S.-C. Zhang Topological insulators and superconductors, Rev. Mod. Phys., Volume 83 (2011), p. 1057

[31] K. von Klitzing The quantized Hall effect, Rev. Mod. Phys., Volume 58 (1986), pp. 519-531

[32] M.Z. Hasan; C.L. Kane Colloquium: topological insulators, Rev. Mod. Phys., Volume 82 (2010), p. 3045

[33] H.S. Bennett; E.A. Stern Faraday effect in solids, Phys. Rev. A, Volume 137 (1965) no. 2, p. A448

[34] T. Oka; H. Aoki Photovoltaic Hall effect in graphene, Phys. Rev. B, Volume 79 (2009)

[35] T. Kitagawa; T. Oka; A. Brataas; L. Fu; E. Demler Phys. Rev. B, 84 (2011)

[36] N.H. Lindner; G. Refael; V. Galitski Floquet topological insulator in semiconductor quantum wells, Nat. Phys., Volume 7 (2011), pp. 490-495

[37] J. Cayssol; B. Dora; F. Simon; R. Moessner Floquet topological insulators, Phys. Status Solidi RRL, Volume 7 (2013), pp. 101-108

[38] M.C. Rechtsman; J.M. Zeuner; Y. Plotnik; Y. Lumer; D. Podolsky; F. Dreisow; S. Nolte; M. Segev; A. Szameit Photonic Floquet topological insulators, Nature, Volume 496 (2013) no. 7444, pp. 196-200

[39] G. Jotzu; M. Messer; R. Desbuquois; M. Lebrat; T. Uehlinger; D. Greif; T. Esslinger Experimental realization of the topological haldane model with ultracold fermions, Nature, Volume 515 (2014), p. 237

[40] F. de Juan; A.G. Grushin; T. Morimoto; J.E. Moore Quantized circular photogalvanic effect in Weyl semimetals, Nat. Commun., Volume 8 (2017)

[41] D.T. Tran; A. Dauphin; A.G. Grushin; P. Zoller; N. Goldman Probing topology by ‘heating’: quantized circular dichroism in ultracold atoms, Sci. Adv., Volume 3 (2017) no. 8

[42] C.A. Mead The geometric phase in molecular systems, Rev. Mod. Phys., Volume 64 (1992), pp. 51-85

[43] D. Xiao; M.-C. Chang; Q. Niu Berry phase effects on electronic properties, Rev. Mod. Phys., Volume 82 (2010) no. 3, p. 1959

[44] F. Wilczek; A. Zee Appearance of gauge structure in simple dynamical systems, Phys. Rev. Lett., Volume 52 (1984) no. 24, p. 2111

[45] J.M. Luttinger The effect of a magnetic field on electrons in a periodic potential, Phys. Rev., Volume 84 (1951), pp. 814-817

[46] D.R. Hofstadter Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B, Volume 14 (1976), pp. 2239-2249

[47] I. Bloch; J. Dalibard; W. Zwerger Many-body physics with ultracold gases, Rev. Mod. Phys., Volume 80 (2008) no. 3, p. 885

[48] L. Lu; J.D. Joannopoulos; M. Soljačić Topological states in photonic systems, Nat. Phys., Volume 12 (2016) no. 7, pp. 626-629

[49] J.B. Kogut An introduction to lattice gauge theory and spin systems, Rev. Mod. Phys., Volume 51 (1979) no. 4, p. 659

[50] J.B. Kogut The lattice gauge theory approach to quantum chromodynamics, Rev. Mod. Phys., Volume 55 (1983) no. 3, p. 775

[51] D. Jaksch; C. Bruder; J.I. Cirac; C.W. Gardiner; P. Zoller Cold bosonic atoms in optical lattices, Phys. Rev. Lett., Volume 81 (1998) no. 15, p. 3108

[52] S.H. Simon The Oxford Solid State Basics, OUP Oxford, 2013

[53] S.A. Parameswaran; R. Roy; S.L. Sondhi Fractional quantum Hall physics in topological flat bands, C. R. Physique, Volume 14 (2013) no. 9–10, pp. 816-839

[54] T. Kitagawa; E. Berg; M. Rudner; E. Demler Topological characterization of periodically-driven quantum systems, Phys. Rev. B, Volume 82 (2010)

[55] N. Goldman; J. Dalibard Periodically driven quantum systems: effective Hamiltonians and engineered gauge fields, Phys. Rev. X, Volume 4 (2014)

[56] M. Bukov; L. D'Alessio; A. Polkovnikov Adv. Phys., 64 (2015), pp. 139-226

[57] A. Eckardt Colloquium: atomic quantum gases in periodically driven optical lattices, Rev. Mod. Phys., Volume 89 (2017) no. 1

[58] S. Rahav; I. Gilary; S. Fishman Phys. Rev. A, 68 (2003)

[59] N. Goldman; J. Dalibard; M. Aidelsburger; N.R. Cooper Periodically driven quantum matter: the case of resonant modulations, Phys. Rev. A, Volume 91 (2015) no. 3

[60] A. Eckardt; E. Anisimovas New J. Phys., 17 (2015)

[61] T. Mikami; S. Kitamura; K. Yasuda; N. Tsuji; T. Oka; H. Aoki Brillouin–Wigner theory for high-frequency expansion in periodically driven systems: application to Floquet topological insulators, Phys. Rev. B, Volume 93 (2016)

[62] A.S. Sorensen; E. Demler; M.D. Lukin Fractional quantum Hall states of atoms in optical lattices, Phys. Rev. Lett., Volume 94 (2005) no. 8

[63] A.R. Kolovsky Creating artificial magnetic fields for cold atoms by photon-assisted tunneling, Europhys. Lett., Volume 93 (2011)

[64] A. Bermudez; T. Schaetz; D. Porras Synthetic Gauge fields for vibrational excitations of trapped ions, Phys. Rev. Lett., Volume 107 (2011) no. 15

[65] H. Miyake; G.A. Siviloglou; C.J. Kennedy; W.C. Burton; W. Ketterle Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices, Phys. Rev. Lett., Volume 111 (2013)

[66] M. Aidelsburger; M. Atala; M. Lohse; J.T. Barreiro; B. Paredes; I. Bloch Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices, Phys. Rev. Lett., Volume 111 (2013)

[67] M. Aidelsburger; M. Lohse; C. Schweizer; M. Atala; J.T. Barreiro; S. Nascimbène; N.R. Cooper; I. Bloch; N. Goldman Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms, Nat. Phys., Volume 11 (2014), p. 3171

[68] C.E. Creffield; G. Pieplow; F. Sols; N. Goldman Realization of uniform synthetic magnetic fields by periodically shaking an optical square lattice, New J. Phys., Volume 18 (2016) no. 9

[69] M.E. Tai; A. Lukin; M. Rispoli; R. Schittko; T. Menke; D. Borgnia; P.M. Preiss; F. Grusdt; A.M. Kaufman; M. Greiner Microscopy of the interacting Harper–Hofstadter model in the few-body limit, Nature, Volume 546 (2017), pp. 519-523

[70] P. Hauke; O. Tieleman; A. Celi; C. Ölschläger; J. Simonet; J. Struck; M. Weinberg; P. Windpassinger; K. Sengstock; M. Lewenstein; A. Eckardt Non-Abelian gauge fields and topological insulators in shaken optical lattices, Phys. Rev. Lett., Volume 109 (2012)

[71] Z.-F. Xu; L. You; M. Ueda Atomic spin–orbit coupling synthesized with magnetic-field-gradient pulses, Phys. Rev. A, Volume 87 (2013) no. 6

[72] B.M. Anderson; I.B. Spielman; G. Juzeliūnas Magnetically generated spin–orbit coupling for ultracold atoms, Phys. Rev. Lett., Volume 111 (2013) no. 12

[73] A.L. Fetter; A.A. Svidzinsky Vortices in a trapped dilute Bose–Einstein condensate, J. Phys. Condens. Matter, Volume 13 (2001) no. 12, p. R135

[74] A.L. Fetter Rotating trapped Bose–Einstein condensates, Rev. Mod. Phys., Volume 81 (2009) no. 2, pp. 647-691

[75] R.J. Donnelly Quantized Vortices in Helium II, vol. 2, Cambridge University Press, 1991

[76] D.R. Tilley; J. Tilley Superfluidity and Superconductivity, CRC Press, 1990

[77] K.W. Madison; F. Chevy; W. Wohlleben; J. Dalibard Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett., Volume 84 (2000) no. 5, pp. 806-809

[78] J.R. Abo-Shaeer; C. Raman; J.M. Vogels; W. Ketterle Observation of vortex lattices in Bose–Einstein condensates, Science, Volume 292 (2001) no. 5516, pp. 476-479

[79] M.W. Zwierlein; J.R. Abo-Shaeer; A. Schirotzek; C.H. Schunck; W. Ketterle Vortices and superfluidity in a strongly interacting Fermi gas, Nature, Volume 435 (2005) no. 7045, pp. 1047-1051

[80] M. Baranov Theoretical progress in many-body physics with ultracold dipolar gases, Phys. Rep., Volume 464 (2008) no. 3, pp. 71-111

[81] T. Lahaye; C. Menotti; L. Santos; M. Lewenstein; T. Pfau The physics of dipolar bosonic quantum gases, Rep. Prog. Phys., Volume 72 (2009) no. 12

[82] Y. Kawaguchi; M. Ueda Spinor Bose–Einstein condensates, Phys. Rep., Volume 520 (2012) no. 5, pp. 253-381

[83] D.M. Stamper-Kurn; M. Ueda Spinor Bose gases: symmetries, magnetism, and quantum dynamics, Rev. Mod. Phys., Volume 85 (2013) no. 3, pp. 1191-1244

[84] V. Schweikhard; I. Coddington; P. Engels; S. Tung; E.A. Cornell Vortex-lattice dynamics in rotating spinor Bose–Einstein condensates, Phys. Rev. Lett., Volume 93 (2004) no. 21

[85] K.W. Madison; F. Chevy; W. Wohlleben; J. Dalibard Vortices in a stirred Bose–Einstein condensate, J. Mod. Opt., Volume 47 (2000) no. 14–15, pp. 2715-2723

[86] Y.-J. Lin; R.L. Compton; K. Jiménez-García; J.V. Porto; I.B. Spielman Synthetic magnetic fields for ultracold neutral atoms, Nature, Volume 462 (2009) no. 7273, pp. 628-632

[87] V. Schweikhard; I. Coddington; P. Engels; V.P. Mogendorff; E.A. Cornell Rapidly rotating Bose–Einstein condensates in and near the lowest Landau level, Phys. Rev. Lett., Volume 92 (2004) no. 4

[88] V. Bretin; S. Stock; Y. Seurin; J. Dalibard Fast rotation of a Bose–Einstein condensate, Phys. Rev. Lett., Volume 92 (2004) no. 5

[89] U.R. Fischer; G. Baym Vortex states of rapidly rotating dilute Bose–Einstein condensates, Phys. Rev. Lett., Volume 90 (2003) no. 14

[90] N. Cooper Rapidly rotating atomic gases, Adv. Phys., Volume 57 (2008) no. 6, pp. 539-616

[91] N.R. Cooper; N.K. Wilkin; J.M.F. Gunn Quantum phases of vortices in rotating Bose–Einstein condensates, Phys. Rev. Lett., Volume 87 (2001) no. 12

[92] The Quantum Hall Effect (R.E. Prange; S.M. Girvin; J.L. Birman; H. Faissner; J.W. Lynn, eds.), Grad. Texts Contemp. Phys., Springer New York, New York, NY, 1990

[93] G. Juzeliūnas; P. Öhberg Slow light in degenerate Fermi gases, Phys. Rev. Lett., Volume 93 (2004) no. 3

[94] I.B. Spielman Raman processes and effective gauge potentials, Phys. Rev. A, Volume 79 (2009) no. 6

[95] N.R. Cooper Optical flux lattices for ultracold atomic gases, Phys. Rev. Lett., Volume 106 (2011) no. 17

[96] I. Carusotto; C. Ciuti Quantum fluids of light, Rev. Mod. Phys., Volume 85 (2013), pp. 299-366

[97] J. Klaers; J. Schmitt; F. Vewinger; M. Weitz Bose–Einstein condensation of photons in an optical microcavity, Nature, Volume 468 (2010) no. 7323, pp. 545-548

[98] A. Sommer; J. Simon Engineering photonic Floquet Hamiltonians through Fabry–Pérot resonators, New J. Phys., Volume 18 (2016) no. 3

[99] N. Schine; A. Ryou; A. Gromov; A. Sommer; J. Simon Synthetic Landau levels for photons, Nature, Volume 534 (2016), pp. 671-675

[100] S. Longhi Synthetic gauge fields for light beams in optical resonators, Opt. Lett., Volume 40 (2015) no. 13, pp. 2941-2944

[101] N. Westerberg; C. Maitland; D. Faccio; K. Wilson; P. Öhberg; E.M. Wright Synthetic magnetism for photon fluids, Phys. Rev. A, Volume 94 (2016)

[102] J. Pritchard; D. Maxwell; A. Gauguet; K. Weatherill; M. Jones; C. Adams Cooperative atom–light interaction in a blockaded Rydberg ensemble, Phys. Rev. Lett., Volume 105 (2010) no. 19

[103] A.V. Gorshkov; J. Otterbach; M. Fleischhauer; T. Pohl; M.D. Lukin Photon–photon interactions via Rydberg blockade, Phys. Rev. Lett., Volume 107 (2011) no. 13

[104] T. Peyronel; O. Firstenberg; Q.-Y. Liang; S. Hofferberth; A.V. Gorshkov; T. Pohl; M.D. Lukin; V. Vuletić Quantum nonlinear optics with single photons enabled by strongly interacting atoms, Nature, Volume 488 (2012) no. 7409, pp. 57-60

[105] O. Firstenberg; T. Peyronel; Q.-Y. Liang; A.V. Gorshkov; M.D. Lukin; V. Vuletić Attractive photons in a quantum nonlinear medium, Nature, Volume 502 (2013) no. 7469, pp. 71-75

[106] H. Lim; E. Togan; M. Kroner; J. Miguel-Sanchez; A. Imamoğlu Electrically tunable artificial gauge potential for polaritons, Nat. Commun., Volume 8 (2017)

[107] J. Kasprzak; M. Richard; S. Kundermann; A. Baas; P. Jeambrun; J. Keeling; F. Marchetti; M. Szymańska; R. Andre; J. Staehli et al. Bose–Einstein condensation of exciton polaritons, Nature, Volume 443 (2006) no. 7110, pp. 409-414

[108] R. Balili; V. Hartwell; D. Snoke; L. Pfeiffer; K. West Bose–Einstein condensation of microcavity polaritons in a trap, Science, Volume 316 (2007) no. 5827, pp. 1007-1010

[109] H. Deng; G. Weihs; C. Santori; J. Bloch; Y. Yamamoto Condensation of semiconductor microcavity exciton-polaritons, Science, Volume 298 (2002) no. 5591, pp. 199-202

[110] H. Deng; H. Haug; Y. Yamamoto Exciton-polariton Bose–Einstein condensation, Rev. Mod. Phys., Volume 82 (2010) no. 2, p. 1489

[111] T. Byrnes; N.Y. Kim; Y. Yamamoto Exciton-polariton condensates, Nat. Phys., Volume 10 (2014) no. 11, pp. 803-813

[112] A. Amo; J. Lefrère; S. Pigeon; C. Adrados; C. Ciuti; I. Carusotto; R. Houdré; E. Giacobino; A. Bramati Superfluidity of polaritons in semiconductor microcavities, Nat. Phys., Volume 5 (2009) no. 11, pp. 805-810

[113] A. Amo; D. Sanvitto; F. Laussy; D. Ballarini; E. Del Valle; M. Martin; A. Lemaitre; J. Bloch; D. Krizhanovskii; M. Skolnick et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity, Nature, Volume 457 (2009) no. 7227, pp. 291-295

[114] K.G. Lagoudakis; M. Wouters; M. Richard; A. Baas; I. Carusotto; R. André; L.S. Dang; B. Deveaud-Plédran Quantized vortices in an exciton-polariton condensate, Nat. Phys., Volume 4 (2008) no. 9, pp. 706-710

[115] K. Lagoudakis; T. Ostatnickỳ; A. Kavokin; Y.G. Rubo; R. André; B. Deveaud-Plédran Observation of half-quantum vortices in an exciton-polariton condensate, Science, Volume 326 (2009) no. 5955, pp. 974-976

[116] D. Sanvitto; F. Marchetti; M. Szymańska; G. Tosi; M. Baudisch; F. Laussy; D. Krizhanovskii; M. Skolnick; L. Marrucci; A. Lemaitre et al. Persistent currents and quantized vortices in a polariton superfluid, Nat. Phys., Volume 6 (2010) no. 7, pp. 527-533

[117] G. Roumpos; M.D. Fraser; A. Löffler; S. Höfling; A. Forchel; Y. Yamamoto Single vortex–antivortex pair in an exciton-polariton condensate, Nat. Phys., Volume 7 (2011) no. 2, pp. 129-133

[118] A. Amo; S. Pigeon; D. Sanvitto; V. Sala; R. Hivet; I. Carusotto; F. Pisanello; G. Leménager; R. Houdré; E. Giacobino et al. Polariton superfluids reveal quantum hydrodynamic solitons, Science, Volume 332 (2011) no. 6034, pp. 1167-1170

[119] G. Nardin; G. Grosso; Y. Léger; B. Pietka; F. Morier-Genoud; B. Deveaud-Plédran Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid, Nat. Phys., Volume 7 (2011) no. 8, pp. 635-641

[120] F. Zimmer; J. Otterbach; R. Unanyan; B. Shore; M. Fleischhauer Dark-state polaritons for multicomponent and stationary light fields, Phys. Rev. A, Volume 77 (2008) no. 6

[121] M. Bajcsy; A.S. Zibrov; M.D. Lukin Stationary pulses of light in an atomic medium, Nature, Volume 426 (2003) no. 6967, pp. 638-641

[122] J. Otterbach; J. Ruseckas; R. Unanyan; G. Juzeliūnas; M. Fleischhauer Effective magnetic fields for stationary light, Phys. Rev. Lett., Volume 104 (2010) no. 3

[123] X. Luo; L. Wu; J. Chen; Q. Guan; K. Gao; Z.-F. Xu; L. You; R. Wang Tunable atomic spin–orbit coupling synthesized with a modulating gradient magnetic field, Sci. Rep., Volume 6 (2016)

[124] P.G. Harper Single band motion of conduction electrons in a uniform magnetic field, Proc. Phys. Soc. A, Volume 68 (1955) no. 10, pp. 874-878

[125] M.Y. Azbel Energy spectrum of a conduction electron in a magnetic field, Sov. Phys. JETP, Volume 19 (1964), p. 634

[126] R.R. Gerhardts; D. Weiss; U. Wulf Magnetoresistance oscillations in a grid potential: indication of a Hofstadter-type energy spectrum, Phys. Rev. B, Volume 43 (1991) no. 6, pp. 5192-5195

[127] Y. Nakamura; T. Inoshita; H. Sakaki Novel magneto-resistance oscillations in laterally modulated two-dimensional electrons with 20 nm periodicity formed on vicinal GaAs (111) B substrates, Physica E, Low-Dimens. Syst. Nanostruct., Volume 2 (1998) no. 1–4, pp. 944-948

[128] C. Albrecht; J.H. Smet; D. Weiss; K. von Klitzing; R. Hennig; M. Langenbuch; M. Suhrke; U. Rössler; V. Umansky; H. Schweizer Fermiology of two-dimensional lateral superlattices, Phys. Rev. Lett., Volume 83 (1999) no. 11, pp. 2234-2237

[129] T. Schlösser; K. Ensslin; J.P. Kotthaus; M. Holland Landau subbands generated by a lateral electrostatic superlattice – chasing the Hofstadter butterfly, Semicond. Sci. Technol., Volume 11 (1996) no. 11S, pp. 1582-1585

[130] C. Albrecht; J.H. Smet; K. von Klitzing; D. Weiss; V. Umansky; H. Schweizer Evidence of Hofstadter's fractal energy spectrum in the quantized Hall conductance, Phys. Rev. Lett., Volume 86 (2001) no. 1, pp. 147-150

[131] M.C. Geisler; J.H. Smet; V. Umansky; K. von Klitzing; B. Naundorf; R. Ketzmerick; H. Schweizer Detection of a Landau band-coupling-induced rearrangement of the Hofstadter butterfly, Phys. Rev. Lett., Volume 92 (2004) no. 25

[132] S. Melinte; M. Berciu; C. Zhou; E. Tutuc; S.J. Papadakis; C. Harrison; E.P. De Poortere; M. Wu; P.M. Chaikin; M. Shayegan; R.N. Bhatt; R.A. Register Laterally modulated 2D electron system in the extreme quantum limit, Phys. Rev. Lett., Volume 92 (2004) no. 3

[133] C.R. Dean; L. Wang; P. Maher; C. Forsythe; F. Ghahari; Y. Gao; J. Katoch; M. Ishigami; P. Moon; M. Koshino; T. Taniguchi; K. Watanabe; K.L. Shepard; J. Hone; P. Kim Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices, Nature, Volume 497 (2013) no. 7451, pp. 598-602

[134] L.A. Ponomarenko; R.V. Gorbachev; G.L. Yu; D.C. Elias; R. Jalil; A.A. Patel; A. Mishchenko; A.S. Mayorov; C.R. Woods; J.R. Wallbank; M. Mucha-Kruczynski; B.A. Piot; M. Potemski; I.V. Grigorieva; K.S. Novoselov; F. Guinea; V.I. Fal'ko; A.K. Geim Cloning of Dirac fermions in graphene superlattices, Nature, Volume 497 (2013) no. 7451, pp. 594-597

[135] B. Hunt; J.D. Sanchez-Yamagishi; A.F. Young; M. Yankowitz; B.J. LeRoy; K. Watanabe; T. Taniguchi; P. Moon; M. Koshino; P. Jarillo-Herrero; R.C. Ashoori Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure, Science, Volume 340 (2013) no. 6139, pp. 1427-1430

[136] M.-C. Chang; Q. Niu Berry phase, hyperorbits, and the Hofstadter spectrum: semiclassical dynamics in magnetic Bloch bands, Phys. Rev. B, Volume 53 (1996) no. 11, pp. 7010-7023

[137] K. von Klitzing; G. Dorda; M. Pepper New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett., Volume 45 (1980) no. 6, pp. 494-497

[138] Y. Hatsugai Chern number and edge states in the integer quantum Hall effect, Phys. Rev. Lett., Volume 71 (1993) no. 22, pp. 3697-3700

[139] Y. Hatsugai Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function, Phys. Rev. B, Volume 48 (1993) no. 16, pp. 11851-11862

[140] X.-L. Qi; Y.-S. Wu; S.-C. Zhang General theorem relating the bulk topological number to edge states in two-dimensional insulators, Phys. Rev. B, Volume 74 (2006) no. 4

[141] B.A. Bernevig; S.-C. Zhang Quantum spin Hall effect, Phys. Rev. Lett., Volume 96 (2006) no. 10

[142] N. Goldman; I. Satija; P. Nikolic; A. Bermudez; M.A. Martin-Delgado; M. Lewenstein; I. Spielman Realistic time-reversal invariant topological insulators with neutral atoms, Phys. Rev. Lett., Volume 105 (2010) no. 25

[143] F.D.M. Haldane; S. Raghu Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry, Phys. Rev. Lett., Volume 100 (2008) no. 1

[144] S. Raghu; F.D.M. Haldane Analogs of quantum-Hall-effect edge states in photonic crystals, Phys. Rev. A, Volume 78 (2008) no. 3

[145] Z. Wang; Y.D. Chong; J.D. Joannopoulos; M. Soljačić Reflection-free one-way edge modes in a gyromagnetic photonic crystal, Phys. Rev. Lett., Volume 100 (2008) no. 1

[146] Z. Wang; Y. Chong; J.D. Joannopoulos; M. Soljačić Observation of unidirectional backscattering-immune topological electromagnetic states, Nature, Volume 461 (2009) no. 7265, pp. 772-775

[147] J.-X. Fu; R.-J. Liu; Z.-Y. Li Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces, Appl. Phys. Lett., Volume 97 (2010) no. 4

[148] J.-X. Fu; J. Lian; R.J. Liu; L. Gan; Z.Y. Li Unidirectional channel-drop filter by one-way gyromagnetic photonic crystal waveguides, Appl. Phys. Lett., Volume 98 (2011) no. 21

[149] S.A. Skirlo; L. Lu; M. Soljačić Multimode one-way waveguides of large Chern numbers, Phys. Rev. Lett., Volume 113 (2014) no. 11

[150] S.A. Skirlo; L. Lu; Y. Igarashi; Q. Yan; J.D. Joannopoulos; M. Soljačić Experimental observation of large Chern numbers in photonic crystals, Phys. Rev. Lett., Volume 115 (2015) no. 25

[151] U. Kuhl; H.J. Stöckmann Microwave realization of the Hofstadter butterfly, Phys. Rev. Lett., Volume 80 (1998) no. 15, pp. 3232-3235

[152] J. Ningyuan; C. Owens; A. Sommer; D. Schuster; J. Simon Time-and site-resolved dynamics in a topological circuit, Phys. Rev. X, Volume 5 (2015) no. 2

[153] K. Fang; Z. Yu; S. Fan Realizing effective magnetic field for photons by controlling the phase of dynamic modulation, Nat. Photonics, Volume 6 (2012) no. 11, pp. 782-787

[154] P. Roushan; C. Neill; A. Megrant; Y. Chen; R. Babbush; R. Barends; B. Campbell; Z. Chen; B. Chiaro; A. Dunsworth; A. Fowler; E. Jeffrey; J. Kelly; E. Lucero; J. Mutus; P.J.J. OMalley; M. Neeley; C. Quintana; D. Sank; A. Vainsencher; J. Wenner; T. White; E. Kapit; H. Neven; J. Martinis Chiral ground-state currents of interacting photons in a synthetic magnetic field, Nat. Phys., Volume 13 (2017) no. 2, pp. 146-151

[155] K. Fang; Z. Yu; S. Fan Experimental demonstration of a photonic Aharonov–Bohm effect at radio frequencies, Phys. Rev. B, Volume 87 (2013) no. 6

[156] C. Owens; A. LaChapelle; B. Saxberg; B. Anderson; R. Ma; J. Simon; D.I. Schuster Quarter-flux Hofstadter lattice in qubit-compatible microwave cavity array, Phys. Rev. A, Volume 97 (2018)

[157] A. Wallraff; D.I. Schuster; A. Blais; L. Frunzio; R.S. Huang; J. Majer; S. Kumar; S.M. Girvin; R.J. Schoelkopf Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature, Volume 431 (2004) no. 7005, pp. 162-167

[158] B.M. Anderson; R. Ma; C. Owens; D.I. Schuster; J. Simon Engineering topological many-body materials in microwave cavity arrays, Phys. Rev. X, Volume 6 (2016) no. 4

[159] S. Tung; V. Schweikhard; E.A. Cornell Observation of vortex pinning in Bose–Einstein condensates, Phys. Rev. Lett., Volume 97 (2006) no. 24

[160] A. Hemmerich; C.M. Smith Excitation of a d-density wave in an optical lattice with driven tunneling, Phys. Rev. Lett., Volume 99 (2007) no. 11

[161] R.A. Williams; S. Al-Assam; C.J. Foot Observation of vortex nucleation in a rotating two-dimensional lattice of Bose–Einstein condensates, Phys. Rev. Lett., Volume 104 (2010) no. 5

[162] R. Sachdeva; S. Johri; S. Ghosh Cold atoms in a rotating optical lattice with nearest-neighbor interactions, Phys. Rev. A, Volume 82 (2010) no. 6

[163] N. Gemelke; E. Sarajlic; S. Chu Rotating few-body atomic systems in the fractional quantum Hall regime | arXiv

[164] A. Klein; D. Jaksch Phonon-induced artificial magnetic fields in optical lattices, Europhys. Lett., Volume 85 (2009) no. 1

[165] D. Jaksch; P. Zoller Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms, New J. Phys., Volume 5 (2003) no. 1, p. 56

[166] J. Ruostekoski; G.V. Dunne; J. Javanainen Particle number fractionalization of an atomic Fermi–Dirac gas in an optical lattice, Phys. Rev. Lett., Volume 88 (2002) no. 18

[167] E.J. Mueller Artificial electromagnetism for neutral atoms: Escher staircase and laughlin liquids, Phys. Rev. A, Volume 70 (2004) no. 4

[168] F. Gerbier; J. Dalibard Gauge fields for ultracold atoms in optical superlattices, New J. Phys., Volume 12 (2010) no. 3

[169] C.E. Creffield; F. Sols Comment on “Creating artificial magnetic fields for cold atoms by photon-assisted tunneling” by Kolovsky A. R., Europhys. Lett., Volume 101 (2013) no. 4

[170] M. Aidelsburger; M. Atala; S. Nascimbène; S. Trotzky; Y.A. Chen; I. Bloch Experimental realization of strong effective magnetic fields in an optical lattice, Phys. Rev. Lett., Volume 107 (2011) no. 25

[171] M. Atala; M. Aidelsburger; M. Lohse; J.T. Barreiro; B. Paredes; I. Bloch Observation of chiral currents with ultracold atoms in bosonic ladders, Nat. Phys., Volume 10 (2014), p. 588

[172] C.J. Kennedy; W.C. Burton; W.C. Chung; W. Ketterle Observation of Bose–Einstein condensation in a strong synthetic magnetic field, Nat. Phys., Volume 11 (2015) no. 10, pp. 859-864

[173] A. Dauphin; N. Goldman Extracting the Chern number from the dynamics of a Fermi gas: implementing a quantum Hall bar for cold atoms, Phys. Rev. Lett., Volume 111 (2013) no. 13

[174] H. Price; O. Zilberberg; T. Ozawa; I. Carusotto; N. Goldman Measurement of Chern numbers through center-of-mass responses, Phys. Rev. B, Volume 93 (2016) no. 24

[175] A. Dauphin; D.-T. Tran; M. Lewenstein; N. Goldman Loading ultracold gases in topological Floquet bands: the fate of current and center-of-mass responses, 2D Mater., Volume 4 (2017)

[176] A. Bermudez; T. Schaetz; D. Porras Photon-assisted-tunneling toolbox for quantum simulations in ion traps, New J. Phys., Volume 14 (2012) no. 5

[177] D. Thouless Quantization of particle transport, Phys. Rev. B, Volume 27 (1983) no. 10, p. 6083

[178] Q. Niu; D. Thouless Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction, J. Phys. A, Math. Gen., Volume 17 (1984) no. 12, p. 2453

[179] Q. Niu Towards a quantum pump of electric charges, Phys. Rev. Lett., Volume 64 (1990) no. 15, p. 1812

[180] Y.E. Kraus; O. Zilberberg Topological equivalence between the Fibonacci quasicrystal and the Harper model, Phys. Rev. Lett., Volume 109 (2012) no. 11

[181] M. Verbin; O. Zilberberg; Y. Lahini; Y.E. Kraus; Y. Silberberg Topological pumping over a photonic Fibonacci quasicrystal, Phys. Rev. B, Volume 91 (2015) no. 6

[182] M. Wimmer; H.M. Price; I. Carusotto; U. Peschel Experimental measurement of the Berry curvature from anomalous transport, Nat. Phys., Volume 13 (2017) no. 6, pp. 545-550

[183] M. Lohse; C. Schweizer; O. Zilberberg; M. Aidelsburger; I. Bloch A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice, Nat. Phys., Volume 12 (2016) no. 4, pp. 350-354

[184] S. Nakajima; T. Tomita; S. Taie; T. Ichinose; H. Ozawa; L. Wang; M. Troyer; Y. Takahashi Topological Thouless pumping of ultracold fermions, Nat. Phys., Volume 12 (2016) no. 4, pp. 296-300

[185] H.I. Lu; M. Schemmer; L.M. Aycock; D. Genkina; S. Sugawa; I.B. Spielman Geometrical pumping with a Bose–Einstein condensate, Phys. Rev. Lett., Volume 116 (2016) no. 20

[186] C. Schweizer; M. Lohse; R. Citro; I. Bloch Spin pumping and measurement of spin currents in optical superlattices, Phys. Rev. Lett., Volume 117 (2016) no. 17

[187] M. Lohse; C. Schweizer; H.M. Price; O. Zilberberg; I. Bloch Exploring 4D quantum Hall physics with a 2D topological charge pump, Nature, Volume 553 (2018), pp. 55-58

[188] O. Zilberberg; S. Huang; J. Guglielmon; M. Wang; K. Chen; Y.E. Kraus; M.C. Rechtsman Photonic topological boundary pumping as a probe of 4D quantum Hall physics, Nature, Volume 553 (2018), pp. 59-62

[189] G.Q. Liang; Y.D. Chong Optical resonator analog of a two-dimensional topological insulator, Phys. Rev. Lett., Volume 110 (2013) no. 20

[190] M. Hafezi; E.A. Demler; M.D. Lukin; J.M. Taylor Robust optical delay lines with topological protection, Nat. Phys., Volume 7 (2011) no. 11, pp. 907-912

[191] W. Hu; J.C. Pillay; K. Wu; M. Pasek; P.P. Shum; Y.D. Chong Measurement of a topological edge invariant in a microwave network, Phys. Rev. X, Volume 5 (2015) no. 1

[192] M. Hafezi; S. Mittal; J. Fan; A. Migdall; J.M. Taylor Imaging topological edge states in silicon photonics, Nat. Photonics, Volume 7 (2013) no. 12, pp. 1001-1005

[193] S. Mittal; S. Ganeshan; J. Fan; A. Vaezi; M. Hafezi Measurement of topological invariants in a 2D photonic system, Nat. Photonics, Volume 10 (2016) no. 3, pp. 180-183

[194] Y.-T. Wang; P.-G. Luan; S. Zhang Coriolis force induced topological order for classical mechanical vibrations, New J. Phys., Volume 17 (2015) no. 7

[195] R. Süsstrunk; S.D. Huber Classification of topological phonons in linear mechanical metamaterials, Proc. Natl. Acad. Sci. USA, Volume 113 (2016) no. 33, p. E4767-E4775

[196] R. Süsstrunk; S.D. Huber Observation of phononic helical edge states in a mechanical topological insulator, Science, Volume 349 (2015) no. 6243, pp. 47-50

[197] L.M. Nash; D. Kleckner; A. Read; V. Vitelli; A.M. Turner; W.T.M. Irvine Topological mechanics of gyroscopic metamaterials, Proc. Natl. Acad. Sci. USA, Volume 112 (2015) no. 47, pp. 14495-14500

[198] C.L. Kane; T.C. Lubensky Topological boundary modes in isostatic lattices, Nat. Phys., Volume 10 (2014) no. 1, pp. 39-45

[199] T.C. Lubensky; C.L. Kane; X. Mao; A. Souslov; K. Sun Phonons and elasticity in critically coordinated lattices, Rep. Prog. Phys., Volume 78 (2015) no. 7

[200] D.M. Sussman; O. Stenull; T.C. Lubensky Topological boundary modes in jammed matter, Soft Matter, Volume 12 (2016) no. 28, pp. 6079-6087

[201] J. Paulose; B.G.-g. Chen; V. Vitelli Topological modes bound to dislocations in mechanical metamaterials, Nat. Phys., Volume 11 (2015) no. 2, pp. 153-156

[202] B.G.-g. Chen; N. Upadhyaya; V. Vitelli Nonlinear conduction via solitons in a topological mechanical insulator, Proc. Natl. Acad. Sci. USA, Volume 111 (2014) no. 36, pp. 13004-13009

[203] W.P. Su; J.R. Schrieffer; A.J. Heeger Solitons in polyacetylene, Phys. Rev. Lett., Volume 42 (1979) no. 25, pp. 1698-1701

[204] V. Vitelli; N. Upadhyaya; B.G.-g. Chen Topological mechanisms as classical spinor fields | arXiv

[205] J. Paulose; A.S. Meeussen; V. Vitelli Selective buckling via states of self-stress in topological metamaterials, Proc. Natl. Acad. Sci. USA, Volume 112 (2015) no. 25, pp. 7639-7644

[206] B.G.-g. Chen; B. Liu; A.A. Evans; J. Paulose; I. Cohen; V. Vitelli; C.D. Santangelo Topological mechanics of origami and kirigami, Phys. Rev. Lett., Volume 116 (2016) no. 13

[207] C. Coulais; D. Sounas; A. Alù Static non-reciprocity in mechanical metamaterials, Nature, Volume 542 (2017) no. 7642, pp. 461-464

[208] D.Z. Rocklin; S. Zhou; K. Sun; X. Mao Transformable topological mechanical metamaterials, Nat. Commun., Volume 8 (2017)

[209] E. Prodan; K. Dobiszewski; A. Kanwal; J. Palmieri; C. Prodan Dynamical Majorana edge modes in a broad class of topological mechanical systems, Nat. Commun., Volume 8 (2017)

[210] M. Xiao; G. Ma; Z. Yang; P. Sheng; Z.Q. Zhang; C.T. Chan Geometric phase and band inversion in periodic acoustic systems, Nat. Phys., Volume 11 (2015) no. 3, pp. 240-244

[211] C. He; X. Ni; H. Ge; X.-C. Sun; Y.-B. Chen; M.-H. Lu; X.-P. Liu; Y.-F. Chen Acoustic topological insulator and robust one-way sound transport, Nat. Phys., Volume 12 (2016) no. 12, pp. 1124-1129

[212] R. Fleury; D.L. Sounas; C.F. Sieck; M.R. Haberman; A. Alù Sound isolation and giant linear nonreciprocity in a compact acoustic circulator, Science, Volume 343 (2014) no. 6170, pp. 516-519

[213] Z. Yang; F. Gao; X. Shi; X. Lin; Z. Gao; Y. Chong; B. Zhang Topological acoustics, Phys. Rev. Lett., Volume 114 (2015) no. 11

[214] E. Prodan; C. Prodan Topological phonon modes and their role in dynamic instability of microtubules, Phys. Rev. Lett., Volume 103 (2009) no. 24

[215] P. Wang; L. Lu; K. Bertoldi Topological phononic crystals with one-way elastic edge waves, Phys. Rev. Lett., Volume 115 (2015) no. 10

[216] M.J.A. Schuetz; E.M. Kessler; G. Giedke; L.M.K. Vandersypen; M.D. Lukin; J.I. Cirac Universal quantum transducers based on surface acoustic waves, Phys. Rev. X, Volume 5 (2015) no. 3

[217] Y.P. Wang; W.L. Yang; Y. Hu; Z.Y. Xue; Y. Wu Detecting topological phases of microwave photons in a circuit quantum electrodynamics lattice, npj Quantum Inf., Volume 2 (2016)

[218] P. Roushan; C. Neill; Y. Chen; M. Kolodrubetz; C. Quintana; N. Leung; M. Fang; R. Barends; B. Campbell; Z. Chen; B. Chiaro; A. Dunsworth; E. Jeffrey; J. Kelly; A. Megrant; J. Mutus; P.J.J. OMalley; D. Sank; A. Vainsencher; J. Wenner; T. White; A. Polkovnikov; A.N. Cleland; J.M. Martinis Observation of topological transitions in interacting quantum circuits, Nature, Volume 515 (2014) no. 7526, pp. 241-244

[219] P. Roushan; C. Neill; J. Tangpanitanon; V.M. Bastidas; A. Megrant; R. Barends; Y. Chen; Z. Chen; B. Chiaro; A. Dunsworth; A. Fowler; B. Foxen; M. Giustina; E. Jeffrey; J. Kelly; E. Lucero; J. Mutus; M. Neeley; C. Quintana; D. Sank; A. Vainsencher; J. Wenner; T. White; H. Neven; D.G. Angelakis; J. Martinis Spectroscopic signatures of localization with interacting photons in superconducting qubits, Science, Volume 358 (2017) no. 6367, pp. 1175-1179

[220] O. Boada; A. Celi; J.I. Latorre; M. Lewenstein Quantum simulation of an extra dimension, Phys. Rev. Lett., Volume 108 (2012) no. 13

[221] A. Celi; P. Massignan; J. Ruseckas; N. Goldman; I.B. Spielman; G. Juzeliūnas; M. Lewenstein Synthetic gauge fields in synthetic dimensions, Phys. Rev. Lett., Volume 112 (2014) no. 4

[222] B.K. Stuhl; H.I. Lu; L.M. Aycock; D. Genkina; I.B. Spielman Visualizing edge states with an atomic Bose gas in the quantum Hall regime, Science, Volume 349 (2015) no. 6255, pp. 1514-1518

[223] M. Mancini; G. Pagano; G. Cappellini; L. Livi; M. Rider; J. Catani; C. Sias; P. Zoller; M. Inguscio; M. Dalmonte; L. Fallani Observation of chiral edge states with neutral fermions in synthetic Hall ribbons, Science, Volume 349 (2015) no. 6255, pp. 1510-1513

[224] N.R. Cooper; A.M. Rey Adiabatic control of atomic dressed states for transport and sensing, Phys. Rev. A, Volume 92 (2015) no. 2

[225] L.F. Livi; G. Cappellini; M. Diem; L. Franchi; C. Clivati; M. Frittelli; F. Levi; D. Calonico; J. Catani; M. Inguscio; L. Fallani Synthetic dimensions and spin–orbit coupling with an optical clock transition, Phys. Rev. Lett., Volume 117 (2016) no. 22

[226] S. Kolkowitz; S.L. Bromley; T. Bothwell; M.L. Wall; G.E. Marti; A.P. Koller; X. Zhang; A.M. Rey; J. Ye Spin–orbit-coupled fermions in an optical lattice clock, Nature, Volume 542 (2017) no. 7639, pp. 66-70

[227] B. Gadway Atom-optics approach to studying transport phenomena, Phys. Rev. A, Volume 92 (2015) no. 4

[228] E.J. Meier; F.A. An; B. Gadway Atom-optics simulator of lattice transport phenomena, Phys. Rev. A, Volume 93 (2016) no. 5

[229] E.J. Meier; F.A. An; B. Gadway Observation of the topological soliton state in the Su–Schrieffer–Heeger model, Nat. Commun., Volume 7 (2016)

[230] F.A. An; E.J. Meier; B. Gadway Direct observation of chiral currents and magnetic reflection in atomic flux lattices, Sci. Adv., Volume 3 (2017) no. 4

[231] F.A. An; E.J. Meier; B. Gadway Flux-dependent localisation in a disordered flat-band lattice | arXiv

[232] H.M. Price; T. Ozawa; N. Goldman Synthetic dimensions for cold atoms from shaking a harmonic trap, Phys. Rev. A, Volume 95 (2017) no. 2

[233] D. Suszalski; J. Zakrzewski Different lattice geometries with a synthetic dimension, Phys. Rev. A, Volume 94 (2016)

[234] O. Boada; A. Celi; J. Rodríguez-Laguna; J.I. Latorre; M. Lewenstein Quantum simulation of non-trivial topology, New J. Phys., Volume 17 (2015) no. 4

[235] X.-W. Luo; X. Zhou; C.-F. Li; J.-S. Xu; G.-C. Guo; Z.-W. Zhou Quantum simulation of 2D topological physics in a 1D array of optical cavities, Nat. Commun., Volume 6 (2015), p. 8704

[236] T. Ozawa; H.M. Price; N. Goldman; O. Zilberberg; I. Carusotto Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics, Phys. Rev. A, Volume 93 (2016) no. 4

[237] L. Yuan; Y. Shi; S. Fan Photonic gauge potential in a system with a synthetic frequency dimension, Opt. Lett., Volume 41 (2016) no. 4, pp. 741-744

[238] M. Schmidt; S. Kessler; V. Peano; O. Painter; F. Marquardt Optomechanical creation of magnetic fields for photons on a lattice, Optica, Volume 2 (2015) no. 7, pp. 635-641

[239] F.D.M. Haldane Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett., Volume 61 (1988), pp. 2015-2018

[240] A.C. Neto; F. Guinea; N.M. Peres; K.S. Novoselov; A.K. Geim The electronic properties of graphene, Rev. Mod. Phys., Volume 81 (2009) no. 1, p. 109

[241] V.M. Yakovenko Chern–Simons terms and n field in haldane's model for the quantum Hall effect without landau levels, Phys. Rev. Lett., Volume 65 (1990) no. 2, p. 251

[242] X.-L. Qi; Y.-S. Wu; S.-C. Zhang Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors, Phys. Rev. B, Volume 74 (2006) no. 8

[243] N. Goldman; E. Anisimovas; F. Gerbier; P. Öhberg; I. Spielman; G. Juzeliūnas Measuring topology in a laser-coupled honeycomb lattice: from Chern insulators to topological semi-metals, New J. Phys., Volume 15 (2013) no. 1

[244] Z. Qiao; S.A. Yang; W. Feng; W.-K. Tse; J. Ding; Y. Yao; J. Wang; Q. Niu Quantum anomalous Hall effect in graphene from rashba and exchange effects, Phys. Rev. B, Volume 82 (2010) no. 16

[245] W. Beugeling; N. Goldman; C.M. Smith Topological phases in a two-dimensional lattice: magnetic field versus spin–orbit coupling, Phys. Rev. B, Volume 86 (2012) no. 7

[246] Z. Qiao; H. Jiang; X. Li; Y. Yao; Q. Niu Microscopic theory of quantum anomalous Hall effect in graphene, Phys. Rev. B, Volume 85 (2012) no. 11

[247] C.-Z. Chang; J. Zhang; X. Feng; J. Shen; Z. Zhang; M. Guo; K. Li; Y. Ou; P. Wei; L.-L. Wang et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science, Volume 340 (2013) no. 6129, pp. 167-170

[248] A. Szameit; S. Nolte Discrete optics in femtosecond-laser-written photonic structures, J. Phys. B, At. Mol. Opt. Phys., Volume 43 (2010) no. 16

[249] S. Mukherjee et al. Experimental Simulation of Solid-State Phenomena Using Photonic Lattices, Heriot-Watt University, Edinburgh, UK, 2016 (PhD thesis)

[250] Y. Plotnik; M.C. Rechtsman; D. Song; M. Heinrich; J.M. Zeuner; S. Nolte; Y. Lumer; N. Malkova; J. Xu; A. Szameit et al. Observation of unconventional edge states in ‘photonic graphene’, Nat. Mater., Volume 13 (2014) no. 1, pp. 57-62

[251] S. Mukherjee; A. Spracklen; M. Valiente; E. Andersson; P. Öhberg; N. Goldman; R.R. Thomson Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice, Nat. Commun., Volume 8 (2017)

[252] L.J. Maczewsky; J.M. Zeuner; S. Nolte; A. Szameit Observation of photonic anomalous Floquet topological insulators, Nat. Commun., Volume 8 (2017)

[253] M.S. Rudner; N.H. Lindner; E. Berg; M. Levin Anomalous edge states and the bulk–edge correspondence for periodically driven two-dimensional systems, Phys. Rev. X, Volume 3 (2013) no. 3

[254] F. Nathan; M.S. Rudner Topological singularities and the general classification of Floquet Bloch systems, New J. Phys., Volume 17 (2015) no. 12, pp. 1-22

[255] J. Struck; C. Ölschläger; R. Le Targat; P. Soltan-Panahi; A. Eckardt; M. Lewenstein; P. Windpassinger; K. Sengstock Quantum simulation of frustrated classical magnetism in triangular optical lattices, Science, Volume 333 (2011) no. 6045, pp. 996-999

[256] J. Struck; M. Weinberg; C. Ölschläger; P. Windpassinger; J. Simonet; K. Sengstock; R. Höppner; P. Hauke; A. Eckardt; M. Lewenstein; L. Mathey Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields, Nat. Phys., Volume 9 (2013), pp. 738-743 | arXiv

[257] A. Eckardt; P. Hauke; P. Soltan-Panahi; C. Becker; K. Sengstock; M. Lewenstein Frustrated quantum antiferromagnetism with ultracold bosons in a triangular lattice, Europhys. Lett., Volume 89 (2010) no. 1

[258] L. Tarruell; D. Greif; T. Uehlinger; G. Jotzu; T. Esslinger Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice, Nature, Volume 483 (2012) no. 7389, pp. 302-305

[259] W. Zheng; H. Zhai Floquet topological states in shaking optical lattices, Phys. Rev. A, Volume 89 (2014) no. 6

[260] R. Karplus; J. Luttinger Hall effect in ferromagnetics, Phys. Rev., Volume 95 (1954) no. 5, p. 1154

[261] N. Fläschner; D. Vogel; M. Tarnowski; B.S. Rem; D.-S. Lühmann; M. Heyl; J.C. Budich; L. Mathey; K. Sengstock; C. Weitenberg Observation of dynamical vortices after quenches in a system with topology, Nat. Phys., Volume 14 (2018), pp. 265-268

[262] M. Tarnowski; F. Nur Ünal; N. Fläschner; B.S. Rem; A. Eckardt; K. Sengstock; C. Weitenberg Characterizing topology by dynamics: Chern number from linking number | arXiv

[263] C. Wang; P. Zhang; X. Chen; J. Yu; H. Zhai Scheme to measure the topological number of a Chern insulator from quench dynamics, Phys. Rev. Lett., Volume 118 (2017)

[264] N. Fläschner; B. Rem; M. Tarnowski; D. Vogel; D.-S. Lühmann; K. Sengstock; C. Weitenberg Experimental reconstruction of the Berry curvature in a Floquet Bloch band, Science, Volume 352 (2016) no. 6289, pp. 1091-1094

[265] K.S. Novoselov; A.K. Geim; S.V. Morozov; D. Jiang; Y. Zhang; S.V. Dubonos; I.V. Grigorieva; A.A. Firsov Electric field effect in atomically thin carbon films, Science, Volume 306 (2004) no. 5696, pp. 666-669

[266] C. Berger; Z. Song; T. Li; X. Li; A.Y. Ogbazghi; R. Feng; Z. Dai; A.N. Marchenkov; E.H. Conrad; P.N. First; W.A. de Heer Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, J. Phys. Chem. B, Volume 108 (2004) no. 52, pp. 19912-19916

[267] K.S. Novoselov; A.K. Geim; S.V. Morozov; D. Jiang; M.I. Katsnelson; I.V. Grigorieva; S.V. Dubonos; A.A. Firsov Two-dimensional gas of massless Dirac fermions in graphene, Nature, Volume 438 (2005) no. 7065, pp. 197-200

[268] A.K. Geim; K.S. Novoselov The rise of graphene, Nat. Mater., Volume 6 (2007) no. 3, pp. 183-191

[269] M.I. Katsnelson Graphene: carbon in two dimensions, Mater. Today, Volume 10 (2007) no. 1–2, pp. 20-27

[270] S. Das Sarma; A.K. Geim; P. Kim; A.H. MacDonald Exploring graphene Recent research advances, Solid State Commun., Volume 143 (2007) no. 1–2, pp. 1-126

[271] A.K. Geim Graphene: status and prospects, Science, Volume 324 (2009) no. 5934, pp. 1530-1534

[272] K. Suenaga; H. Wakabayashi; M. Koshino; Y. Sato; K. Urita; S. Iljima Imaging active topological defects in carbon nanotubes, Nature, Volume 2 (2007) no. 6, pp. 358-360

[273] A.J. Stone; D.J. Wales Theoretical studies of icosahedral C 60 and some related species, Chem. Phys. Lett., Volume 128 (1986) no. 5–6, pp. 501-503

[274] A. Carpio; L.L. Bonilla; F. de Juan; M.A.H. Vozmediano Dislocations in graphene, New J. Phys., Volume 10 (2008) no. 5

[275] M.P. López-Sancho; F. de Juan; M.A.H. Vozmediano Magnetic moments in the presence of topological defects in graphene, Phys. Rev. B, Volume 79 (2009) no. 7

[276] P.E. Lammert; V.H. Crespi Graphene cones: classification by fictitious flux and electronic properties, Phys. Rev. B, Volume 69 (2004) no. 3

[277] C. Furtado; F. Moraes; A.M. de; M. Carvalho Geometric phases in graphitic cones, Phys. Lett. A, Volume 372 (2008) no. 32, pp. 5368-5371

[278] V.A. Osipov; D.V. Kolesnikov Electronic properties of curved carbon nanostructures, Rom. J. Phys., Volume 50 (2005) no. 3–4, pp. 435-442

[279] F. de Juan; A. Cortijo; M.A.H. Vozmediano Charge inhomogeneities due to smooth ripples in graphene sheets, Phys. Rev. B, Volume 76 (2007) no. 16

[280] J.C. Meyer; A.K. Geim; M.I. Katsnelson; K.S. Novoselov; T.J. Booth; S. Roth The structure of suspended graphene sheets, Nature, Volume 446 (2007), pp. 60-63

[281] J.C. Meyer; A.K. Geim; M.I. Katsnelson; K.S. Novoselov; D. Obergfell; S. Roth; C. Girit; A. Zettl On the roughness of single- and bi-layer graphene membranes, Solid State Commun., Volume 143 (2007) no. 1–2, pp. 101-109

[282] E. Stolyarova; K.T. Rim; S. Ryu; J. Maultzsch; P. Kim; L.E. Brus; T.F. Heinz; M.S. Hybertsen; G.W. Flynn High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface, Proc. Natl. Acad. Sci. USA, Volume 104 (2007) no. 22, pp. 9209-9212

[283] M. Ishigami; J.H. Chen; W.G. Cullen; M.S. Fuhrer; E.D. Williams Atomic structure of graphene on SiO2, Nano Lett., Volume 7 (2007) no. 6, pp. 1643-1648

[284] K. Kondo On the geometrical and physical foundations of the theory of yielding, Proceedings of the 2nd Japan National Congress for Applied Mechanics, 1952, p. 41

[285] H. Kleinert Gauge Fields in Condensed Matter, vols. 1 and 2, World Scientific, Singapore, 1989

[286] M.O. Katanaev; I.V. Volovich Theory of defects in solids and three-dimensional gravity, Ann. Phys., Volume 216 (1992), p. 1

[287] F. de Juan; A. Cortijo; M.A.H. Vozmediano Dislocations and torsion in graphene and related systems, Nucl. Phys. B, Volume 828 (2010), p. 625

[288] C.L. Kane; E.J. Mele Size, shape, and low energy electronic structure of carbon nanotubes, Phys. Rev. Lett., Volume 78 (1997) no. 10, pp. 1932-1935

[289] M.I. Katsnelson; K.S. Novoselov Graphene: new bridge between condensed matter physics and quantum electrodynamics, Solid State Commun., Volume 143 (2007) no. 1–2, pp. 3-13

[290] F. Guinea; M.I. Katsnelson; M.A.H. Vozmediano Midgap states and charge inhomogeneities in corrugated graphene, Phys. Rev. B, Volume 77 (2008) no. 7

[291] F. Guinea; M.I. Katsnelson; A.K. Geim Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering, Nat. Phys., Volume 6 (2010) no. 1, pp. 30-33

[292] F. Guinea; A.K. Geim; M.I. Katsnelson; K.S. Novoselov Generating quantizing pseudomagnetic fields by bending graphene ribbons, Phys. Rev. B, Volume 81 (2010) no. 3

[293] F. de Juan; A. Cortijo; M.A.H. Vozmediano; A. Cano Aharonov–Bohm interferences from local deformations in graphene, Nat. Phys., Volume 7 (2011), pp. 810-815

[294] N. Levy; S.A. Burke; K.L. Meaker; M. Panlasigui; A. Zettl; F. Guinea; A.H.C. Neto; M.F. Crommie Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles, Science, Volume 329 (2010) no. 5991, pp. 544-547

[295] G. Salerno; T. Ozawa; H.M. Price; I. Carusotto Propagating edge states in strained honeycomb lattices, Phys. Rev. B, Volume 95 (2017) no. 24

[296] M. Polini; F. Guinea; M. Lewenstein; H.C. Manoharan; V. Pellegrini Artificial honeycomb lattices for electrons, atoms and photons, Nat. Nanotechnol., Volume 8 (2013), pp. 625-633

[297] K.K. Gomes; W. Mar; W. Ko; F. Guinea; H.C. Manoharan Designer Dirac fermions and topological phases in molecular graphene, Nature, Volume 483 (2012) no. 7389, pp. 306-310

[298] S. Gopalakrishnan; P. Ghaemi; S. Ryu Non-Abelian SU(2) gauge fields through density wave order and strain in graphene, Phys. Rev. B, Volume 86 (2012) no. 8

[299] F. de Juan Non-Abelian gauge fields and quadratic band touching in molecular graphene, Phys. Rev. B, Volume 87 (2013) no. 12

[300] S. Roy; M. Kolodrubetz; N. Goldman; A.G. Grushin Tunable axial gauge fields in engineered Weyl semimetals: semiclassical analysis and optical lattice implementations, 2D Mater., Volume 5 (2018) no. 2

[301] A. Cortijo; Y. Ferreirós; K. Landsteiner; M.A. Vozmediano Elastic gauge fields in Weyl semimetals, Phys. Rev. Lett., Volume 115 (2015) no. 17

[302] M.C. Rechtsman; J.M. Zeuner; A. Tünnermann; S. Nolte; M. Segev; A. Szameit Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures, Nat. Photonics, Volume 7 (2013) no. 2, pp. 153-158

[303] H. Schomerus; N.Y. Halpern Parity anomaly and Landau-level lasing in strained photonic honeycomb lattices, Phys. Rev. Lett., Volume 110 (2013) no. 1

[304] B. Tian; M. Endres; D. Pekker Landau levels in strained optical lattices, Phys. Rev. Lett., Volume 115 (2015) no. 23

[305] H. Abbaszadeh; A. Souslov; J. Paulose; H. Schomerus; V. Vitelli Sonic Landau-level lasing and synthetic gauge fields in mechanical metamaterials, Phys. Rev. Lett., Volume 119 (2017)

[306] Z. Yang; F. Gao; Y. Yang; B. Zhang Strain-induced gauge field and Landau levels in acoustic structures, Phys. Rev. Lett., Volume 118 (2017) no. 19

[307] R. Winkler Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems, Springer Tracts Mod. Phys., vol. 191, Springer, Berlin, New York, 2003

[308] Y.K. Kato; R.C. Myers; A.C. Gossard; D.D. Awschalom Observation of the spin Hall effect in semiconductors, Science, Volume 306 (2004) no. 5703, pp. 1910-1913

[309] M. König; S. Wiedmann; C. Brüne; A. Roth; H. Buhmann; L.W. Molenkamp; X.-L. Qi; S.-C. Zhang Quantum spin Hall insulator state in HgTe quantum wells, Science, Volume 318 (2007) no. 5851, p. 766

[310] C. Chappert; A. Fert; F.N. Van Dau The emergence of spin electronics in data storage, Nat. Mater., Volume 6 (2007) no. 11, pp. 813-823

[311] C.L. Kane; E.J. Mele Z 2 topological order and the quantum spin Hall effect, Phys. Rev. Lett., Volume 95 (2005) no. 14

[312] B.A. Bernevig; T.L. Hughes; S.-C. Zhang Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science, Volume 314 (2006) no. 5806, p. 1757

[313] D. Hsieh; D. Qian; L. Wray; Y. Xia; Y.S. Hor; R.J. Cava; M.Z. Hasan A topological Dirac insulator in a quantum spin Hall phase, Nature, Volume 452 (2008) no. 7190, pp. 970-974

[314] R.J. Elliott Theory of the effect of spin–orbit coupling on magnetic resonance in some semiconductors, Phys. Rev., Volume 96 (1954) no. 2, p. 266

[315] C. Kittel; C.-y. Fong Quantum Theory of Solids, vol. 3, Wiley, New York, 1963

[316] G. Dresselhaus Spin–orbit coupling effects in zinc blende structures, Phys. Rev., Volume 100 (1955) no. 2, p. 580

[317] F.J. Ohkawa; Y. Uemura Quantized surface states of a narrow-gap semiconductor, J. Phys. Soc. Jpn., Volume 37 (1974) no. 5, pp. 1325-1333

[318] E.I. Rashba Properties of semiconductors with an extremum loop. I. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop, Phys. Solid State, Volume 2 (1960), pp. 1109-1122

[319] Y.A. Bychkov; E.I. Rashba Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, J. Phys. C, Solid State Phys., Volume 17 (1984) no. 33, p. 6039

[320] A. Manchon; H.C. Koo; J. Nitta; S. Frolov; R. Duine New perspectives for rashba spin–orbit coupling, Nat. Mater., Volume 14 (2015) no. 9, pp. 871-882

[321] J. Nitta; T. Akazaki; H. Takayanagi; T. Enoki Gate control of spin–orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure, Phys. Rev. Lett., Volume 78 (1997) no. 7, p. 1335

[322] S.D. Ganichev; V.V. Bel'kov; L.E. Golub; E.L. Ivchenko; P. Schneider; S. Giglberger; J. Eroms; J. De Boeck; G. Borghs; W. Wegscheider; D. Weiss; W. Prettl Experimental separation of Rashba and Dresselhaus spin splittings in semiconductor quantum wells, Phys. Rev. Lett., Volume 92 (2004) no. 25

[323] L. Meier; G. Salis; I. Shorubalko; E. Gini; S. Schön; K. Ensslin Measurement of Rashba and Dresselhaus spin–orbit magnetic fields, Nat. Phys., Volume 3 (2007) no. 9

[324] D. Grundler Large rashba splitting in inas quantum wells due to electron wave function penetration into the barrier layers, Phys. Rev. Lett., Volume 84 (2000) no. 26, p. 6074

[325] J. Heida; B. Van Wees; J. Kuipers; T. Klapwijk; G. Borghs Spin–orbit interaction in a two-dimensional electron gas in a inas/alsb quantum well with gate-controlled electron density, Phys. Rev. B, Volume 57 (1998) no. 19

[326] T. Matsuyama; R. Kürsten; C. Meißner; U. Merkt Rashba spin splitting in inversion layers on p-type bulk InAs, Phys. Rev. B, Volume 61 (2000) no. 23

[327] S. Datta; B. Das Electronic analog of the electro-optic modulator, Appl. Phys. Lett., Volume 56 (1990) no. 7, pp. 665-667

[328] J. Schliemann; J.C. Egues; D. Loss Nonballistic spin-field-effect transistor, Phys. Rev. Lett., Volume 90 (2003) no. 14

[329] F. Nagasawa; J. Takagi; Y. Kunihashi; M. Kohda; J. Nitta Experimental demonstration of spin geometric phase: radius dependence of time-reversal aharonov-casher oscillations, Phys. Rev. Lett., Volume 108 (2012) no. 8

[330] F. Nagasawa; D. Frustaglia; H. Saarikoski; K. Richter; J. Nitta Control of the spin geometric phase in semiconductor quantum rings, Nat. Commun., Volume 4 (2013), p. 2526

[331] S.Z. Butler; S.M. Hollen; L. Cao; Y. Cui; J.A. Gupta; H.R. Gutiérrez; T.F. Heinz; S.S. Hong; J. Huang; A.F. Ismach; E. Johnston-Halperin; M. Kuno; V.V. Plashnitsa; R.D. Robinson; R.S. Ruoff; S. Salahuddin; J. Shan; L. Shi; M.G. Spencer; M. Terrones; W. Windl; J.E. Goldberger Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano, Volume 7 (2013) no. 4, pp. 2898-2926

[332] M. Xu; T. Liang; M. Shi; H. Chen Graphene-like two-dimensional materials, Chem. Rev., Volume 113 (2013) no. 5, pp. 3766-3798

[333] Y. Ren; Z. Qiao; Q. Niu Topological phases in two-dimensional materials: a review, Rep. Prog. Phys., Volume 79 (2016) no. 6

[334] M.Z. Hasan; S.-Y. Xu; G. Bian Topological insulators, topological superconductors and Weyl fermion semimetals: discoveries, perspectives and outlooks, Phys. Scr., Volume 2015 (2015) no. T164

[335] N.P. Armitage; E.J. Mele; A. Vishwanath Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys., Volume 90 (2018)

[336] X.-G. Wen Theory of the edge states in fractional quantum Hall effects, Int. J. Mod. Phys. B, Volume 6 (1992) no. 10, pp. 1711-1762

[337] R.-J. Slager The translational side of topological band insulators, J. Phys. Chem. Solids (2018) (available online 31 January 2018)

[338] C.L. Kane; E.J. Mele Quantum spin Hall effect in graphene, Phys. Rev. Lett., Volume 95 (2005) no. 22

[339] V.M. Pereira; A.C. Neto; N. Peres Tight-binding approach to uniaxial strain in graphene, Phys. Rev. B, Volume 80 (2009) no. 4

[340] C. Weeks; J. Hu; J. Alicea; M. Franz; R. Wu Engineering a robust quantum spin Hall state in graphene via adatom deposition, Phys. Rev. X, Volume 1 (2011) no. 2

[341] J. Balakrishnan; G.K.W. Koon; M. Jaiswal; A.C. Neto; B. Özyilmaz Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene, Nat. Phys., Volume 9 (2013) no. 5, p. 284

[342] J. Balakrishnan; G.K.W. Koon; A. Avsar; Y. Ho; J.H. Lee; M. Jaiswal; S.-J. Baeck; J.-H. Ahn; A. Ferreira; M.A. Cazalilla et al. Giant spin Hall effect in graphene grown by chemical vapour deposition, Nat. Commun., Volume 5 (2014), p. 4748

[343] D. Marchenko; A. Varykhalov; M. Scholz; G. Bihlmayer; E. Rashba; A. Rybkin; A. Shikin; O. Rader Giant Rashba splitting in graphene due to hybridization with gold, Nat. Commun., Volume 3 (2012), p. 1232

[344] F. Calleja; H. Ochoa; M. Garnica; S. Barja; J.J. Navarro; A. Black; M.M. Otrokov; E.V. Chulkov; A. Arnau; A.L.V. De Parga et al. Spatial variation of a giant spin–orbit effect induces electron confinement in graphene on Pb islands, Nat. Phys., Volume 11 (2015) no. 1, p. 43

[345] A. Young; J. Sanchez-Yamagishi; B. Hunt; S. Choi; K. Watanabe; T. Taniguchi; R. Ashoori; P. Jarillo-Herrero et al. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state, Nature, Volume 505 (2014) no. 7484, p. 528

[346] A. Avsar; J. Tan; T. Taychatanapat; J. Balakrishnan; G. Koon; Y. Yeo; J. Lahiri; A. Carvalho; A. Rodin; E. O'farrell et al. Spin–orbit proximity effect in graphene, Nat. Commun., Volume 5 (2014), p. 4875

[347] C.-C. Liu; W. Feng; Y. Yao Quantum spin Hall effect in silicene and two-dimensional germanium, Phys. Rev. Lett., Volume 107 (2011) no. 7

[348] Z. Ni; Q. Liu; K. Tang; J. Zheng; J. Zhou; R. Qin; Z. Gao; D. Yu; J. Lu Tunable bandgap in silicene and germanene, Nano Lett., Volume 12 (2011) no. 1, pp. 113-118

[349] P. Vogt; P. De Padova; C. Quaresima; J. Avila; E. Frantzeskakis; M.C. Asensio; A. Resta; B. Ealet; G. Le Lay Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Phys. Rev. Lett., Volume 108 (2012) no. 15

[350] M.E. Dávila; L. Xian; S. Cahangirov; A. Rubio; G.L. Lay Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys., Volume 16 (2014) no. 9

[351] Y. Xu; B. Yan; H.-J. Zhang; J. Wang; G. Xu; P. Tang; W. Duan; S.-C. Zhang Large-gap quantum spin Hall insulators in tin films, Phys. Rev. Lett., Volume 111 (2013) no. 13

[352] F.-f. Zhu; W.-j. Chen; Y. Xu; C.-l. Gao; D.-d. Guan; C.-h. Liu; D. Qian; S.-C. Zhang; J.-f. Jia Epitaxial growth of two-dimensional stanene, Nat. Mater., Volume 14 (2015) no. 10, pp. 1020-1025

[353] Q.H. Wang; K. Kalantar-Zadeh; A. Kis; J.N. Coleman; M.S. Strano Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., Volume 7 (2012) no. 11, pp. 699-712

[354] M. Cazalilla; H. Ochoa; F. Guinea Quantum spin Hall effect in two-dimensional crystals of transition-metal dichalcogenides, Phys. Rev. Lett., Volume 113 (2014) no. 7

[355] X. Qian; J. Liu; L. Fu; J. Li Quantum spin Hall effect in two-dimensional transition metal dichalcogenides, Science, Volume 346 (2014) no. 6215, pp. 1344-1347

[356] X.-J. Liu; M.F. Borunda; X. Liu; J. Sinova Effect of induced spin–orbit coupling for atoms via laser fields, Phys. Rev. Lett., Volume 102 (2009) no. 4

[357] Y.-J. Lin; K. Jiménez-García; I.B. Spielman Spin–orbit-coupled Bose–Einstein condensates, Nature, Volume 471 (2011) no. 7336, pp. 83-86

[358] L.W. Cheuk; A.T. Sommer; Z. Hadzibabic; T. Yefsah; W.S. Bakr; M.W. Zwierlein Spin-injection spectroscopy of a spin–orbit coupled Fermi gas, Phys. Rev. Lett., Volume 109 (2012) no. 9

[359] P. Wang; Z.-Q. Yu; Z. Fu; J. Miao; L. Huang; S. Chai; H. Zhai; J. Zhang Spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett., Volume 109 (2012) no. 9

[360] N.Q. Burdick; Y. Tang; B.L. Lev Long-lived spin–orbit coupled degenerate dipolar Fermi gas, Phys. Rev. X, Volume 6 (2016) no. 3

[361] B. Song; C. He; S. Zhang; E. Hajiyev; W. Huang; X.-J. Liu; G.-B. Jo Spin-orbit-coupled two-electron Fermi gases of ytterbium atoms, Phys. Rev. A, Volume 94 (2016) 061604(R)

[362] K. Jiménez-García; L. LeBlanc; R. Williams; M. Beeler; C. Qu; M. Gong; C. Zhang; I. Spielman Tunable spin–orbit coupling via strong driving in ultracold-atom systems, Phys. Rev. Lett., Volume 114 (2015) no. 12

[363] S. Nascimbene Realizing one-dimensional topological superfluids with ultracold atomic gases, J. Phys. B, At. Mol. Opt. Phys., Volume 46 (2013) no. 13

[364] X. Cui; B. Lian; T.-L. Ho; B.L. Lev; H. Zhai Synthetic gauge field with highly magnetic lanthanide atoms, Phys. Rev. A, Volume 88 (2013) no. 1

[365] D. Hügel; B. Paredes Chiral ladders and the edges of quantum Hall insulators, Phys. Rev. A, Volume 89 (2014) no. 2

[366] Q. Sun; L. Wen; W.-M. Liu; G. Juzeliūnas; A.-C. Ji Tunneling-assisted spin–orbit coupling in bilayer Bose–Einstein condensates, Phys. Rev. A, Volume 91 (2015) no. 3

[367] C. Wang; C. Gao; C.-M. Jian; H. Zhai Spin–orbit coupled spinor Bose–Einstein condensates, Phys. Rev. Lett., Volume 105 (2010) no. 16

[368] Z. Lan; P. Öhberg Raman-dressed spin-1 spin–orbit coupled quantum gas, Phys. Rev. A, Volume 89 (2014) no. 2

[369] S.S. Natu; X. Li; W.S. Cole Striped ferronematic ground states in a spin–orbit coupled s=1 bose gas, Phys. Rev. A, Volume 91 (2015) no. 2

[370] D. Campbell; R. Price; A. Putra; A. Valdés-Curiel; D. Trypogeorgos; I. Spielman Magnetic phases of spin-1 spin–orbit coupled bose gases, Nat. Commun., Volume 7 (2016)

[371] R. Unanyan; B. Shore; K. Bergmann Laser-driven population transfer in four-level atoms: consequences of non-Abelian geometrical adiabatic phase factors, Phys. Rev. A, Volume 59 (1999) no. 4, p. 2910

[372] J. Ruseckas; G. Juzeliūnas; P. Öhberg; M. Fleischhauer Non-Abelian gauge potentials for ultracold atoms with degenerate dark states, Phys. Rev. Lett., Volume 95 (2005) no. 1

[373] G. Juzeliūnas; J. Ruseckas; J. Dalibard Generalized Rashba–Dresselhaus spin–orbit coupling for cold atoms, Phys. Rev. A, Volume 81 (2010) no. 5

[374] D.L. Campbell; G. Juzeliūnas; I.B. Spielman Realistic Rashba and Dresselhaus spin–orbit coupling for neutral atoms, Phys. Rev. A, Volume 84 (2011) no. 2

[375] L. Huang; Z. Meng; P. Wang; P. Peng; S.-L. Zhang; L. Chen; D. Li; Q. Zhou; J. Zhang Experimental realization of two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases, Nat. Phys., Volume 12 (2016)

[376] Z. Meng; L. Huang; P. Peng; D. Li; L. Chen; Y. Xu; C. Zhang; P. Wang; J. Zhang Experimental observation of a topological band gap opening in ultracold Fermi gases with two-dimensional, spin–orbit coupling, Phys. Rev. Lett., Volume 117 (2016) no. 23

[377] Z. Wu; L. Zhang; W. Sun; X.-T. Xu; B.-Z. Wang; S.-C. Ji; Y. Deng; S. Chen; X.-J. Liu; J.-W. Pan Realization of two-dimensional spin–orbit coupling for Bose–Einstein condensates, Science, Volume 354 (2016) no. 6308

[378] X.-J. Liu; K.T. Law; T.K. Ng; P.A. Lee Detecting topological phases in cold atoms, Phys. Rev. Lett., Volume 111 (2013) no. 12

[379] A. Bermudez; L. Mazza; M. Rizzi; N. Goldman; M. Lewenstein; M.A. Martin-Delgado Wilson fermions and axion electrodynamics in optical lattices, Phys. Rev. Lett., Volume 105 (2010) no. 19

[380] B.M. Anderson; G. Juzeliūnas; V.M. Galitski; I.B. Spielman Synthetic 3d spin–orbit coupling, Phys. Rev. Lett., Volume 108 (2012) no. 23

[381] L. Mazza; A. Bermudez; N. Goldman; M. Rizzi; M.A. Martin-Delgado; M. Lewenstein An optical-lattice-based quantum simulator for relativistic field theories and topological insulators, New J. Phys., Volume 14 (2012) no. 1

[382] T. Dubček; C.J. Kennedy; L. Lu; W. Ketterle; M. Soljačić; H. Buljan Weyl points in three-dimensional optical lattices: synthetic magnetic monopoles in momentum space, Phys. Rev. Lett., Volume 114 (2015) no. 22

[383] J. Struck; J. Simonet; K. Sengstock Spin–orbit coupling in periodically driven optical lattices, Phys. Rev. A, Volume 90 (2014) no. 3

[384] C.J. Kennedy; G.A. Siviloglou; H. Miyake; W.C. Burton; W. Ketterle Spin–orbit coupling and quantum spin Hall effect for neutral atoms without spin flips, Phys. Rev. Lett., Volume 111 (2013) no. 22

[385] S. Choudhury; E.J. Mueller Transverse collisional instabilities of a Bose–Einstein condensate in a driven one-dimensional lattice, Phys. Rev. A, Volume 91 (2015) no. 2

[386] T. Bilitewski; N.R. Cooper Scattering theory for Floquet–Bloch states, Phys. Rev. A, Volume 91 (2015)

[387] M. Weinberg; C. Ölschläger; C. Sträter; S. Prelle; A. Eckardt; K. Sengstock; J. Simonet Multiphoton interband excitations of quantum gases in driven optical lattices, Phys. Rev. A, Volume 92 (2015) no. 4

[388] S. Lellouch; M. Bukov; E. Demler; N. Goldman Parametric instability rates in periodically driven band systems, Phys. Rev. X, Volume 7 (2017) no. 2

[389] M.L. Wall; A.P. Koller; S. Li; X. Zhang; N.R. Cooper; J. Ye; A.M. Rey Synthetic spin–orbit coupling in an optical lattice clock, Phys. Rev. Lett., Volume 116 (2016) no. 3

[390] J.-Y. Zhang; S.-C. Ji; Z. Chen; L. Zhang; Z.-D. Du; B. Yan; G.-S. Pan; B. Zhao; Y.-J. Deng; H. Zhai; S. Chen; J.-W. Pan Collective dipole oscillations of a spin–orbit coupled Bose–Einstein condensate, Phys. Rev. Lett., Volume 109 (2012) no. 11

[391] C. Qu; C. Hamner; M. Gong; C. Zhang; P. Engels Observation of Zitterbewegung in a spin–orbit coupled Bose–Einstein condensate, Phys. Rev. A, Volume 88 (2013) no. 2

[392] L.J. LeBlanc; M. Beeler; K. Jiménez-García; A.R. Perry; S. Sugawa; R. Williams; I.B. Spielman Direct observation of zitterbewegung in a Bose–Einstein condensate, New J. Phys., Volume 15 (2013) no. 7

[393] J.Y. Vaishnav; J. Ruseckas; C.W. Clark; G. Juzeliūnas Spin field effect transistors with ultracold atoms, Phys. Rev. Lett., Volume 101 (2008) no. 26

[394] M.C. Beeler; R.A. Williams; K. Jiménez-García; L.J. LeBlanc; A.R. Perry; I.B. Spielman The spin Hall effect in a quantum gas, Nature, Volume 498 (2013) no. 7453

[395] A.J. Olson; S.-J. Wang; R.J. Niffenegger; C.-H. Li; C.H. Greene; Y.P. Chen Tunable Landau–Zener transitions in a spin–orbit coupled Bose–Einstein condensate, Phys. Rev. A, Volume 90 (2014) no. 1

[396] Q. Zhu; C. Zhang; B. Wu Exotic superfluidity in spin–orbit coupled Bose–Einstein condensates, Europhys. Lett., Volume 100 (2012) no. 5

[397] C. Hamner; Y. Zhang; M. Khamehchi; M.J. Davis; P. Engels Spin-orbit-coupled Bose–Einstein condensates in a one-dimensional optical lattice, Phys. Rev. Lett., Volume 114 (2015) no. 7

[398] C. Zhang; S. Tewari; R.M. Lutchyn; S.D. Sarma px+ipy superfluid from s-wave interactions of fermionic cold atoms, Phys. Rev. Lett., Volume 101 (2008) no. 16

[399] J.P. Vyasanakere; V.B. Shenoy Bound states of two spin-1/2 fermions in a synthetic non-Abelian gauge field, Phys. Rev. B, Volume 83 (2011) no. 9

[400] L. Jiang; X.-J. Liu; H. Hu; H. Pu Rashba spin–orbit coupled atomic Fermi gases, Phys. Rev. A, Volume 84 (2011) no. 6

[401] J. Zhou; W. Zhang; W. Yi Topological superfluid in a trapped two-dimensional polarized Fermi gas with spin–orbit coupling, Phys. Rev. A, Volume 84 (2011) no. 6

[402] R.A. Williams; L.J. LeBlanc; K. Jimenez-Garcia; M.C. Beeler; A.R. Perry; W.D. Phillips; I.B. Spielman Synthetic partial waves in ultracold atomic collisions, Science, Volume 335 (2012) no. 6066, pp. 314-317

[403] R. Williams; M. Beeler; L. LeBlanc; K. Jiménez-García; I. Spielman Raman-induced interactions in a single-component Fermi gas near an s-wave Feshbach resonance, Phys. Rev. Lett., Volume 111 (2013) no. 9

[404] Z. Fu; L. Huang; Z. Meng; P. Wang; L. Zhang; S. Zhang; H. Zhai; P. Zhang; J. Zhang Production of Feshbach molecules induced by spin–orbit coupling in Fermi gases, Nat. Phys., Volume 10 (2014) no. 2, pp. 110-115

[405] Z. Fu; L. Huang; Z. Meng; P. Wang; X.-J. Liu; H. Pu; H. Hu; J. Zhang Radio-frequency spectroscopy of a strongly interacting spin–orbit coupled Fermi gas, Phys. Rev. A, Volume 87 (2013) no. 5

[406] S.-C. Ji; J.-Y. Zhang; L. Zhang; Z.-D. Du; W. Zheng; Y.-J. Deng; H. Zhai; S. Chen; J.-W. Pan Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas, Nat. Phys., Volume 10 (2014) no. 4

[407] T.-L. Ho; S. Zhang Bose–Einstein condensates with spin–orbit interaction, Phys. Rev. Lett., Volume 107 (2011) no. 15

[408] Y. Li; L. Pitaevskii; S. Stringari Quantum tricriticality and phase transitions in spin–orbit coupled Bose–Einstein condensates, Phys. Rev. Lett., Volume 108 (2012) no. 22

[409] C. Hamner; C. Qu; Y. Zhang; J. Chang; M. Gong; C. Zhang; P. Engels Dicke-type phase transition in a spin–orbit coupled Bose–Einstein condensate, Nat. Commun., Volume 5 (2014)

[410] S.-C. Ji; L. Zhang; X.-T. Xu; Z. Wu; Y. Deng; S. Chen; J.-W. Pan Softening of roton and phonon modes in a Bose–Einstein condensate with spin–orbit coupling, Phys. Rev. Lett., Volume 114 (2015) no. 10

[411] J.-R. Li; J. Lee; W. Huang; S. Burchesky; B. Shteynas; F.Ç. Top; A.O. Jamison; W. Ketterle A stripe phase with supersolid properties in spin–orbit coupled Bose–Einstein condensates, Nature, Volume 543 (2017) no. 7643, pp. 91-94

[412] A.Y. Kitaev Unpaired Majorana fermions in quantum wires, Phys. Usp., Volume 44 (2001) no. 10S, p. 131

[413] M. Sato; Y. Takahashi; S. Fujimoto Non-Abelian topological order in s-wave superfluids of ultracold fermionic atoms, Phys. Rev. Lett., Volume 103 (2009) no. 2

[414] L. Jiang; T. Kitagawa; J. Alicea; A. Akhmerov; D. Pekker; G. Refael; J.I. Cirac; E. Demler; M.D. Lukin; P. Zoller Majorana fermions in equilibrium and in driven cold-atom quantum wires, Phys. Rev. Lett., Volume 106 (2011) no. 22

[415] S.-L. Zhu; L.-B. Shao; Z. Wang; L.-M. Duan Probing non-Abelian statistics of majorana fermions in ultracold atomic superfluid, Phys. Rev. Lett., Volume 106 (2011) no. 10

[416] X. Wan; A.M. Turner; A. Vishwanath; S.Y. Savrasov Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B, Volume 83 (2011) no. 20

[417] J.-H. Jiang Tunable topological Weyl semimetal from simple-cubic lattices with staggered fluxes, Phys. Rev. A, Volume 85 (2012) no. 3

[418] D.-W. Zhang; S.-L. Zhu; Z. Wang Simulating and exploring Weyl semimetal physics with cold atoms in a two-dimensional optical lattice, Phys. Rev. A, Volume 92 (2015) no. 1

[419] W.-Y. He; S. Zhang; K.T. Law Realization and detection of Weyl semimetals and the chiral anomaly in cold atomic systems, Phys. Rev. A, Volume 94 (2016) no. 1

[420] H. Zhai Spin–orbit coupled quantum gases, Int. J. Mod. Phys. B, Volume 26 (2012) no. 01

[421] X. Zhou; Y. Li; Z. Cai; C. Wu Unconventional states of bosons with the synthetic spin–orbit coupling, J. Phys. B, At. Mol. Opt. Phys., Volume 46 (2013) no. 13

[422] I.B. Galitski; V. Spielman Spin–orbit coupling in quantum gases, Nature, Volume 494 (2013) no. 7435

[423] V. Liberman; B.Y. Zel'dovich Spin–orbit interaction of a photon in an inhomogeneous medium, Phys. Rev. A, Volume 46 (1992) no. 8, p. 5199

[424] K.Y. Bliokh; Y.P. Bliokh Modified geometrical optics of a smoothly inhomogeneous isotropic medium: the anisotropy, Berry phase, and the optical Magnus effect, Phys. Rev. E, Volume 70 (2004) no. 2

[425] K.Y. Bliokh; F. Rodríguez-Fortuño; F. Nori; A.V. Zayats Spin–orbit interactions of light, Nat. Photonics, Volume 9 (2015) no. 12, pp. 796-808

[426] S. Rytov On the transition from wave to geometrical optics, Dokl. Akad. Nauk SSSR, Volume 18 (1938), pp. 263-267

[427] V. Vladimirsky On the plane polarization in a curvilinear light ray, Dokl. Acad. Nauk USSR, Volume 31 (1940), p. 222

[428] R.Y. Chiao; Y.-S. Wu Manifestations of Berry's topological phase for the photon, Phys. Rev. Lett., Volume 57 (1986) no. 8, p. 933

[429] A. Tomita; R.Y. Chiao Observation of Berry's topological phase by use of an optical fiber, Phys. Rev. Lett., Volume 57 (1986) no. 8, p. 937

[430] M. Onoda; S. Murakami; N. Nagaosa Hall effect of light, Phys. Rev. Lett., Volume 93 (2004) no. 8

[431] K.Y. Bliokh; Y.P. Bliokh Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet, Phys. Rev. Lett., Volume 96 (2006) no. 7

[432] F. Goos; H. Hänchen Ein neuer und fundamentaler versuch zur totalreflexion, Ann. Phys., Volume 436 (1947) no. 7–8, pp. 333-346

[433] F.I. Fedorov K teorii polnogo otrazheniya, Dokl. Akad. Nauk SSSR, Volume 105 (1955) no. 3, pp. 465-468

[434] C. Imbert Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam, Phys. Rev. D, Volume 5 (1972) no. 4, p. 787

[435] K.Y. Bliokh; A. Aiello Goos–Hänchen and Imbert–Fedorov beam shifts: an overview, J. Opt., Volume 15 (2013) no. 1

[436] F. Pillon; H. Gilles; S. Girard Experimental observation of the Imbert–Fedorov transverse displacement after a single total reflection, Appl. Opt., Volume 43 (2004) no. 9, pp. 1863-1869

[437] O. Hosten; P. Kwiat Observation of the spin Hall effect of light via weak measurements, Science, Volume 319 (2008) no. 5864, pp. 787-790

[438] Y. Qin; Y. Li; H. He; Q. Gong Measurement of spin Hall effect of reflected light, Opt. Lett., Volume 34 (2009) no. 17, pp. 2551-2553

[439] K.Y. Bliokh; A. Niv; V. Kleiner; E. Hasman Geometrodynamics of spinning light, Nat. Photonics, Volume 2 (2008) no. 12, pp. 748-753

[440] Y. Qin; Y. Li; X. Feng; Z. Liu; H. He; Y.-F. Xiao; Q. Gong Spin Hall effect of reflected light at the air-uniaxial crystal interface, Opt. Express, Volume 18 (2010) no. 16, pp. 16832-16839

[441] J.-M. Ménard; A.E. Mattacchione; H.M. van Driel; C. Hautmann; M. Betz Ultrafast optical imaging of the spin Hall effect of light in semiconductors, Phys. Rev. B, Volume 82 (2010) no. 4

[442] N. Hermosa; A. Nugrowati; A. Aiello; J. Woerdman Spin Hall effect of light in metallic reflection, Opt. Lett., Volume 36 (2011) no. 16, pp. 3200-3202

[443] X. Zhou; Z. Xiao; H. Luo; S. Wen Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements, Phys. Rev. A, Volume 85 (2012) no. 4

[444] X. Zhou; X. Ling; H. Luo; S. Wen Identifying graphene layers via spin Hall effect of light, Appl. Phys. Lett., Volume 101 (2012) no. 25

[445] X. Yin; Z. Ye; J. Rho; Y. Wang; X. Zhang Photonic spin Hall effect at metasurfaces, Science, Volume 339 (2013) no. 6126, pp. 1405-1407

[446] Y. Zhao; J.S. Edgar; G.D. Jeffries; D. McGloin; D.T. Chiu Spin-to-orbital angular momentum conversion in a strongly focused optical beam, Phys. Rev. Lett., Volume 99 (2007) no. 7

[447] D. Haefner; S. Sukhov; A. Dogariu Spin Hall effect of light in spherical geometry, Phys. Rev. Lett., Volume 102 (2009) no. 12

[448] O.G. Rodríguez-Herrera; D. Lara; K.Y. Bliokh; E.A. Ostrovskaya; C. Dainty Optical nanoprobing via spin–orbit interaction of light, Phys. Rev. Lett., Volume 104 (2010) no. 25

[449] L. Marrucci; E. Karimi; S. Slussarenko; B. Piccirillo; E. Santamato; E. Nagali; F. Sciarrino Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications, J. Opt., Volume 13 (2011) no. 6

[450] G. Li; M. Kang; S. Chen; S. Zhang; E. Pun; K. Cheah; J. Li Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light, Nano Lett., Volume 13 (2013) no. 9, pp. 4148-4151

[451] N. Baranova; A.Y. Savchenko; B.Y. Zel'Dovich Transverse shift of a focal spot due to switching of the sign of circular polarization, JETP Lett., Volume 59 (1994) no. 4, pp. 232-234

[452] K.Y. Bliokh; Y. Gorodetski; V. Kleiner; E. Hasman Coriolis effect in optics: unified geometric phase and spin-Hall effect, Phys. Rev. Lett., Volume 101 (2008) no. 3

[453] Y. Gorodetski; A. Niv; V. Kleiner; E. Hasman Observation of the spin-based plasmonic effect in nanoscale structures, Phys. Rev. Lett., Volume 101 (2008) no. 4

[454] N. Shitrit; I. Bretner; Y. Gorodetski; V. Kleiner; E. Hasman Optical spin Hall effects in plasmonic chains, Nano Lett., Volume 11 (2011) no. 5, pp. 2038-2042

[455] Y. Gorodetski; K. Bliokh; B. Stein; C. Genet; N. Shitrit; V. Kleiner; E. Hasman; T. Ebbesen Weak measurements of light chirality with a plasmonic slit, Phys. Rev. Lett., Volume 109 (2012) no. 1

[456] X. Ling; X. Yi; X. Zhou; Y. Liu; W. Shu; H. Luo; S. Wen Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect, Appl. Phys. Lett., Volume 105 (2014) no. 15

[457] S.S. Kruk; M. Decker; I. Staude; S. Schlecht; M. Greppmair; D.N. Neshev; Y.S. Kivshar Spin-polarized photon emission by resonant multipolar nanoantennas, ACS Photonics, Volume 1 (2014) no. 11, pp. 1218-1223

[458] J. Lin; J.B. Mueller; Q. Wang; G. Yuan; N. Antoniou; X.-C. Yuan; F. Capasso Polarization-controlled tunable directional coupling of surface plasmon polaritons, Science, Volume 340 (2013) no. 6130, pp. 331-334

[459] N. Shitrit; I. Yulevich; E. Maguid; D. Ozeri; D. Veksler; V. Kleiner; E. Hasman Spin-optical metamaterial route to spin-controlled photonics, Science, Volume 340 (2013) no. 6133, pp. 724-726

[460] N. Meinzer; W.L. Barnes; I.R. Hooper Plasmonic meta-atoms and metasurfaces, Nat. Photonics, Volume 8 (2014) no. 12, pp. 889-898

[461] D. O'connor; P. Ginzburg; F. Rodríguez-Fortuño; G. Wurtz; A. Zayats Spin–orbit coupling in surface plasmon scattering by nanostructures, Nat. Commun., Volume 5 (2014), p. 5327

[462] Y. Liu; Y. Ke; H. Luo; S. Wen Photonic spin Hall effect in metasurfaces: a brief review, Nanophotonics, Volume 6 (2017) no. 1, pp. 51-70

[463] L. Marrucci; C. Manzo; D. Paparo Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media, Phys. Rev. Lett., Volume 96 (2006) no. 16

[464] E. Nagali; F. Sciarrino; F. De Martini; L. Marrucci; B. Piccirillo; E. Karimi; E. Santamato Quantum information transfer from spin to orbital angular momentum of photons, Phys. Rev. Lett., Volume 103 (2009) no. 1

[465] E. Brasselet; N. Murazawa; H. Misawa; S. Juodkazis Optical vortices from liquid crystal droplets, Phys. Rev. Lett., Volume 103 (2009) no. 10

[466] E. Brasselet; C. Loussert Electrically controlled topological defects in liquid crystals as tunable spin–orbit encoders for photons, Opt. Lett., Volume 36 (2011) no. 5, pp. 719-721

[467] M. Born; E. Wolf et al. Principles of Optics, Pergamon Press, 1980

[468] M. Dyakonov; V. Perel Current-induced spin orientation of electrons in semiconductors, Phys. Lett. A, Volume 35 (1971) no. 6, pp. 459-460

[469] G. Pikus; G. Bir Exchange interaction in excitons in semiconductors, Sov. Phys. JETP, Volume 33 (1971), p. 108

[470] M. Maialle; E. de Andrada e Silva; L. Sham Exciton spin dynamics in quantum wells, Phys. Rev. B, Volume 47 (1993) no. 23

[471] A. Kavokin; G. Malpuech; M. Glazov Optical spin Hall effect, Phys. Rev. Lett., Volume 95 (2005) no. 13

[472] C. Leyder; M. Romanelli; J.P. Karr; E. Giacobino; T.C. Liew; M.M. Glazov; A.V. Kavokin; G. Malpuech; A. Bramati Observation of the optical spin Hall effect, Nat. Phys., Volume 3 (2007) no. 9, p. 628

[473] I. Shelykh; A. Kavokin; Y.G. Rubo; T. Liew; G. Malpuech Polariton polarization-sensitive phenomena in planar semiconductor microcavities, Semicond. Sci. Technol., Volume 25 (2009) no. 1

[474] V. Sala; D. Solnyshkov; I. Carusotto; T. Jacqmin; A. Lemaître; H. Terças; A. Nalitov; M. Abbarchi; E. Galopin; I. Sagnes et al. Spin–orbit coupling for photons and polaritons in microstructures, Phys. Rev. X, Volume 5 (2015) no. 1

[475] J. Bloch; F. Boeuf; J. Gérard; B. Legrand; J. Marzin; R. Planel; V. Thierry-Mieg; E. Costard Strong and weak coupling regime in pillar semiconductor microcavities, Physica E, Low-Dimens. Syst. Nanostruct., Volume 2 (1998) no. 1, pp. 915-919

[476] A. Nalitov; G. Malpuech; H. Terças; D. Solnyshkov Spin–orbit coupling and the optical spin Hall effect in photonic graphene, Phys. Rev. Lett., Volume 114 (2015) no. 2

[477] T. Jacqmin; I. Carusotto; I. Sagnes; M. Abbarchi; D. Solnyshkov; G. Malpuech; E. Galopin; A. Lemaître; J. Bloch; A. Amo Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons, Phys. Rev. Lett., Volume 112 (2014) no. 11

[478] H. Terças; H. Flayac; D. Solnyshkov; G. Malpuech Non-Abelian gauge fields in photonic cavities and photonic superfluids, Phys. Rev. Lett., Volume 112 (2014) no. 6

[479] X.-C. Sun; C. He; X.-P. Liu; M.-H. Lu; S.-N. Zhu; Y.-F. Chen Two-dimensional topological photonic systems, Prog. Quantum Electron., Volume 55 (2017), pp. 52-73

[480] F. Gao; Z. Gao; X. Shi; Z. Yang; X. Lin; H. Xu; J.D. Joannopoulos; M. Soljačić; H. Chen; L. Lu et al. Probing topological protection using a designer surface plasmon structure, Nat. Commun., Volume 7 (2016)

[481] A.B. Khanikaev; S. Hossein Mousavi; W.-K. Tse; M. Kargarian; A.H. MacDonald; G. Shvets Photonic topological insulators, Nat. Mater., Volume 12 (2013) no. 3, pp. 233-239

[482] W. Chen; S. Jiang; X. Chen; B. Zhu; L. Zhou; J. Dong; C. Chan Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide, Nat. Commun., Volume 5 (2014), p. 5782

[483] X. Cheng; C. Jouvaud; X. Ni; S.H. Mousavi; A.Z. Genack; A.B. Khanikaev Robust reconfigurable electromagnetic pathways within a photonic topological insulator, Nat. Mater., Volume 15 (2016) no. 5, pp. 542-548

[484] A.P. Slobozhanyuk; A.B. Khanikaev; D.S. Filonov; D.A. Smirnova; A.E. Miroshnichenko; Y.S. Kivshar Experimental demonstration of topological effects in bianisotropic metamaterials, Sci. Rep., Volume 6 (2016)

[485] L. Lu; L. Fu; J.D. Joannopoulos; M. Soljačić Weyl points and line nodes in gyroid photonic crystals, Nat. Photonics, Volume 7 (2013) no. 4, pp. 294-299

[486] L. Lu; Z. Wang; D. Ye; L. Ran; L. Fu; J.D. Joannopoulos; M. Soljačić Experimental observation of Weyl points, Science, Volume 349 (2015) no. 6248, pp. 622-624

[487] W.-j. Chen; M. Xiao; C. Chan Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states, Nat. Commun., Volume 7 (2016)

[488] V. Peano; C. Brendel; M. Schmidt; F. Marquardt Topological phases of sound and light, Phys. Rev. X, Volume 5 (2015)

[489] A.B. Khanikaev; R. Fleury; S.H. Mousavi; A. Alù Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice, Nat. Commun., Volume 6 (2015), p. 8260

[490] T. Kariyado; Y. Hatsugai Manipulation of Dirac cones in mechanical graphene, Sci. Rep., Volume 5 (2015)

[491] C. Brendel; V. Peano; O.J. Painter; F. Marquardt Pseudomagnetic fields for sound at the nanoscale, Proc. Natl. Acad. Sci., Volume 114 (2017) no. 17, p. E3390-E3395

[492] G. Ma; P. Sheng Acoustic metamaterials: from local resonances to broad horizons, Sci. Adv., Volume 2 (2016) no. 2

[493] G. Salerno; A. Berardo; T. Ozawa; H.M. Price; L. Taxis; N.M. Pugno; I. Carusotto Spin–orbit coupling in a hexagonal ring of pendula, New J. Phys., Volume 19 (2017)

[494] S.-Y. Yu; X.-C. Sun; X. Ni; Q. Wang; X.-J. Yan; C. He; X.-P. Liu; L. Feng; M.-H. Lu; Y.-F. Chen Surface phononic graphene, Nat. Mater., Volume 15 (2016) no. 12, pp. 1243-1247

[495] L. Ye; C. Qiu; J. Lu; X. Wen; Y. Shen; M. Ke; F. Zhang; Z. Liu Observation of acoustic valley vortex states and valley-chirality locked beam splitting, Phys. Rev. B, Volume 95 (2017) no. 17

[496] Q. Wei; Y. Tian; S.-Y. Zuo; Y. Cheng; X.-J. Liu Experimental demonstration of topologically protected efficient sound propagation in an acoustic waveguide network, Phys. Rev. B, Volume 95 (2017) no. 9

[497] B.-Z. Xia; T.-T. Liu; H.-Q. Dai; J.-R. Jiao; X.-G. Zang; D.-J. Yu; S.-J. Zheng; J. Liu Topological phononic insulator with robustly pseudospin-dependent transport, Phys. Rev. B, Volume 96 (2017)

[498] F. Wilczek Two applications of axion electrodynamics, Phys. Rev. Lett., Volume 58 (1987) no. 18, p. 1799

[499] B.A. Bernevig It's been a Weyl coming, Nat. Phys., Volume 11 (2015), pp. 698-699

[500] R.A. Bertlmann Anomalies in Quantum Field Theory, vol. 91, Oxford University Press, 2000

[501] S.R. Elliott; M. Franz Colloquium: majorana fermions in nuclear, particle, and solid-state physics, Rev. Mod. Phys., Volume 87 (2015), pp. 137-163

[502] J.I. Cirac; P. Maraner; J.K. Pachos Cold atom simulation of interacting relativistic quantum field theories, Phys. Rev. Lett., Volume 105 (2010)

[503] E. Zohar; J.I. Cirac; B. Reznik Simulating compact quantum electrodynamics with ultracold atoms: probing confinement and nonperturbative effects, Phys. Rev. Lett., Volume 109 (2012)

[504] D. Banerjee; M. Dalmonte; M. Müller; E. Rico; P. Stebler; U.-J. Wiese; P. Zoller Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench, Phys. Rev. Lett., Volume 109 (2012)

[505] L. Tagliacozzo; A. Celi; P. Orland; M.W. Mitchell; M. Lewenstein Simulation of non-Abelian gauge theories with optical lattices, Nat. Commun., Volume 4 (2013), p. 2615

[506] O. Dutta; L. Tagliacozzo; M. Lewenstein; J. Zakrzewski Toolbox for Abelian lattice gauge theories with synthetic matter, Phys. Rev. A, Volume 95 (2017)

[507] E.A. Martinez; C.A. Muschik; P. Schindler; D. Nigg; A. Erhard; M. Heyl; P. Hauke; M. Dalmonte; T. Monz; P. Zoller; R. Blatt Real-time dynamics of lattice gauge theories with a few-qubit quantum computer, Nature, Volume 534 (2016) no. 7608, pp. 516-519

Cited by Sources:

Comments - Policy