Comptes Rendus
Artificial gauge fields in materials and engineered systems
[Champs de jauge artificiels dans les matériaux et systèmes synthétiques]
Comptes Rendus. Physique, Quantum simulation / Simulation quantique, Volume 19 (2018) no. 6, pp. 394-432.

Les champs de jauge artificiels sont aujourd'hui réalisés dans une large gamme d'environnements physiques. Ceci inclut les dispositifs relatifs à la physique de l'état solide, mais aussi les systèmes « synthétiques » tels que les cristaux photoniques, les gaz ultrafroids et les systèmes mécaniques. C'est l'objet de cette revue d'offrir, pour la première fois, une vision unifiée de ces diverses formes de champs électromagnétiques artificiels et de couplages spin-orbite pour la matière et la lumière. Cette revue d'actualité fournit une introduction générale au concept universel de champ de jauge artificiel, dans une forme qui soit accessible aux jeunes chercheurs abordant le domaine. De plus, ce travail ambitionne de connecter différentes communautés, en révélant les liens explicites entre les différentes formes et réalisations de champs de jauge artificiels.

Artificial gauge fields are currently realized in a wide range of physical settings. This includes solid-state devices but also engineered systems, such as photonic crystals, ultracold gases and mechanical setups. It is the aim of this review to offer, for the first time, a unified view on these various forms of artificial electromagnetic fields and spin–orbit couplings for matter and light. This topical review provides a general introduction to the universal concept of engineered gauge fields, in a form that is accessible to young researchers entering the field. Moreover, this work aims to connect different communities, by revealing explicit links between the diverse forms and realizations of artificial gauge fields.

Publié le :
DOI : 10.1016/j.crhy.2018.03.002
Keywords: Gauge fields, Quantum simulation, Condensed matter
Mots-clés : Champs de jauge, Simulation quantique, Matière condensée

Monika Aidelsburger 1, 2, 3 ; Sylvain Nascimbene 1 ; Nathan Goldman 4

1 Laboratoire Kastler Brossel, College de France, CNRS, ENS-PSL Research University, UPMC–Sorbonne Universites, 11, place Marcelin-Berthelot, 75005 Paris, France
2 Fakultät für Physik, Ludwig-Maximilians-Universität München, Schellingstraße 4, 80799 Munich, Germany
3 Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
4 Center for Nonlinear Phenomena and Complex Systems, Université libre de Bruxelles, CP 231, Campus Plaine, B-1050 Brussels, Belgium
@article{CRPHYS_2018__19_6_394_0,
     author = {Monika Aidelsburger and Sylvain Nascimbene and Nathan Goldman},
     title = {Artificial gauge fields in materials and engineered systems},
     journal = {Comptes Rendus. Physique},
     pages = {394--432},
     publisher = {Elsevier},
     volume = {19},
     number = {6},
     year = {2018},
     doi = {10.1016/j.crhy.2018.03.002},
     language = {en},
}
TY  - JOUR
AU  - Monika Aidelsburger
AU  - Sylvain Nascimbene
AU  - Nathan Goldman
TI  - Artificial gauge fields in materials and engineered systems
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 394
EP  - 432
VL  - 19
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.03.002
LA  - en
ID  - CRPHYS_2018__19_6_394_0
ER  - 
%0 Journal Article
%A Monika Aidelsburger
%A Sylvain Nascimbene
%A Nathan Goldman
%T Artificial gauge fields in materials and engineered systems
%J Comptes Rendus. Physique
%D 2018
%P 394-432
%V 19
%N 6
%I Elsevier
%R 10.1016/j.crhy.2018.03.002
%G en
%F CRPHYS_2018__19_6_394_0
Monika Aidelsburger; Sylvain Nascimbene; Nathan Goldman. Artificial gauge fields in materials and engineered systems. Comptes Rendus. Physique, Quantum simulation / Simulation quantique, Volume 19 (2018) no. 6, pp. 394-432. doi : 10.1016/j.crhy.2018.03.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.03.002/

[1] Y. Aharonov; D. Bohm Significance of electromagnetic potentials in the quantum theory, Phys. Rev., Volume 115 (1959) no. 3, p. 485

[2] T.T. Wu; C.N. Yang Concept of nonintegrable phase factors and global formulation of gauge fields, Phys. Rev. D, Volume 12 (1975) no. 12, p. 3845

[3] B. Simon Holonomy, the quantum adiabatic theorem, and Berry's phase, Phys. Rev. Lett., Volume 51 (1983) no. 24, p. 2167

[4] M. Nakahara Geometry, Topology and Physics, CRC Press, 2003

[5] S. Pancharatnam Generalized theory of interference and its applications, Proceedings of the Indian Academy of Sciences-Section A, vol. 44, Springer, 1956, pp. 398-417

[6] C.A. Mead; D.G. Truhlar On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei, J. Chem. Phys., Volume 70 (1979) no. 5, pp. 2284-2296

[7] M.V. Berry Quantal phase factors accompanying adiabatic changes, Proc. R. Soc., Math. Phys. Eng. Sci., vol. 392, The Royal Society, 1984, pp. 45-57

[8] D.J. Thouless; M. Kohmoto; M.P. Nightingale; M. den Nijs Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., Volume 49 (1982), pp. 405-408

[9] M. Kohmoto Zero modes and the quantized Hall conductance of the two-dimensional lattice in a magnetic field, Phys. Rev. B, Volume 39 (1989) no. 16

[10] B.A. Bernevig; T.L. Hughes Topological Insulators and Topological Superconductors, Princeton University Press, 2013

[11] J. Dalibard; F. Gerbier; G. Juzeliūnas; P. Öhberg Colloquium, Rev. Mod. Phys., Volume 83 (2011), pp. 1523-1543

[12] N. Goldman; G. Juzeliūnas; P. Öhberg; I.B. Spielman Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys., Volume 77 (2014) no. 12

[13] J. Dalibard Introduction to the physics of artificial gauge fields | arXiv

[14] H. Zhai Degenerate quantum gases with spin–orbit coupling: a review, Rep. Prog. Phys., Volume 78 (2015) no. 2

[15] N. Goldman; J.C. Budich; P. Zoller Topological quantum matter with ultracold gases in optical lattices, Nat. Phys., Volume 12 (2016) no. 7, pp. 639-645

[16] N.R. Cooper; J. Dalibard; I.B. Spielman Topological bands for ultracold atoms, 2018 | arXiv

[17] L. Lu; J.D. Joannopoulos; M. Soljačić Topological photonics, Nat. Photonics, Volume 8 (2014) no. 11, pp. 821-829

[18] M. Hafezi Synthetic gauge fields with photons, Int. J. Mod. Phys. B, Volume 28 (2014) no. 02

[19] T. Ozawa; H.M. Price; A. Amo; N. Goldman; M. Hafezi; L. Lu; M. Rechtsman; D. Schuster; J. Simon; O. Zilberberg; I. Carusotto Topological photonics, 2018 | arXiv

[20] S.D. Huber Topological mechanics, Nat. Phys., Volume 12 (2016) no. 7, pp. 621-623

[21] A.H. Castro Neto; F. Guinea; N.M.R. Peres; K.S. Novoselov; A.K. Geim The electronic properties of graphene, Rev. Mod. Phys., Volume 81 (2009) no. 1, pp. 109-162

[22] M. Vozmediano; M.I. Katsnelson; F. Guinea Gauge fields in graphene, Phys. Rep., Volume 496 (2010) no. 4–5, pp. 109-148

[23] C. Si; Z. Sun; F. Liu Strain engineering of graphene: a review, Nanoscale, Volume 8 (2016), p. 3207

[24] B. Amorim; A. Cortijo; F. de Juan; A.G. Grushin; F. Guinea; A. Gutiérrez-Rubio; H. Ochoa; V. Parente; R. Roldán; R. San-Jose; J. Schiefele; M. Sturla; M.A.H. Vozmediano Novel effects of strains in graphene and other two dimensional materials, Phys. Rep., Volume 617 (2016), pp. 1-54

[25] U.-J. Wiese Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories, Ann. Phys., Volume 525 (2013) no. 10–11, pp. 777-796

[26] E. Zohar; J.I. Cirac; B. Reznik Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices, Rep. Prog. Phys., Volume 79 (2015) no. 1

[27] M. Dalmonte; S. Montangero Lattice gauge theory simulations in the quantum information era, Contemp. Phys., Volume 57 (2016) no. 3, pp. 388-412

[28] I. Žutić; J. Fabian; S. Das Sarma Spintronics: fundamentals and applications, Rev. Mod. Phys., Volume 76 (2004), pp. 323-410

[29] N. Nagaosa; J. Sinova; S. Onoda; A.H. MacDonald; N.P. Ong Anomalous Hall effect, Rev. Mod. Phys., Volume 82 (2010), pp. 1539-1592

[30] X.-L. Qi; S.-C. Zhang Topological insulators and superconductors, Rev. Mod. Phys., Volume 83 (2011), p. 1057

[31] K. von Klitzing The quantized Hall effect, Rev. Mod. Phys., Volume 58 (1986), pp. 519-531

[32] M.Z. Hasan; C.L. Kane Colloquium: topological insulators, Rev. Mod. Phys., Volume 82 (2010), p. 3045

[33] H.S. Bennett; E.A. Stern Faraday effect in solids, Phys. Rev. A, Volume 137 (1965) no. 2, p. A448

[34] T. Oka; H. Aoki Photovoltaic Hall effect in graphene, Phys. Rev. B, Volume 79 (2009)

[35] T. Kitagawa; T. Oka; A. Brataas; L. Fu; E. Demler Phys. Rev. B, 84 (2011)

[36] N.H. Lindner; G. Refael; V. Galitski Floquet topological insulator in semiconductor quantum wells, Nat. Phys., Volume 7 (2011), pp. 490-495

[37] J. Cayssol; B. Dora; F. Simon; R. Moessner Floquet topological insulators, Phys. Status Solidi RRL, Volume 7 (2013), pp. 101-108

[38] M.C. Rechtsman; J.M. Zeuner; Y. Plotnik; Y. Lumer; D. Podolsky; F. Dreisow; S. Nolte; M. Segev; A. Szameit Photonic Floquet topological insulators, Nature, Volume 496 (2013) no. 7444, pp. 196-200

[39] G. Jotzu; M. Messer; R. Desbuquois; M. Lebrat; T. Uehlinger; D. Greif; T. Esslinger Experimental realization of the topological haldane model with ultracold fermions, Nature, Volume 515 (2014), p. 237

[40] F. de Juan; A.G. Grushin; T. Morimoto; J.E. Moore Quantized circular photogalvanic effect in Weyl semimetals, Nat. Commun., Volume 8 (2017)

[41] D.T. Tran; A. Dauphin; A.G. Grushin; P. Zoller; N. Goldman Probing topology by ‘heating’: quantized circular dichroism in ultracold atoms, Sci. Adv., Volume 3 (2017) no. 8

[42] C.A. Mead The geometric phase in molecular systems, Rev. Mod. Phys., Volume 64 (1992), pp. 51-85

[43] D. Xiao; M.-C. Chang; Q. Niu Berry phase effects on electronic properties, Rev. Mod. Phys., Volume 82 (2010) no. 3, p. 1959

[44] F. Wilczek; A. Zee Appearance of gauge structure in simple dynamical systems, Phys. Rev. Lett., Volume 52 (1984) no. 24, p. 2111

[45] J.M. Luttinger The effect of a magnetic field on electrons in a periodic potential, Phys. Rev., Volume 84 (1951), pp. 814-817

[46] D.R. Hofstadter Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B, Volume 14 (1976), pp. 2239-2249

[47] I. Bloch; J. Dalibard; W. Zwerger Many-body physics with ultracold gases, Rev. Mod. Phys., Volume 80 (2008) no. 3, p. 885

[48] L. Lu; J.D. Joannopoulos; M. Soljačić Topological states in photonic systems, Nat. Phys., Volume 12 (2016) no. 7, pp. 626-629

[49] J.B. Kogut An introduction to lattice gauge theory and spin systems, Rev. Mod. Phys., Volume 51 (1979) no. 4, p. 659

[50] J.B. Kogut The lattice gauge theory approach to quantum chromodynamics, Rev. Mod. Phys., Volume 55 (1983) no. 3, p. 775

[51] D. Jaksch; C. Bruder; J.I. Cirac; C.W. Gardiner; P. Zoller Cold bosonic atoms in optical lattices, Phys. Rev. Lett., Volume 81 (1998) no. 15, p. 3108

[52] S.H. Simon The Oxford Solid State Basics, OUP Oxford, 2013

[53] S.A. Parameswaran; R. Roy; S.L. Sondhi Fractional quantum Hall physics in topological flat bands, C. R. Physique, Volume 14 (2013) no. 9–10, pp. 816-839

[54] T. Kitagawa; E. Berg; M. Rudner; E. Demler Topological characterization of periodically-driven quantum systems, Phys. Rev. B, Volume 82 (2010)

[55] N. Goldman; J. Dalibard Periodically driven quantum systems: effective Hamiltonians and engineered gauge fields, Phys. Rev. X, Volume 4 (2014)

[56] M. Bukov; L. D'Alessio; A. Polkovnikov Adv. Phys., 64 (2015), pp. 139-226

[57] A. Eckardt Colloquium: atomic quantum gases in periodically driven optical lattices, Rev. Mod. Phys., Volume 89 (2017) no. 1

[58] S. Rahav; I. Gilary; S. Fishman Phys. Rev. A, 68 (2003)

[59] N. Goldman; J. Dalibard; M. Aidelsburger; N.R. Cooper Periodically driven quantum matter: the case of resonant modulations, Phys. Rev. A, Volume 91 (2015) no. 3

[60] A. Eckardt; E. Anisimovas New J. Phys., 17 (2015)

[61] T. Mikami; S. Kitamura; K. Yasuda; N. Tsuji; T. Oka; H. Aoki Brillouin–Wigner theory for high-frequency expansion in periodically driven systems: application to Floquet topological insulators, Phys. Rev. B, Volume 93 (2016)

[62] A.S. Sorensen; E. Demler; M.D. Lukin Fractional quantum Hall states of atoms in optical lattices, Phys. Rev. Lett., Volume 94 (2005) no. 8

[63] A.R. Kolovsky Creating artificial magnetic fields for cold atoms by photon-assisted tunneling, Europhys. Lett., Volume 93 (2011)

[64] A. Bermudez; T. Schaetz; D. Porras Synthetic Gauge fields for vibrational excitations of trapped ions, Phys. Rev. Lett., Volume 107 (2011) no. 15

[65] H. Miyake; G.A. Siviloglou; C.J. Kennedy; W.C. Burton; W. Ketterle Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices, Phys. Rev. Lett., Volume 111 (2013)

[66] M. Aidelsburger; M. Atala; M. Lohse; J.T. Barreiro; B. Paredes; I. Bloch Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices, Phys. Rev. Lett., Volume 111 (2013)

[67] M. Aidelsburger; M. Lohse; C. Schweizer; M. Atala; J.T. Barreiro; S. Nascimbène; N.R. Cooper; I. Bloch; N. Goldman Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms, Nat. Phys., Volume 11 (2014), p. 3171

[68] C.E. Creffield; G. Pieplow; F. Sols; N. Goldman Realization of uniform synthetic magnetic fields by periodically shaking an optical square lattice, New J. Phys., Volume 18 (2016) no. 9

[69] M.E. Tai; A. Lukin; M. Rispoli; R. Schittko; T. Menke; D. Borgnia; P.M. Preiss; F. Grusdt; A.M. Kaufman; M. Greiner Microscopy of the interacting Harper–Hofstadter model in the few-body limit, Nature, Volume 546 (2017), pp. 519-523

[70] P. Hauke; O. Tieleman; A. Celi; C. Ölschläger; J. Simonet; J. Struck; M. Weinberg; P. Windpassinger; K. Sengstock; M. Lewenstein; A. Eckardt Non-Abelian gauge fields and topological insulators in shaken optical lattices, Phys. Rev. Lett., Volume 109 (2012)

[71] Z.-F. Xu; L. You; M. Ueda Atomic spin–orbit coupling synthesized with magnetic-field-gradient pulses, Phys. Rev. A, Volume 87 (2013) no. 6

[72] B.M. Anderson; I.B. Spielman; G. Juzeliūnas Magnetically generated spin–orbit coupling for ultracold atoms, Phys. Rev. Lett., Volume 111 (2013) no. 12

[73] A.L. Fetter; A.A. Svidzinsky Vortices in a trapped dilute Bose–Einstein condensate, J. Phys. Condens. Matter, Volume 13 (2001) no. 12, p. R135

[74] A.L. Fetter Rotating trapped Bose–Einstein condensates, Rev. Mod. Phys., Volume 81 (2009) no. 2, pp. 647-691

[75] R.J. Donnelly Quantized Vortices in Helium II, vol. 2, Cambridge University Press, 1991

[76] D.R. Tilley; J. Tilley Superfluidity and Superconductivity, CRC Press, 1990

[77] K.W. Madison; F. Chevy; W. Wohlleben; J. Dalibard Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett., Volume 84 (2000) no. 5, pp. 806-809

[78] J.R. Abo-Shaeer; C. Raman; J.M. Vogels; W. Ketterle Observation of vortex lattices in Bose–Einstein condensates, Science, Volume 292 (2001) no. 5516, pp. 476-479

[79] M.W. Zwierlein; J.R. Abo-Shaeer; A. Schirotzek; C.H. Schunck; W. Ketterle Vortices and superfluidity in a strongly interacting Fermi gas, Nature, Volume 435 (2005) no. 7045, pp. 1047-1051

[80] M. Baranov Theoretical progress in many-body physics with ultracold dipolar gases, Phys. Rep., Volume 464 (2008) no. 3, pp. 71-111

[81] T. Lahaye; C. Menotti; L. Santos; M. Lewenstein; T. Pfau The physics of dipolar bosonic quantum gases, Rep. Prog. Phys., Volume 72 (2009) no. 12

[82] Y. Kawaguchi; M. Ueda Spinor Bose–Einstein condensates, Phys. Rep., Volume 520 (2012) no. 5, pp. 253-381

[83] D.M. Stamper-Kurn; M. Ueda Spinor Bose gases: symmetries, magnetism, and quantum dynamics, Rev. Mod. Phys., Volume 85 (2013) no. 3, pp. 1191-1244

[84] V. Schweikhard; I. Coddington; P. Engels; S. Tung; E.A. Cornell Vortex-lattice dynamics in rotating spinor Bose–Einstein condensates, Phys. Rev. Lett., Volume 93 (2004) no. 21

[85] K.W. Madison; F. Chevy; W. Wohlleben; J. Dalibard Vortices in a stirred Bose–Einstein condensate, J. Mod. Opt., Volume 47 (2000) no. 14–15, pp. 2715-2723

[86] Y.-J. Lin; R.L. Compton; K. Jiménez-García; J.V. Porto; I.B. Spielman Synthetic magnetic fields for ultracold neutral atoms, Nature, Volume 462 (2009) no. 7273, pp. 628-632

[87] V. Schweikhard; I. Coddington; P. Engels; V.P. Mogendorff; E.A. Cornell Rapidly rotating Bose–Einstein condensates in and near the lowest Landau level, Phys. Rev. Lett., Volume 92 (2004) no. 4

[88] V. Bretin; S. Stock; Y. Seurin; J. Dalibard Fast rotation of a Bose–Einstein condensate, Phys. Rev. Lett., Volume 92 (2004) no. 5

[89] U.R. Fischer; G. Baym Vortex states of rapidly rotating dilute Bose–Einstein condensates, Phys. Rev. Lett., Volume 90 (2003) no. 14

[90] N. Cooper Rapidly rotating atomic gases, Adv. Phys., Volume 57 (2008) no. 6, pp. 539-616

[91] N.R. Cooper; N.K. Wilkin; J.M.F. Gunn Quantum phases of vortices in rotating Bose–Einstein condensates, Phys. Rev. Lett., Volume 87 (2001) no. 12

[92] The Quantum Hall Effect (R.E. Prange; S.M. Girvin; J.L. Birman; H. Faissner; J.W. Lynn, eds.), Grad. Texts Contemp. Phys., Springer New York, New York, NY, 1990

[93] G. Juzeliūnas; P. Öhberg Slow light in degenerate Fermi gases, Phys. Rev. Lett., Volume 93 (2004) no. 3

[94] I.B. Spielman Raman processes and effective gauge potentials, Phys. Rev. A, Volume 79 (2009) no. 6

[95] N.R. Cooper Optical flux lattices for ultracold atomic gases, Phys. Rev. Lett., Volume 106 (2011) no. 17

[96] I. Carusotto; C. Ciuti Quantum fluids of light, Rev. Mod. Phys., Volume 85 (2013), pp. 299-366

[97] J. Klaers; J. Schmitt; F. Vewinger; M. Weitz Bose–Einstein condensation of photons in an optical microcavity, Nature, Volume 468 (2010) no. 7323, pp. 545-548

[98] A. Sommer; J. Simon Engineering photonic Floquet Hamiltonians through Fabry–Pérot resonators, New J. Phys., Volume 18 (2016) no. 3

[99] N. Schine; A. Ryou; A. Gromov; A. Sommer; J. Simon Synthetic Landau levels for photons, Nature, Volume 534 (2016), pp. 671-675

[100] S. Longhi Synthetic gauge fields for light beams in optical resonators, Opt. Lett., Volume 40 (2015) no. 13, pp. 2941-2944

[101] N. Westerberg; C. Maitland; D. Faccio; K. Wilson; P. Öhberg; E.M. Wright Synthetic magnetism for photon fluids, Phys. Rev. A, Volume 94 (2016)

[102] J. Pritchard; D. Maxwell; A. Gauguet; K. Weatherill; M. Jones; C. Adams Cooperative atom–light interaction in a blockaded Rydberg ensemble, Phys. Rev. Lett., Volume 105 (2010) no. 19

[103] A.V. Gorshkov; J. Otterbach; M. Fleischhauer; T. Pohl; M.D. Lukin Photon–photon interactions via Rydberg blockade, Phys. Rev. Lett., Volume 107 (2011) no. 13

[104] T. Peyronel; O. Firstenberg; Q.-Y. Liang; S. Hofferberth; A.V. Gorshkov; T. Pohl; M.D. Lukin; V. Vuletić Quantum nonlinear optics with single photons enabled by strongly interacting atoms, Nature, Volume 488 (2012) no. 7409, pp. 57-60

[105] O. Firstenberg; T. Peyronel; Q.-Y. Liang; A.V. Gorshkov; M.D. Lukin; V. Vuletić Attractive photons in a quantum nonlinear medium, Nature, Volume 502 (2013) no. 7469, pp. 71-75

[106] H. Lim; E. Togan; M. Kroner; J. Miguel-Sanchez; A. Imamoğlu Electrically tunable artificial gauge potential for polaritons, Nat. Commun., Volume 8 (2017)

[107] J. Kasprzak; M. Richard; S. Kundermann; A. Baas; P. Jeambrun; J. Keeling; F. Marchetti; M. Szymańska; R. Andre; J. Staehli et al. Bose–Einstein condensation of exciton polaritons, Nature, Volume 443 (2006) no. 7110, pp. 409-414

[108] R. Balili; V. Hartwell; D. Snoke; L. Pfeiffer; K. West Bose–Einstein condensation of microcavity polaritons in a trap, Science, Volume 316 (2007) no. 5827, pp. 1007-1010

[109] H. Deng; G. Weihs; C. Santori; J. Bloch; Y. Yamamoto Condensation of semiconductor microcavity exciton-polaritons, Science, Volume 298 (2002) no. 5591, pp. 199-202

[110] H. Deng; H. Haug; Y. Yamamoto Exciton-polariton Bose–Einstein condensation, Rev. Mod. Phys., Volume 82 (2010) no. 2, p. 1489

[111] T. Byrnes; N.Y. Kim; Y. Yamamoto Exciton-polariton condensates, Nat. Phys., Volume 10 (2014) no. 11, pp. 803-813

[112] A. Amo; J. Lefrère; S. Pigeon; C. Adrados; C. Ciuti; I. Carusotto; R. Houdré; E. Giacobino; A. Bramati Superfluidity of polaritons in semiconductor microcavities, Nat. Phys., Volume 5 (2009) no. 11, pp. 805-810

[113] A. Amo; D. Sanvitto; F. Laussy; D. Ballarini; E. Del Valle; M. Martin; A. Lemaitre; J. Bloch; D. Krizhanovskii; M. Skolnick et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity, Nature, Volume 457 (2009) no. 7227, pp. 291-295

[114] K.G. Lagoudakis; M. Wouters; M. Richard; A. Baas; I. Carusotto; R. André; L.S. Dang; B. Deveaud-Plédran Quantized vortices in an exciton-polariton condensate, Nat. Phys., Volume 4 (2008) no. 9, pp. 706-710

[115] K. Lagoudakis; T. Ostatnickỳ; A. Kavokin; Y.G. Rubo; R. André; B. Deveaud-Plédran Observation of half-quantum vortices in an exciton-polariton condensate, Science, Volume 326 (2009) no. 5955, pp. 974-976

[116] D. Sanvitto; F. Marchetti; M. Szymańska; G. Tosi; M. Baudisch; F. Laussy; D. Krizhanovskii; M. Skolnick; L. Marrucci; A. Lemaitre et al. Persistent currents and quantized vortices in a polariton superfluid, Nat. Phys., Volume 6 (2010) no. 7, pp. 527-533

[117] G. Roumpos; M.D. Fraser; A. Löffler; S. Höfling; A. Forchel; Y. Yamamoto Single vortex–antivortex pair in an exciton-polariton condensate, Nat. Phys., Volume 7 (2011) no. 2, pp. 129-133

[118] A. Amo; S. Pigeon; D. Sanvitto; V. Sala; R. Hivet; I. Carusotto; F. Pisanello; G. Leménager; R. Houdré; E. Giacobino et al. Polariton superfluids reveal quantum hydrodynamic solitons, Science, Volume 332 (2011) no. 6034, pp. 1167-1170

[119] G. Nardin; G. Grosso; Y. Léger; B. Pietka; F. Morier-Genoud; B. Deveaud-Plédran Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid, Nat. Phys., Volume 7 (2011) no. 8, pp. 635-641

[120] F. Zimmer; J. Otterbach; R. Unanyan; B. Shore; M. Fleischhauer Dark-state polaritons for multicomponent and stationary light fields, Phys. Rev. A, Volume 77 (2008) no. 6

[121] M. Bajcsy; A.S. Zibrov; M.D. Lukin Stationary pulses of light in an atomic medium, Nature, Volume 426 (2003) no. 6967, pp. 638-641

[122] J. Otterbach; J. Ruseckas; R. Unanyan; G. Juzeliūnas; M. Fleischhauer Effective magnetic fields for stationary light, Phys. Rev. Lett., Volume 104 (2010) no. 3

[123] X. Luo; L. Wu; J. Chen; Q. Guan; K. Gao; Z.-F. Xu; L. You; R. Wang Tunable atomic spin–orbit coupling synthesized with a modulating gradient magnetic field, Sci. Rep., Volume 6 (2016)

[124] P.G. Harper Single band motion of conduction electrons in a uniform magnetic field, Proc. Phys. Soc. A, Volume 68 (1955) no. 10, pp. 874-878

[125] M.Y. Azbel Energy spectrum of a conduction electron in a magnetic field, Sov. Phys. JETP, Volume 19 (1964), p. 634

[126] R.R. Gerhardts; D. Weiss; U. Wulf Magnetoresistance oscillations in a grid potential: indication of a Hofstadter-type energy spectrum, Phys. Rev. B, Volume 43 (1991) no. 6, pp. 5192-5195

[127] Y. Nakamura; T. Inoshita; H. Sakaki Novel magneto-resistance oscillations in laterally modulated two-dimensional electrons with 20 nm periodicity formed on vicinal GaAs (111) B substrates, Physica E, Low-Dimens. Syst. Nanostruct., Volume 2 (1998) no. 1–4, pp. 944-948

[128] C. Albrecht; J.H. Smet; D. Weiss; K. von Klitzing; R. Hennig; M. Langenbuch; M. Suhrke; U. Rössler; V. Umansky; H. Schweizer Fermiology of two-dimensional lateral superlattices, Phys. Rev. Lett., Volume 83 (1999) no. 11, pp. 2234-2237

[129] T. Schlösser; K. Ensslin; J.P. Kotthaus; M. Holland Landau subbands generated by a lateral electrostatic superlattice – chasing the Hofstadter butterfly, Semicond. Sci. Technol., Volume 11 (1996) no. 11S, pp. 1582-1585

[130] C. Albrecht; J.H. Smet; K. von Klitzing; D. Weiss; V. Umansky; H. Schweizer Evidence of Hofstadter's fractal energy spectrum in the quantized Hall conductance, Phys. Rev. Lett., Volume 86 (2001) no. 1, pp. 147-150

[131] M.C. Geisler; J.H. Smet; V. Umansky; K. von Klitzing; B. Naundorf; R. Ketzmerick; H. Schweizer Detection of a Landau band-coupling-induced rearrangement of the Hofstadter butterfly, Phys. Rev. Lett., Volume 92 (2004) no. 25

[132] S. Melinte; M. Berciu; C. Zhou; E. Tutuc; S.J. Papadakis; C. Harrison; E.P. De Poortere; M. Wu; P.M. Chaikin; M. Shayegan; R.N. Bhatt; R.A. Register Laterally modulated 2D electron system in the extreme quantum limit, Phys. Rev. Lett., Volume 92 (2004) no. 3

[133] C.R. Dean; L. Wang; P. Maher; C. Forsythe; F. Ghahari; Y. Gao; J. Katoch; M. Ishigami; P. Moon; M. Koshino; T. Taniguchi; K. Watanabe; K.L. Shepard; J. Hone; P. Kim Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices, Nature, Volume 497 (2013) no. 7451, pp. 598-602

[134] L.A. Ponomarenko; R.V. Gorbachev; G.L. Yu; D.C. Elias; R. Jalil; A.A. Patel; A. Mishchenko; A.S. Mayorov; C.R. Woods; J.R. Wallbank; M. Mucha-Kruczynski; B.A. Piot; M. Potemski; I.V. Grigorieva; K.S. Novoselov; F. Guinea; V.I. Fal'ko; A.K. Geim Cloning of Dirac fermions in graphene superlattices, Nature, Volume 497 (2013) no. 7451, pp. 594-597

[135] B. Hunt; J.D. Sanchez-Yamagishi; A.F. Young; M. Yankowitz; B.J. LeRoy; K. Watanabe; T. Taniguchi; P. Moon; M. Koshino; P. Jarillo-Herrero; R.C. Ashoori Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure, Science, Volume 340 (2013) no. 6139, pp. 1427-1430

[136] M.-C. Chang; Q. Niu Berry phase, hyperorbits, and the Hofstadter spectrum: semiclassical dynamics in magnetic Bloch bands, Phys. Rev. B, Volume 53 (1996) no. 11, pp. 7010-7023

[137] K. von Klitzing; G. Dorda; M. Pepper New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett., Volume 45 (1980) no. 6, pp. 494-497

[138] Y. Hatsugai Chern number and edge states in the integer quantum Hall effect, Phys. Rev. Lett., Volume 71 (1993) no. 22, pp. 3697-3700

[139] Y. Hatsugai Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function, Phys. Rev. B, Volume 48 (1993) no. 16, pp. 11851-11862

[140] X.-L. Qi; Y.-S. Wu; S.-C. Zhang General theorem relating the bulk topological number to edge states in two-dimensional insulators, Phys. Rev. B, Volume 74 (2006) no. 4

[141] B.A. Bernevig; S.-C. Zhang Quantum spin Hall effect, Phys. Rev. Lett., Volume 96 (2006) no. 10

[142] N. Goldman; I. Satija; P. Nikolic; A. Bermudez; M.A. Martin-Delgado; M. Lewenstein; I. Spielman Realistic time-reversal invariant topological insulators with neutral atoms, Phys. Rev. Lett., Volume 105 (2010) no. 25

[143] F.D.M. Haldane; S. Raghu Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry, Phys. Rev. Lett., Volume 100 (2008) no. 1

[144] S. Raghu; F.D.M. Haldane Analogs of quantum-Hall-effect edge states in photonic crystals, Phys. Rev. A, Volume 78 (2008) no. 3

[145] Z. Wang; Y.D. Chong; J.D. Joannopoulos; M. Soljačić Reflection-free one-way edge modes in a gyromagnetic photonic crystal, Phys. Rev. Lett., Volume 100 (2008) no. 1

[146] Z. Wang; Y. Chong; J.D. Joannopoulos; M. Soljačić Observation of unidirectional backscattering-immune topological electromagnetic states, Nature, Volume 461 (2009) no. 7265, pp. 772-775

[147] J.-X. Fu; R.-J. Liu; Z.-Y. Li Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces, Appl. Phys. Lett., Volume 97 (2010) no. 4

[148] J.-X. Fu; J. Lian; R.J. Liu; L. Gan; Z.Y. Li Unidirectional channel-drop filter by one-way gyromagnetic photonic crystal waveguides, Appl. Phys. Lett., Volume 98 (2011) no. 21

[149] S.A. Skirlo; L. Lu; M. Soljačić Multimode one-way waveguides of large Chern numbers, Phys. Rev. Lett., Volume 113 (2014) no. 11

[150] S.A. Skirlo; L. Lu; Y. Igarashi; Q. Yan; J.D. Joannopoulos; M. Soljačić Experimental observation of large Chern numbers in photonic crystals, Phys. Rev. Lett., Volume 115 (2015) no. 25

[151] U. Kuhl; H.J. Stöckmann Microwave realization of the Hofstadter butterfly, Phys. Rev. Lett., Volume 80 (1998) no. 15, pp. 3232-3235

[152] J. Ningyuan; C. Owens; A. Sommer; D. Schuster; J. Simon Time-and site-resolved dynamics in a topological circuit, Phys. Rev. X, Volume 5 (2015) no. 2

[153] K. Fang; Z. Yu; S. Fan Realizing effective magnetic field for photons by controlling the phase of dynamic modulation, Nat. Photonics, Volume 6 (2012) no. 11, pp. 782-787

[154] P. Roushan; C. Neill; A. Megrant; Y. Chen; R. Babbush; R. Barends; B. Campbell; Z. Chen; B. Chiaro; A. Dunsworth; A. Fowler; E. Jeffrey; J. Kelly; E. Lucero; J. Mutus; P.J.J. OMalley; M. Neeley; C. Quintana; D. Sank; A. Vainsencher; J. Wenner; T. White; E. Kapit; H. Neven; J. Martinis Chiral ground-state currents of interacting photons in a synthetic magnetic field, Nat. Phys., Volume 13 (2017) no. 2, pp. 146-151

[155] K. Fang; Z. Yu; S. Fan Experimental demonstration of a photonic Aharonov–Bohm effect at radio frequencies, Phys. Rev. B, Volume 87 (2013) no. 6

[156] C. Owens; A. LaChapelle; B. Saxberg; B. Anderson; R. Ma; J. Simon; D.I. Schuster Quarter-flux Hofstadter lattice in qubit-compatible microwave cavity array, Phys. Rev. A, Volume 97 (2018)

[157] A. Wallraff; D.I. Schuster; A. Blais; L. Frunzio; R.S. Huang; J. Majer; S. Kumar; S.M. Girvin; R.J. Schoelkopf Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature, Volume 431 (2004) no. 7005, pp. 162-167

[158] B.M. Anderson; R. Ma; C. Owens; D.I. Schuster; J. Simon Engineering topological many-body materials in microwave cavity arrays, Phys. Rev. X, Volume 6 (2016) no. 4

[159] S. Tung; V. Schweikhard; E.A. Cornell Observation of vortex pinning in Bose–Einstein condensates, Phys. Rev. Lett., Volume 97 (2006) no. 24

[160] A. Hemmerich; C.M. Smith Excitation of a d-density wave in an optical lattice with driven tunneling, Phys. Rev. Lett., Volume 99 (2007) no. 11

[161] R.A. Williams; S. Al-Assam; C.J. Foot Observation of vortex nucleation in a rotating two-dimensional lattice of Bose–Einstein condensates, Phys. Rev. Lett., Volume 104 (2010) no. 5

[162] R. Sachdeva; S. Johri; S. Ghosh Cold atoms in a rotating optical lattice with nearest-neighbor interactions, Phys. Rev. A, Volume 82 (2010) no. 6

[163] N. Gemelke; E. Sarajlic; S. Chu Rotating few-body atomic systems in the fractional quantum Hall regime | arXiv

[164] A. Klein; D. Jaksch Phonon-induced artificial magnetic fields in optical lattices, Europhys. Lett., Volume 85 (2009) no. 1

[165] D. Jaksch; P. Zoller Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms, New J. Phys., Volume 5 (2003) no. 1, p. 56

[166] J. Ruostekoski; G.V. Dunne; J. Javanainen Particle number fractionalization of an atomic Fermi–Dirac gas in an optical lattice, Phys. Rev. Lett., Volume 88 (2002) no. 18

[167] E.J. Mueller Artificial electromagnetism for neutral atoms: Escher staircase and laughlin liquids, Phys. Rev. A, Volume 70 (2004) no. 4

[168] F. Gerbier; J. Dalibard Gauge fields for ultracold atoms in optical superlattices, New J. Phys., Volume 12 (2010) no. 3

[169] C.E. Creffield; F. Sols Comment on “Creating artificial magnetic fields for cold atoms by photon-assisted tunneling” by Kolovsky A. R., Europhys. Lett., Volume 101 (2013) no. 4

[170] M. Aidelsburger; M. Atala; S. Nascimbène; S. Trotzky; Y.A. Chen; I. Bloch Experimental realization of strong effective magnetic fields in an optical lattice, Phys. Rev. Lett., Volume 107 (2011) no. 25

[171] M. Atala; M. Aidelsburger; M. Lohse; J.T. Barreiro; B. Paredes; I. Bloch Observation of chiral currents with ultracold atoms in bosonic ladders, Nat. Phys., Volume 10 (2014), p. 588

[172] C.J. Kennedy; W.C. Burton; W.C. Chung; W. Ketterle Observation of Bose–Einstein condensation in a strong synthetic magnetic field, Nat. Phys., Volume 11 (2015) no. 10, pp. 859-864

[173] A. Dauphin; N. Goldman Extracting the Chern number from the dynamics of a Fermi gas: implementing a quantum Hall bar for cold atoms, Phys. Rev. Lett., Volume 111 (2013) no. 13

[174] H. Price; O. Zilberberg; T. Ozawa; I. Carusotto; N. Goldman Measurement of Chern numbers through center-of-mass responses, Phys. Rev. B, Volume 93 (2016) no. 24

[175] A. Dauphin; D.-T. Tran; M. Lewenstein; N. Goldman Loading ultracold gases in topological Floquet bands: the fate of current and center-of-mass responses, 2D Mater., Volume 4 (2017)

[176] A. Bermudez; T. Schaetz; D. Porras Photon-assisted-tunneling toolbox for quantum simulations in ion traps, New J. Phys., Volume 14 (2012) no. 5

[177] D. Thouless Quantization of particle transport, Phys. Rev. B, Volume 27 (1983) no. 10, p. 6083

[178] Q. Niu; D. Thouless Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction, J. Phys. A, Math. Gen., Volume 17 (1984) no. 12, p. 2453

[179] Q. Niu Towards a quantum pump of electric charges, Phys. Rev. Lett., Volume 64 (1990) no. 15, p. 1812

[180] Y.E. Kraus; O. Zilberberg Topological equivalence between the Fibonacci quasicrystal and the Harper model, Phys. Rev. Lett., Volume 109 (2012) no. 11

[181] M. Verbin; O. Zilberberg; Y. Lahini; Y.E. Kraus; Y. Silberberg Topological pumping over a photonic Fibonacci quasicrystal, Phys. Rev. B, Volume 91 (2015) no. 6

[182] M. Wimmer; H.M. Price; I. Carusotto; U. Peschel Experimental measurement of the Berry curvature from anomalous transport, Nat. Phys., Volume 13 (2017) no. 6, pp. 545-550

[183] M. Lohse; C. Schweizer; O. Zilberberg; M. Aidelsburger; I. Bloch A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice, Nat. Phys., Volume 12 (2016) no. 4, pp. 350-354

[184] S. Nakajima; T. Tomita; S. Taie; T. Ichinose; H. Ozawa; L. Wang; M. Troyer; Y. Takahashi Topological Thouless pumping of ultracold fermions, Nat. Phys., Volume 12 (2016) no. 4, pp. 296-300

[185] H.I. Lu; M. Schemmer; L.M. Aycock; D. Genkina; S. Sugawa; I.B. Spielman Geometrical pumping with a Bose–Einstein condensate, Phys. Rev. Lett., Volume 116 (2016) no. 20

[186] C. Schweizer; M. Lohse; R. Citro; I. Bloch Spin pumping and measurement of spin currents in optical superlattices, Phys. Rev. Lett., Volume 117 (2016) no. 17

[187] M. Lohse; C. Schweizer; H.M. Price; O. Zilberberg; I. Bloch Exploring 4D quantum Hall physics with a 2D topological charge pump, Nature, Volume 553 (2018), pp. 55-58

[188] O. Zilberberg; S. Huang; J. Guglielmon; M. Wang; K. Chen; Y.E. Kraus; M.C. Rechtsman Photonic topological boundary pumping as a probe of 4D quantum Hall physics, Nature, Volume 553 (2018), pp. 59-62

[189] G.Q. Liang; Y.D. Chong Optical resonator analog of a two-dimensional topological insulator, Phys. Rev. Lett., Volume 110 (2013) no. 20

[190] M. Hafezi; E.A. Demler; M.D. Lukin; J.M. Taylor Robust optical delay lines with topological protection, Nat. Phys., Volume 7 (2011) no. 11, pp. 907-912

[191] W. Hu; J.C. Pillay; K. Wu; M. Pasek; P.P. Shum; Y.D. Chong Measurement of a topological edge invariant in a microwave network, Phys. Rev. X, Volume 5 (2015) no. 1

[192] M. Hafezi; S. Mittal; J. Fan; A. Migdall; J.M. Taylor Imaging topological edge states in silicon photonics, Nat. Photonics, Volume 7 (2013) no. 12, pp. 1001-1005

[193] S. Mittal; S. Ganeshan; J. Fan; A. Vaezi; M. Hafezi Measurement of topological invariants in a 2D photonic system, Nat. Photonics, Volume 10 (2016) no. 3, pp. 180-183

[194] Y.-T. Wang; P.-G. Luan; S. Zhang Coriolis force induced topological order for classical mechanical vibrations, New J. Phys., Volume 17 (2015) no. 7

[195] R. Süsstrunk; S.D. Huber Classification of topological phonons in linear mechanical metamaterials, Proc. Natl. Acad. Sci. USA, Volume 113 (2016) no. 33, p. E4767-E4775

[196] R. Süsstrunk; S.D. Huber Observation of phononic helical edge states in a mechanical topological insulator, Science, Volume 349 (2015) no. 6243, pp. 47-50

[197] L.M. Nash; D. Kleckner; A. Read; V. Vitelli; A.M. Turner; W.T.M. Irvine Topological mechanics of gyroscopic metamaterials, Proc. Natl. Acad. Sci. USA, Volume 112 (2015) no. 47, pp. 14495-14500

[198] C.L. Kane; T.C. Lubensky Topological boundary modes in isostatic lattices, Nat. Phys., Volume 10 (2014) no. 1, pp. 39-45

[199] T.C. Lubensky; C.L. Kane; X. Mao; A. Souslov; K. Sun Phonons and elasticity in critically coordinated lattices, Rep. Prog. Phys., Volume 78 (2015) no. 7

[200] D.M. Sussman; O. Stenull; T.C. Lubensky Topological boundary modes in jammed matter, Soft Matter, Volume 12 (2016) no. 28, pp. 6079-6087

[201] J. Paulose; B.G.-g. Chen; V. Vitelli Topological modes bound to dislocations in mechanical metamaterials, Nat. Phys., Volume 11 (2015) no. 2, pp. 153-156

[202] B.G.-g. Chen; N. Upadhyaya; V. Vitelli Nonlinear conduction via solitons in a topological mechanical insulator, Proc. Natl. Acad. Sci. USA, Volume 111 (2014) no. 36, pp. 13004-13009

[203] W.P. Su; J.R. Schrieffer; A.J. Heeger Solitons in polyacetylene, Phys. Rev. Lett., Volume 42 (1979) no. 25, pp. 1698-1701

[204] V. Vitelli; N. Upadhyaya; B.G.-g. Chen Topological mechanisms as classical spinor fields | arXiv

[205] J. Paulose; A.S. Meeussen; V. Vitelli Selective buckling via states of self-stress in topological metamaterials, Proc. Natl. Acad. Sci. USA, Volume 112 (2015) no. 25, pp. 7639-7644

[206] B.G.-g. Chen; B. Liu; A.A. Evans; J. Paulose; I. Cohen; V. Vitelli; C.D. Santangelo Topological mechanics of origami and kirigami, Phys. Rev. Lett., Volume 116 (2016) no. 13

[207] C. Coulais; D. Sounas; A. Alù Static non-reciprocity in mechanical metamaterials, Nature, Volume 542 (2017) no. 7642, pp. 461-464

[208] D.Z. Rocklin; S. Zhou; K. Sun; X. Mao Transformable topological mechanical metamaterials, Nat. Commun., Volume 8 (2017)

[209] E. Prodan; K. Dobiszewski; A. Kanwal; J. Palmieri; C. Prodan Dynamical Majorana edge modes in a broad class of topological mechanical systems, Nat. Commun., Volume 8 (2017)

[210] M. Xiao; G. Ma; Z. Yang; P. Sheng; Z.Q. Zhang; C.T. Chan Geometric phase and band inversion in periodic acoustic systems, Nat. Phys., Volume 11 (2015) no. 3, pp. 240-244

[211] C. He; X. Ni; H. Ge; X.-C. Sun; Y.-B. Chen; M.-H. Lu; X.-P. Liu; Y.-F. Chen Acoustic topological insulator and robust one-way sound transport, Nat. Phys., Volume 12 (2016) no. 12, pp. 1124-1129

[212] R. Fleury; D.L. Sounas; C.F. Sieck; M.R. Haberman; A. Alù Sound isolation and giant linear nonreciprocity in a compact acoustic circulator, Science, Volume 343 (2014) no. 6170, pp. 516-519

[213] Z. Yang; F. Gao; X. Shi; X. Lin; Z. Gao; Y. Chong; B. Zhang Topological acoustics, Phys. Rev. Lett., Volume 114 (2015) no. 11

[214] E. Prodan; C. Prodan Topological phonon modes and their role in dynamic instability of microtubules, Phys. Rev. Lett., Volume 103 (2009) no. 24

[215] P. Wang; L. Lu; K. Bertoldi Topological phononic crystals with one-way elastic edge waves, Phys. Rev. Lett., Volume 115 (2015) no. 10

[216] M.J.A. Schuetz; E.M. Kessler; G. Giedke; L.M.K. Vandersypen; M.D. Lukin; J.I. Cirac Universal quantum transducers based on surface acoustic waves, Phys. Rev. X, Volume 5 (2015) no. 3

[217] Y.P. Wang; W.L. Yang; Y. Hu; Z.Y. Xue; Y. Wu Detecting topological phases of microwave photons in a circuit quantum electrodynamics lattice, npj Quantum Inf., Volume 2 (2016)

[218] P. Roushan; C. Neill; Y. Chen; M. Kolodrubetz; C. Quintana; N. Leung; M. Fang; R. Barends; B. Campbell; Z. Chen; B. Chiaro; A. Dunsworth; E. Jeffrey; J. Kelly; A. Megrant; J. Mutus; P.J.J. OMalley; D. Sank; A. Vainsencher; J. Wenner; T. White; A. Polkovnikov; A.N. Cleland; J.M. Martinis Observation of topological transitions in interacting quantum circuits, Nature, Volume 515 (2014) no. 7526, pp. 241-244

[219] P. Roushan; C. Neill; J. Tangpanitanon; V.M. Bastidas; A. Megrant; R. Barends; Y. Chen; Z. Chen; B. Chiaro; A. Dunsworth; A. Fowler; B. Foxen; M. Giustina; E. Jeffrey; J. Kelly; E. Lucero; J. Mutus; M. Neeley; C. Quintana; D. Sank; A. Vainsencher; J. Wenner; T. White; H. Neven; D.G. Angelakis; J. Martinis Spectroscopic signatures of localization with interacting photons in superconducting qubits, Science, Volume 358 (2017) no. 6367, pp. 1175-1179

[220] O. Boada; A. Celi; J.I. Latorre; M. Lewenstein Quantum simulation of an extra dimension, Phys. Rev. Lett., Volume 108 (2012) no. 13

[221] A. Celi; P. Massignan; J. Ruseckas; N. Goldman; I.B. Spielman; G. Juzeliūnas; M. Lewenstein Synthetic gauge fields in synthetic dimensions, Phys. Rev. Lett., Volume 112 (2014) no. 4

[222] B.K. Stuhl; H.I. Lu; L.M. Aycock; D. Genkina; I.B. Spielman Visualizing edge states with an atomic Bose gas in the quantum Hall regime, Science, Volume 349 (2015) no. 6255, pp. 1514-1518

[223] M. Mancini; G. Pagano; G. Cappellini; L. Livi; M. Rider; J. Catani; C. Sias; P. Zoller; M. Inguscio; M. Dalmonte; L. Fallani Observation of chiral edge states with neutral fermions in synthetic Hall ribbons, Science, Volume 349 (2015) no. 6255, pp. 1510-1513

[224] N.R. Cooper; A.M. Rey Adiabatic control of atomic dressed states for transport and sensing, Phys. Rev. A, Volume 92 (2015) no. 2

[225] L.F. Livi; G. Cappellini; M. Diem; L. Franchi; C. Clivati; M. Frittelli; F. Levi; D. Calonico; J. Catani; M. Inguscio; L. Fallani Synthetic dimensions and spin–orbit coupling with an optical clock transition, Phys. Rev. Lett., Volume 117 (2016) no. 22

[226] S. Kolkowitz; S.L. Bromley; T. Bothwell; M.L. Wall; G.E. Marti; A.P. Koller; X. Zhang; A.M. Rey; J. Ye Spin–orbit-coupled fermions in an optical lattice clock, Nature, Volume 542 (2017) no. 7639, pp. 66-70

[227] B. Gadway Atom-optics approach to studying transport phenomena, Phys. Rev. A, Volume 92 (2015) no. 4

[228] E.J. Meier; F.A. An; B. Gadway Atom-optics simulator of lattice transport phenomena, Phys. Rev. A, Volume 93 (2016) no. 5

[229] E.J. Meier; F.A. An; B. Gadway Observation of the topological soliton state in the Su–Schrieffer–Heeger model, Nat. Commun., Volume 7 (2016)

[230] F.A. An; E.J. Meier; B. Gadway Direct observation of chiral currents and magnetic reflection in atomic flux lattices, Sci. Adv., Volume 3 (2017) no. 4

[231] F.A. An; E.J. Meier; B. Gadway Flux-dependent localisation in a disordered flat-band lattice | arXiv

[232] H.M. Price; T. Ozawa; N. Goldman Synthetic dimensions for cold atoms from shaking a harmonic trap, Phys. Rev. A, Volume 95 (2017) no. 2

[233] D. Suszalski; J. Zakrzewski Different lattice geometries with a synthetic dimension, Phys. Rev. A, Volume 94 (2016)

[234] O. Boada; A. Celi; J. Rodríguez-Laguna; J.I. Latorre; M. Lewenstein Quantum simulation of non-trivial topology, New J. Phys., Volume 17 (2015) no. 4

[235] X.-W. Luo; X. Zhou; C.-F. Li; J.-S. Xu; G.-C. Guo; Z.-W. Zhou Quantum simulation of 2D topological physics in a 1D array of optical cavities, Nat. Commun., Volume 6 (2015), p. 8704

[236] T. Ozawa; H.M. Price; N. Goldman; O. Zilberberg; I. Carusotto Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics, Phys. Rev. A, Volume 93 (2016) no. 4

[237] L. Yuan; Y. Shi; S. Fan Photonic gauge potential in a system with a synthetic frequency dimension, Opt. Lett., Volume 41 (2016) no. 4, pp. 741-744

[238] M. Schmidt; S. Kessler; V. Peano; O. Painter; F. Marquardt Optomechanical creation of magnetic fields for photons on a lattice, Optica, Volume 2 (2015) no. 7, pp. 635-641

[239] F.D.M. Haldane Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett., Volume 61 (1988), pp. 2015-2018

[240] A.C. Neto; F. Guinea; N.M. Peres; K.S. Novoselov; A.K. Geim The electronic properties of graphene, Rev. Mod. Phys., Volume 81 (2009) no. 1, p. 109

[241] V.M. Yakovenko Chern–Simons terms and n field in haldane's model for the quantum Hall effect without landau levels, Phys. Rev. Lett., Volume 65 (1990) no. 2, p. 251

[242] X.-L. Qi; Y.-S. Wu; S.-C. Zhang Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors, Phys. Rev. B, Volume 74 (2006) no. 8

[243] N. Goldman; E. Anisimovas; F. Gerbier; P. Öhberg; I. Spielman; G. Juzeliūnas Measuring topology in a laser-coupled honeycomb lattice: from Chern insulators to topological semi-metals, New J. Phys., Volume 15 (2013) no. 1

[244] Z. Qiao; S.A. Yang; W. Feng; W.-K. Tse; J. Ding; Y. Yao; J. Wang; Q. Niu Quantum anomalous Hall effect in graphene from rashba and exchange effects, Phys. Rev. B, Volume 82 (2010) no. 16

[245] W. Beugeling; N. Goldman; C.M. Smith Topological phases in a two-dimensional lattice: magnetic field versus spin–orbit coupling, Phys. Rev. B, Volume 86 (2012) no. 7

[246] Z. Qiao; H. Jiang; X. Li; Y. Yao; Q. Niu Microscopic theory of quantum anomalous Hall effect in graphene, Phys. Rev. B, Volume 85 (2012) no. 11

[247] C.-Z. Chang; J. Zhang; X. Feng; J. Shen; Z. Zhang; M. Guo; K. Li; Y. Ou; P. Wei; L.-L. Wang et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science, Volume 340 (2013) no. 6129, pp. 167-170

[248] A. Szameit; S. Nolte Discrete optics in femtosecond-laser-written photonic structures, J. Phys. B, At. Mol. Opt. Phys., Volume 43 (2010) no. 16

[249] S. Mukherjee et al. Experimental Simulation of Solid-State Phenomena Using Photonic Lattices, Heriot-Watt University, Edinburgh, UK, 2016 (PhD thesis)

[250] Y. Plotnik; M.C. Rechtsman; D. Song; M. Heinrich; J.M. Zeuner; S. Nolte; Y. Lumer; N. Malkova; J. Xu; A. Szameit et al. Observation of unconventional edge states in ‘photonic graphene’, Nat. Mater., Volume 13 (2014) no. 1, pp. 57-62

[251] S. Mukherjee; A. Spracklen; M. Valiente; E. Andersson; P. Öhberg; N. Goldman; R.R. Thomson Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice, Nat. Commun., Volume 8 (2017)

[252] L.J. Maczewsky; J.M. Zeuner; S. Nolte; A. Szameit Observation of photonic anomalous Floquet topological insulators, Nat. Commun., Volume 8 (2017)

[253] M.S. Rudner; N.H. Lindner; E. Berg; M. Levin Anomalous edge states and the bulk–edge correspondence for periodically driven two-dimensional systems, Phys. Rev. X, Volume 3 (2013) no. 3

[254] F. Nathan; M.S. Rudner Topological singularities and the general classification of Floquet Bloch systems, New J. Phys., Volume 17 (2015) no. 12, pp. 1-22

[255] J. Struck; C. Ölschläger; R. Le Targat; P. Soltan-Panahi; A. Eckardt; M. Lewenstein; P. Windpassinger; K. Sengstock Quantum simulation of frustrated classical magnetism in triangular optical lattices, Science, Volume 333 (2011) no. 6045, pp. 996-999

[256] J. Struck; M. Weinberg; C. Ölschläger; P. Windpassinger; J. Simonet; K. Sengstock; R. Höppner; P. Hauke; A. Eckardt; M. Lewenstein; L. Mathey Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields, Nat. Phys., Volume 9 (2013), pp. 738-743 | arXiv

[257] A. Eckardt; P. Hauke; P. Soltan-Panahi; C. Becker; K. Sengstock; M. Lewenstein Frustrated quantum antiferromagnetism with ultracold bosons in a triangular lattice, Europhys. Lett., Volume 89 (2010) no. 1

[258] L. Tarruell; D. Greif; T. Uehlinger; G. Jotzu; T. Esslinger Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice, Nature, Volume 483 (2012) no. 7389, pp. 302-305

[259] W. Zheng; H. Zhai Floquet topological states in shaking optical lattices, Phys. Rev. A, Volume 89 (2014) no. 6

[260] R. Karplus; J. Luttinger Hall effect in ferromagnetics, Phys. Rev., Volume 95 (1954) no. 5, p. 1154

[261] N. Fläschner; D. Vogel; M. Tarnowski; B.S. Rem; D.-S. Lühmann; M. Heyl; J.C. Budich; L. Mathey; K. Sengstock; C. Weitenberg Observation of dynamical vortices after quenches in a system with topology, Nat. Phys., Volume 14 (2018), pp. 265-268

[262] M. Tarnowski; F. Nur Ünal; N. Fläschner; B.S. Rem; A. Eckardt; K. Sengstock; C. Weitenberg Characterizing topology by dynamics: Chern number from linking number | arXiv

[263] C. Wang; P. Zhang; X. Chen; J. Yu; H. Zhai Scheme to measure the topological number of a Chern insulator from quench dynamics, Phys. Rev. Lett., Volume 118 (2017)

[264] N. Fläschner; B. Rem; M. Tarnowski; D. Vogel; D.-S. Lühmann; K. Sengstock; C. Weitenberg Experimental reconstruction of the Berry curvature in a Floquet Bloch band, Science, Volume 352 (2016) no. 6289, pp. 1091-1094

[265] K.S. Novoselov; A.K. Geim; S.V. Morozov; D. Jiang; Y. Zhang; S.V. Dubonos; I.V. Grigorieva; A.A. Firsov Electric field effect in atomically thin carbon films, Science, Volume 306 (2004) no. 5696, pp. 666-669

[266] C. Berger; Z. Song; T. Li; X. Li; A.Y. Ogbazghi; R. Feng; Z. Dai; A.N. Marchenkov; E.H. Conrad; P.N. First; W.A. de Heer Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, J. Phys. Chem. B, Volume 108 (2004) no. 52, pp. 19912-19916

[267] K.S. Novoselov; A.K. Geim; S.V. Morozov; D. Jiang; M.I. Katsnelson; I.V. Grigorieva; S.V. Dubonos; A.A. Firsov Two-dimensional gas of massless Dirac fermions in graphene, Nature, Volume 438 (2005) no. 7065, pp. 197-200

[268] A.K. Geim; K.S. Novoselov The rise of graphene, Nat. Mater., Volume 6 (2007) no. 3, pp. 183-191

[269] M.I. Katsnelson Graphene: carbon in two dimensions, Mater. Today, Volume 10 (2007) no. 1–2, pp. 20-27

[270] S. Das Sarma; A.K. Geim; P. Kim; A.H. MacDonald Exploring graphene Recent research advances, Solid State Commun., Volume 143 (2007) no. 1–2, pp. 1-126

[271] A.K. Geim Graphene: status and prospects, Science, Volume 324 (2009) no. 5934, pp. 1530-1534

[272] K. Suenaga; H. Wakabayashi; M. Koshino; Y. Sato; K. Urita; S. Iljima Imaging active topological defects in carbon nanotubes, Nature, Volume 2 (2007) no. 6, pp. 358-360

[273] A.J. Stone; D.J. Wales Theoretical studies of icosahedral C 60 and some related species, Chem. Phys. Lett., Volume 128 (1986) no. 5–6, pp. 501-503

[274] A. Carpio; L.L. Bonilla; F. de Juan; M.A.H. Vozmediano Dislocations in graphene, New J. Phys., Volume 10 (2008) no. 5

[275] M.P. López-Sancho; F. de Juan; M.A.H. Vozmediano Magnetic moments in the presence of topological defects in graphene, Phys. Rev. B, Volume 79 (2009) no. 7

[276] P.E. Lammert; V.H. Crespi Graphene cones: classification by fictitious flux and electronic properties, Phys. Rev. B, Volume 69 (2004) no. 3

[277] C. Furtado; F. Moraes; A.M. de; M. Carvalho Geometric phases in graphitic cones, Phys. Lett. A, Volume 372 (2008) no. 32, pp. 5368-5371

[278] V.A. Osipov; D.V. Kolesnikov Electronic properties of curved carbon nanostructures, Rom. J. Phys., Volume 50 (2005) no. 3–4, pp. 435-442

[279] F. de Juan; A. Cortijo; M.A.H. Vozmediano Charge inhomogeneities due to smooth ripples in graphene sheets, Phys. Rev. B, Volume 76 (2007) no. 16

[280] J.C. Meyer; A.K. Geim; M.I. Katsnelson; K.S. Novoselov; T.J. Booth; S. Roth The structure of suspended graphene sheets, Nature, Volume 446 (2007), pp. 60-63

[281] J.C. Meyer; A.K. Geim; M.I. Katsnelson; K.S. Novoselov; D. Obergfell; S. Roth; C. Girit; A. Zettl On the roughness of single- and bi-layer graphene membranes, Solid State Commun., Volume 143 (2007) no. 1–2, pp. 101-109

[282] E. Stolyarova; K.T. Rim; S. Ryu; J. Maultzsch; P. Kim; L.E. Brus; T.F. Heinz; M.S. Hybertsen; G.W. Flynn High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface, Proc. Natl. Acad. Sci. USA, Volume 104 (2007) no. 22, pp. 9209-9212

[283] M. Ishigami; J.H. Chen; W.G. Cullen; M.S. Fuhrer; E.D. Williams Atomic structure of graphene on SiO2, Nano Lett., Volume 7 (2007) no. 6, pp. 1643-1648

[284] K. Kondo On the geometrical and physical foundations of the theory of yielding, Proceedings of the 2nd Japan National Congress for Applied Mechanics, 1952, p. 41

[285] H. Kleinert Gauge Fields in Condensed Matter, vols. 1 and 2, World Scientific, Singapore, 1989

[286] M.O. Katanaev; I.V. Volovich Theory of defects in solids and three-dimensional gravity, Ann. Phys., Volume 216 (1992), p. 1

[287] F. de Juan; A. Cortijo; M.A.H. Vozmediano Dislocations and torsion in graphene and related systems, Nucl. Phys. B, Volume 828 (2010), p. 625

[288] C.L. Kane; E.J. Mele Size, shape, and low energy electronic structure of carbon nanotubes, Phys. Rev. Lett., Volume 78 (1997) no. 10, pp. 1932-1935

[289] M.I. Katsnelson; K.S. Novoselov Graphene: new bridge between condensed matter physics and quantum electrodynamics, Solid State Commun., Volume 143 (2007) no. 1–2, pp. 3-13

[290] F. Guinea; M.I. Katsnelson; M.A.H. Vozmediano Midgap states and charge inhomogeneities in corrugated graphene, Phys. Rev. B, Volume 77 (2008) no. 7

[291] F. Guinea; M.I. Katsnelson; A.K. Geim Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering, Nat. Phys., Volume 6 (2010) no. 1, pp. 30-33

[292] F. Guinea; A.K. Geim; M.I. Katsnelson; K.S. Novoselov Generating quantizing pseudomagnetic fields by bending graphene ribbons, Phys. Rev. B, Volume 81 (2010) no. 3

[293] F. de Juan; A. Cortijo; M.A.H. Vozmediano; A. Cano Aharonov–Bohm interferences from local deformations in graphene, Nat. Phys., Volume 7 (2011), pp. 810-815

[294] N. Levy; S.A. Burke; K.L. Meaker; M. Panlasigui; A. Zettl; F. Guinea; A.H.C. Neto; M.F. Crommie Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles, Science, Volume 329 (2010) no. 5991, pp. 544-547

[295] G. Salerno; T. Ozawa; H.M. Price; I. Carusotto Propagating edge states in strained honeycomb lattices, Phys. Rev. B, Volume 95 (2017) no. 24

[296] M. Polini; F. Guinea; M. Lewenstein; H.C. Manoharan; V. Pellegrini Artificial honeycomb lattices for electrons, atoms and photons, Nat. Nanotechnol., Volume 8 (2013), pp. 625-633

[297] K.K. Gomes; W. Mar; W. Ko; F. Guinea; H.C. Manoharan Designer Dirac fermions and topological phases in molecular graphene, Nature, Volume 483 (2012) no. 7389, pp. 306-310

[298] S. Gopalakrishnan; P. Ghaemi; S. Ryu Non-Abelian SU(2) gauge fields through density wave order and strain in graphene, Phys. Rev. B, Volume 86 (2012) no. 8

[299] F. de Juan Non-Abelian gauge fields and quadratic band touching in molecular graphene, Phys. Rev. B, Volume 87 (2013) no. 12

[300] S. Roy; M. Kolodrubetz; N. Goldman; A.G. Grushin Tunable axial gauge fields in engineered Weyl semimetals: semiclassical analysis and optical lattice implementations, 2D Mater., Volume 5 (2018) no. 2

[301] A. Cortijo; Y. Ferreirós; K. Landsteiner; M.A. Vozmediano Elastic gauge fields in Weyl semimetals, Phys. Rev. Lett., Volume 115 (2015) no. 17

[302] M.C. Rechtsman; J.M. Zeuner; A. Tünnermann; S. Nolte; M. Segev; A. Szameit Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures, Nat. Photonics, Volume 7 (2013) no. 2, pp. 153-158

[303] H. Schomerus; N.Y. Halpern Parity anomaly and Landau-level lasing in strained photonic honeycomb lattices, Phys. Rev. Lett., Volume 110 (2013) no. 1

[304] B. Tian; M. Endres; D. Pekker Landau levels in strained optical lattices, Phys. Rev. Lett., Volume 115 (2015) no. 23

[305] H. Abbaszadeh; A. Souslov; J. Paulose; H. Schomerus; V. Vitelli Sonic Landau-level lasing and synthetic gauge fields in mechanical metamaterials, Phys. Rev. Lett., Volume 119 (2017)

[306] Z. Yang; F. Gao; Y. Yang; B. Zhang Strain-induced gauge field and Landau levels in acoustic structures, Phys. Rev. Lett., Volume 118 (2017) no. 19

[307] R. Winkler Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems, Springer Tracts Mod. Phys., vol. 191, Springer, Berlin, New York, 2003

[308] Y.K. Kato; R.C. Myers; A.C. Gossard; D.D. Awschalom Observation of the spin Hall effect in semiconductors, Science, Volume 306 (2004) no. 5703, pp. 1910-1913

[309] M. König; S. Wiedmann; C. Brüne; A. Roth; H. Buhmann; L.W. Molenkamp; X.-L. Qi; S.-C. Zhang Quantum spin Hall insulator state in HgTe quantum wells, Science, Volume 318 (2007) no. 5851, p. 766

[310] C. Chappert; A. Fert; F.N. Van Dau The emergence of spin electronics in data storage, Nat. Mater., Volume 6 (2007) no. 11, pp. 813-823

[311] C.L. Kane; E.J. Mele Z 2 topological order and the quantum spin Hall effect, Phys. Rev. Lett., Volume 95 (2005) no. 14

[312] B.A. Bernevig; T.L. Hughes; S.-C. Zhang Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science, Volume 314 (2006) no. 5806, p. 1757

[313] D. Hsieh; D. Qian; L. Wray; Y. Xia; Y.S. Hor; R.J. Cava; M.Z. Hasan A topological Dirac insulator in a quantum spin Hall phase, Nature, Volume 452 (2008) no. 7190, pp. 970-974

[314] R.J. Elliott Theory of the effect of spin–orbit coupling on magnetic resonance in some semiconductors, Phys. Rev., Volume 96 (1954) no. 2, p. 266

[315] C. Kittel; C.-y. Fong Quantum Theory of Solids, vol. 3, Wiley, New York, 1963

[316] G. Dresselhaus Spin–orbit coupling effects in zinc blende structures, Phys. Rev., Volume 100 (1955) no. 2, p. 580

[317] F.J. Ohkawa; Y. Uemura Quantized surface states of a narrow-gap semiconductor, J. Phys. Soc. Jpn., Volume 37 (1974) no. 5, pp. 1325-1333

[318] E.I. Rashba Properties of semiconductors with an extremum loop. I. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop, Phys. Solid State, Volume 2 (1960), pp. 1109-1122

[319] Y.A. Bychkov; E.I. Rashba Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, J. Phys. C, Solid State Phys., Volume 17 (1984) no. 33, p. 6039

[320] A. Manchon; H.C. Koo; J. Nitta; S. Frolov; R. Duine New perspectives for rashba spin–orbit coupling, Nat. Mater., Volume 14 (2015) no. 9, pp. 871-882

[321] J. Nitta; T. Akazaki; H. Takayanagi; T. Enoki Gate control of spin–orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure, Phys. Rev. Lett., Volume 78 (1997) no. 7, p. 1335

[322] S.D. Ganichev; V.V. Bel'kov; L.E. Golub; E.L. Ivchenko; P. Schneider; S. Giglberger; J. Eroms; J. De Boeck; G. Borghs; W. Wegscheider; D. Weiss; W. Prettl Experimental separation of Rashba and Dresselhaus spin splittings in semiconductor quantum wells, Phys. Rev. Lett., Volume 92 (2004) no. 25

[323] L. Meier; G. Salis; I. Shorubalko; E. Gini; S. Schön; K. Ensslin Measurement of Rashba and Dresselhaus spin–orbit magnetic fields, Nat. Phys., Volume 3 (2007) no. 9

[324] D. Grundler Large rashba splitting in inas quantum wells due to electron wave function penetration into the barrier layers, Phys. Rev. Lett., Volume 84 (2000) no. 26, p. 6074

[325] J. Heida; B. Van Wees; J. Kuipers; T. Klapwijk; G. Borghs Spin–orbit interaction in a two-dimensional electron gas in a inas/alsb quantum well with gate-controlled electron density, Phys. Rev. B, Volume 57 (1998) no. 19

[326] T. Matsuyama; R. Kürsten; C. Meißner; U. Merkt Rashba spin splitting in inversion layers on p-type bulk InAs, Phys. Rev. B, Volume 61 (2000) no. 23

[327] S. Datta; B. Das Electronic analog of the electro-optic modulator, Appl. Phys. Lett., Volume 56 (1990) no. 7, pp. 665-667

[328] J. Schliemann; J.C. Egues; D. Loss Nonballistic spin-field-effect transistor, Phys. Rev. Lett., Volume 90 (2003) no. 14

[329] F. Nagasawa; J. Takagi; Y. Kunihashi; M. Kohda; J. Nitta Experimental demonstration of spin geometric phase: radius dependence of time-reversal aharonov-casher oscillations, Phys. Rev. Lett., Volume 108 (2012) no. 8

[330] F. Nagasawa; D. Frustaglia; H. Saarikoski; K. Richter; J. Nitta Control of the spin geometric phase in semiconductor quantum rings, Nat. Commun., Volume 4 (2013), p. 2526

[331] S.Z. Butler; S.M. Hollen; L. Cao; Y. Cui; J.A. Gupta; H.R. Gutiérrez; T.F. Heinz; S.S. Hong; J. Huang; A.F. Ismach; E. Johnston-Halperin; M. Kuno; V.V. Plashnitsa; R.D. Robinson; R.S. Ruoff; S. Salahuddin; J. Shan; L. Shi; M.G. Spencer; M. Terrones; W. Windl; J.E. Goldberger Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano, Volume 7 (2013) no. 4, pp. 2898-2926

[332] M. Xu; T. Liang; M. Shi; H. Chen Graphene-like two-dimensional materials, Chem. Rev., Volume 113 (2013) no. 5, pp. 3766-3798

[333] Y. Ren; Z. Qiao; Q. Niu Topological phases in two-dimensional materials: a review, Rep. Prog. Phys., Volume 79 (2016) no. 6

[334] M.Z. Hasan; S.-Y. Xu; G. Bian Topological insulators, topological superconductors and Weyl fermion semimetals: discoveries, perspectives and outlooks, Phys. Scr., Volume 2015 (2015) no. T164

[335] N.P. Armitage; E.J. Mele; A. Vishwanath Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys., Volume 90 (2018)

[336] X.-G. Wen Theory of the edge states in fractional quantum Hall effects, Int. J. Mod. Phys. B, Volume 6 (1992) no. 10, pp. 1711-1762

[337] R.-J. Slager The translational side of topological band insulators, J. Phys. Chem. Solids (2018) (available online 31 January 2018)

[338] C.L. Kane; E.J. Mele Quantum spin Hall effect in graphene, Phys. Rev. Lett., Volume 95 (2005) no. 22

[339] V.M. Pereira; A.C. Neto; N. Peres Tight-binding approach to uniaxial strain in graphene, Phys. Rev. B, Volume 80 (2009) no. 4

[340] C. Weeks; J. Hu; J. Alicea; M. Franz; R. Wu Engineering a robust quantum spin Hall state in graphene via adatom deposition, Phys. Rev. X, Volume 1 (2011) no. 2

[341] J. Balakrishnan; G.K.W. Koon; M. Jaiswal; A.C. Neto; B. Özyilmaz Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene, Nat. Phys., Volume 9 (2013) no. 5, p. 284

[342] J. Balakrishnan; G.K.W. Koon; A. Avsar; Y. Ho; J.H. Lee; M. Jaiswal; S.-J. Baeck; J.-H. Ahn; A. Ferreira; M.A. Cazalilla et al. Giant spin Hall effect in graphene grown by chemical vapour deposition, Nat. Commun., Volume 5 (2014), p. 4748

[343] D. Marchenko; A. Varykhalov; M. Scholz; G. Bihlmayer; E. Rashba; A. Rybkin; A. Shikin; O. Rader Giant Rashba splitting in graphene due to hybridization with gold, Nat. Commun., Volume 3 (2012), p. 1232

[344] F. Calleja; H. Ochoa; M. Garnica; S. Barja; J.J. Navarro; A. Black; M.M. Otrokov; E.V. Chulkov; A. Arnau; A.L.V. De Parga et al. Spatial variation of a giant spin–orbit effect induces electron confinement in graphene on Pb islands, Nat. Phys., Volume 11 (2015) no. 1, p. 43

[345] A. Young; J. Sanchez-Yamagishi; B. Hunt; S. Choi; K. Watanabe; T. Taniguchi; R. Ashoori; P. Jarillo-Herrero et al. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state, Nature, Volume 505 (2014) no. 7484, p. 528

[346] A. Avsar; J. Tan; T. Taychatanapat; J. Balakrishnan; G. Koon; Y. Yeo; J. Lahiri; A. Carvalho; A. Rodin; E. O'farrell et al. Spin–orbit proximity effect in graphene, Nat. Commun., Volume 5 (2014), p. 4875

[347] C.-C. Liu; W. Feng; Y. Yao Quantum spin Hall effect in silicene and two-dimensional germanium, Phys. Rev. Lett., Volume 107 (2011) no. 7

[348] Z. Ni; Q. Liu; K. Tang; J. Zheng; J. Zhou; R. Qin; Z. Gao; D. Yu; J. Lu Tunable bandgap in silicene and germanene, Nano Lett., Volume 12 (2011) no. 1, pp. 113-118

[349] P. Vogt; P. De Padova; C. Quaresima; J. Avila; E. Frantzeskakis; M.C. Asensio; A. Resta; B. Ealet; G. Le Lay Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Phys. Rev. Lett., Volume 108 (2012) no. 15

[350] M.E. Dávila; L. Xian; S. Cahangirov; A. Rubio; G.L. Lay Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys., Volume 16 (2014) no. 9

[351] Y. Xu; B. Yan; H.-J. Zhang; J. Wang; G. Xu; P. Tang; W. Duan; S.-C. Zhang Large-gap quantum spin Hall insulators in tin films, Phys. Rev. Lett., Volume 111 (2013) no. 13

[352] F.-f. Zhu; W.-j. Chen; Y. Xu; C.-l. Gao; D.-d. Guan; C.-h. Liu; D. Qian; S.-C. Zhang; J.-f. Jia Epitaxial growth of two-dimensional stanene, Nat. Mater., Volume 14 (2015) no. 10, pp. 1020-1025

[353] Q.H. Wang; K. Kalantar-Zadeh; A. Kis; J.N. Coleman; M.S. Strano Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., Volume 7 (2012) no. 11, pp. 699-712

[354] M. Cazalilla; H. Ochoa; F. Guinea Quantum spin Hall effect in two-dimensional crystals of transition-metal dichalcogenides, Phys. Rev. Lett., Volume 113 (2014) no. 7

[355] X. Qian; J. Liu; L. Fu; J. Li Quantum spin Hall effect in two-dimensional transition metal dichalcogenides, Science, Volume 346 (2014) no. 6215, pp. 1344-1347

[356] X.-J. Liu; M.F. Borunda; X. Liu; J. Sinova Effect of induced spin–orbit coupling for atoms via laser fields, Phys. Rev. Lett., Volume 102 (2009) no. 4

[357] Y.-J. Lin; K. Jiménez-García; I.B. Spielman Spin–orbit-coupled Bose–Einstein condensates, Nature, Volume 471 (2011) no. 7336, pp. 83-86

[358] L.W. Cheuk; A.T. Sommer; Z. Hadzibabic; T. Yefsah; W.S. Bakr; M.W. Zwierlein Spin-injection spectroscopy of a spin–orbit coupled Fermi gas, Phys. Rev. Lett., Volume 109 (2012) no. 9

[359] P. Wang; Z.-Q. Yu; Z. Fu; J. Miao; L. Huang; S. Chai; H. Zhai; J. Zhang Spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett., Volume 109 (2012) no. 9

[360] N.Q. Burdick; Y. Tang; B.L. Lev Long-lived spin–orbit coupled degenerate dipolar Fermi gas, Phys. Rev. X, Volume 6 (2016) no. 3

[361] B. Song; C. He; S. Zhang; E. Hajiyev; W. Huang; X.-J. Liu; G.-B. Jo Spin-orbit-coupled two-electron Fermi gases of ytterbium atoms, Phys. Rev. A, Volume 94 (2016) 061604(R)

[362] K. Jiménez-García; L. LeBlanc; R. Williams; M. Beeler; C. Qu; M. Gong; C. Zhang; I. Spielman Tunable spin–orbit coupling via strong driving in ultracold-atom systems, Phys. Rev. Lett., Volume 114 (2015) no. 12

[363] S. Nascimbene Realizing one-dimensional topological superfluids with ultracold atomic gases, J. Phys. B, At. Mol. Opt. Phys., Volume 46 (2013) no. 13

[364] X. Cui; B. Lian; T.-L. Ho; B.L. Lev; H. Zhai Synthetic gauge field with highly magnetic lanthanide atoms, Phys. Rev. A, Volume 88 (2013) no. 1

[365] D. Hügel; B. Paredes Chiral ladders and the edges of quantum Hall insulators, Phys. Rev. A, Volume 89 (2014) no. 2

[366] Q. Sun; L. Wen; W.-M. Liu; G. Juzeliūnas; A.-C. Ji Tunneling-assisted spin–orbit coupling in bilayer Bose–Einstein condensates, Phys. Rev. A, Volume 91 (2015) no. 3

[367] C. Wang; C. Gao; C.-M. Jian; H. Zhai Spin–orbit coupled spinor Bose–Einstein condensates, Phys. Rev. Lett., Volume 105 (2010) no. 16

[368] Z. Lan; P. Öhberg Raman-dressed spin-1 spin–orbit coupled quantum gas, Phys. Rev. A, Volume 89 (2014) no. 2

[369] S.S. Natu; X. Li; W.S. Cole Striped ferronematic ground states in a spin–orbit coupled s=1 bose gas, Phys. Rev. A, Volume 91 (2015) no. 2

[370] D. Campbell; R. Price; A. Putra; A. Valdés-Curiel; D. Trypogeorgos; I. Spielman Magnetic phases of spin-1 spin–orbit coupled bose gases, Nat. Commun., Volume 7 (2016)

[371] R. Unanyan; B. Shore; K. Bergmann Laser-driven population transfer in four-level atoms: consequences of non-Abelian geometrical adiabatic phase factors, Phys. Rev. A, Volume 59 (1999) no. 4, p. 2910

[372] J. Ruseckas; G. Juzeliūnas; P. Öhberg; M. Fleischhauer Non-Abelian gauge potentials for ultracold atoms with degenerate dark states, Phys. Rev. Lett., Volume 95 (2005) no. 1

[373] G. Juzeliūnas; J. Ruseckas; J. Dalibard Generalized Rashba–Dresselhaus spin–orbit coupling for cold atoms, Phys. Rev. A, Volume 81 (2010) no. 5

[374] D.L. Campbell; G. Juzeliūnas; I.B. Spielman Realistic Rashba and Dresselhaus spin–orbit coupling for neutral atoms, Phys. Rev. A, Volume 84 (2011) no. 2

[375] L. Huang; Z. Meng; P. Wang; P. Peng; S.-L. Zhang; L. Chen; D. Li; Q. Zhou; J. Zhang Experimental realization of two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases, Nat. Phys., Volume 12 (2016)

[376] Z. Meng; L. Huang; P. Peng; D. Li; L. Chen; Y. Xu; C. Zhang; P. Wang; J. Zhang Experimental observation of a topological band gap opening in ultracold Fermi gases with two-dimensional, spin–orbit coupling, Phys. Rev. Lett., Volume 117 (2016) no. 23

[377] Z. Wu; L. Zhang; W. Sun; X.-T. Xu; B.-Z. Wang; S.-C. Ji; Y. Deng; S. Chen; X.-J. Liu; J.-W. Pan Realization of two-dimensional spin–orbit coupling for Bose–Einstein condensates, Science, Volume 354 (2016) no. 6308

[378] X.-J. Liu; K.T. Law; T.K. Ng; P.A. Lee Detecting topological phases in cold atoms, Phys. Rev. Lett., Volume 111 (2013) no. 12

[379] A. Bermudez; L. Mazza; M. Rizzi; N. Goldman; M. Lewenstein; M.A. Martin-Delgado Wilson fermions and axion electrodynamics in optical lattices, Phys. Rev. Lett., Volume 105 (2010) no. 19

[380] B.M. Anderson; G. Juzeliūnas; V.M. Galitski; I.B. Spielman Synthetic 3d spin–orbit coupling, Phys. Rev. Lett., Volume 108 (2012) no. 23

[381] L. Mazza; A. Bermudez; N. Goldman; M. Rizzi; M.A. Martin-Delgado; M. Lewenstein An optical-lattice-based quantum simulator for relativistic field theories and topological insulators, New J. Phys., Volume 14 (2012) no. 1

[382] T. Dubček; C.J. Kennedy; L. Lu; W. Ketterle; M. Soljačić; H. Buljan Weyl points in three-dimensional optical lattices: synthetic magnetic monopoles in momentum space, Phys. Rev. Lett., Volume 114 (2015) no. 22

[383] J. Struck; J. Simonet; K. Sengstock Spin–orbit coupling in periodically driven optical lattices, Phys. Rev. A, Volume 90 (2014) no. 3

[384] C.J. Kennedy; G.A. Siviloglou; H. Miyake; W.C. Burton; W. Ketterle Spin–orbit coupling and quantum spin Hall effect for neutral atoms without spin flips, Phys. Rev. Lett., Volume 111 (2013) no. 22

[385] S. Choudhury; E.J. Mueller Transverse collisional instabilities of a Bose–Einstein condensate in a driven one-dimensional lattice, Phys. Rev. A, Volume 91 (2015) no. 2

[386] T. Bilitewski; N.R. Cooper Scattering theory for Floquet–Bloch states, Phys. Rev. A, Volume 91 (2015)

[387] M. Weinberg; C. Ölschläger; C. Sträter; S. Prelle; A. Eckardt; K. Sengstock; J. Simonet Multiphoton interband excitations of quantum gases in driven optical lattices, Phys. Rev. A, Volume 92 (2015) no. 4

[388] S. Lellouch; M. Bukov; E. Demler; N. Goldman Parametric instability rates in periodically driven band systems, Phys. Rev. X, Volume 7 (2017) no. 2

[389] M.L. Wall; A.P. Koller; S. Li; X. Zhang; N.R. Cooper; J. Ye; A.M. Rey Synthetic spin–orbit coupling in an optical lattice clock, Phys. Rev. Lett., Volume 116 (2016) no. 3

[390] J.-Y. Zhang; S.-C. Ji; Z. Chen; L. Zhang; Z.-D. Du; B. Yan; G.-S. Pan; B. Zhao; Y.-J. Deng; H. Zhai; S. Chen; J.-W. Pan Collective dipole oscillations of a spin–orbit coupled Bose–Einstein condensate, Phys. Rev. Lett., Volume 109 (2012) no. 11

[391] C. Qu; C. Hamner; M. Gong; C. Zhang; P. Engels Observation of Zitterbewegung in a spin–orbit coupled Bose–Einstein condensate, Phys. Rev. A, Volume 88 (2013) no. 2

[392] L.J. LeBlanc; M. Beeler; K. Jiménez-García; A.R. Perry; S. Sugawa; R. Williams; I.B. Spielman Direct observation of zitterbewegung in a Bose–Einstein condensate, New J. Phys., Volume 15 (2013) no. 7

[393] J.Y. Vaishnav; J. Ruseckas; C.W. Clark; G. Juzeliūnas Spin field effect transistors with ultracold atoms, Phys. Rev. Lett., Volume 101 (2008) no. 26

[394] M.C. Beeler; R.A. Williams; K. Jiménez-García; L.J. LeBlanc; A.R. Perry; I.B. Spielman The spin Hall effect in a quantum gas, Nature, Volume 498 (2013) no. 7453

[395] A.J. Olson; S.-J. Wang; R.J. Niffenegger; C.-H. Li; C.H. Greene; Y.P. Chen Tunable Landau–Zener transitions in a spin–orbit coupled Bose–Einstein condensate, Phys. Rev. A, Volume 90 (2014) no. 1

[396] Q. Zhu; C. Zhang; B. Wu Exotic superfluidity in spin–orbit coupled Bose–Einstein condensates, Europhys. Lett., Volume 100 (2012) no. 5

[397] C. Hamner; Y. Zhang; M. Khamehchi; M.J. Davis; P. Engels Spin-orbit-coupled Bose–Einstein condensates in a one-dimensional optical lattice, Phys. Rev. Lett., Volume 114 (2015) no. 7

[398] C. Zhang; S. Tewari; R.M. Lutchyn; S.D. Sarma px+ipy superfluid from s-wave interactions of fermionic cold atoms, Phys. Rev. Lett., Volume 101 (2008) no. 16

[399] J.P. Vyasanakere; V.B. Shenoy Bound states of two spin-1/2 fermions in a synthetic non-Abelian gauge field, Phys. Rev. B, Volume 83 (2011) no. 9

[400] L. Jiang; X.-J. Liu; H. Hu; H. Pu Rashba spin–orbit coupled atomic Fermi gases, Phys. Rev. A, Volume 84 (2011) no. 6

[401] J. Zhou; W. Zhang; W. Yi Topological superfluid in a trapped two-dimensional polarized Fermi gas with spin–orbit coupling, Phys. Rev. A, Volume 84 (2011) no. 6

[402] R.A. Williams; L.J. LeBlanc; K. Jimenez-Garcia; M.C. Beeler; A.R. Perry; W.D. Phillips; I.B. Spielman Synthetic partial waves in ultracold atomic collisions, Science, Volume 335 (2012) no. 6066, pp. 314-317

[403] R. Williams; M. Beeler; L. LeBlanc; K. Jiménez-García; I. Spielman Raman-induced interactions in a single-component Fermi gas near an s-wave Feshbach resonance, Phys. Rev. Lett., Volume 111 (2013) no. 9

[404] Z. Fu; L. Huang; Z. Meng; P. Wang; L. Zhang; S. Zhang; H. Zhai; P. Zhang; J. Zhang Production of Feshbach molecules induced by spin–orbit coupling in Fermi gases, Nat. Phys., Volume 10 (2014) no. 2, pp. 110-115

[405] Z. Fu; L. Huang; Z. Meng; P. Wang; X.-J. Liu; H. Pu; H. Hu; J. Zhang Radio-frequency spectroscopy of a strongly interacting spin–orbit coupled Fermi gas, Phys. Rev. A, Volume 87 (2013) no. 5

[406] S.-C. Ji; J.-Y. Zhang; L. Zhang; Z.-D. Du; W. Zheng; Y.-J. Deng; H. Zhai; S. Chen; J.-W. Pan Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas, Nat. Phys., Volume 10 (2014) no. 4

[407] T.-L. Ho; S. Zhang Bose–Einstein condensates with spin–orbit interaction, Phys. Rev. Lett., Volume 107 (2011) no. 15

[408] Y. Li; L. Pitaevskii; S. Stringari Quantum tricriticality and phase transitions in spin–orbit coupled Bose–Einstein condensates, Phys. Rev. Lett., Volume 108 (2012) no. 22

[409] C. Hamner; C. Qu; Y. Zhang; J. Chang; M. Gong; C. Zhang; P. Engels Dicke-type phase transition in a spin–orbit coupled Bose–Einstein condensate, Nat. Commun., Volume 5 (2014)

[410] S.-C. Ji; L. Zhang; X.-T. Xu; Z. Wu; Y. Deng; S. Chen; J.-W. Pan Softening of roton and phonon modes in a Bose–Einstein condensate with spin–orbit coupling, Phys. Rev. Lett., Volume 114 (2015) no. 10

[411] J.-R. Li; J. Lee; W. Huang; S. Burchesky; B. Shteynas; F.Ç. Top; A.O. Jamison; W. Ketterle A stripe phase with supersolid properties in spin–orbit coupled Bose–Einstein condensates, Nature, Volume 543 (2017) no. 7643, pp. 91-94

[412] A.Y. Kitaev Unpaired Majorana fermions in quantum wires, Phys. Usp., Volume 44 (2001) no. 10S, p. 131

[413] M. Sato; Y. Takahashi; S. Fujimoto Non-Abelian topological order in s-wave superfluids of ultracold fermionic atoms, Phys. Rev. Lett., Volume 103 (2009) no. 2

[414] L. Jiang; T. Kitagawa; J. Alicea; A. Akhmerov; D. Pekker; G. Refael; J.I. Cirac; E. Demler; M.D. Lukin; P. Zoller Majorana fermions in equilibrium and in driven cold-atom quantum wires, Phys. Rev. Lett., Volume 106 (2011) no. 22

[415] S.-L. Zhu; L.-B. Shao; Z. Wang; L.-M. Duan Probing non-Abelian statistics of majorana fermions in ultracold atomic superfluid, Phys. Rev. Lett., Volume 106 (2011) no. 10

[416] X. Wan; A.M. Turner; A. Vishwanath; S.Y. Savrasov Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B, Volume 83 (2011) no. 20

[417] J.-H. Jiang Tunable topological Weyl semimetal from simple-cubic lattices with staggered fluxes, Phys. Rev. A, Volume 85 (2012) no. 3

[418] D.-W. Zhang; S.-L. Zhu; Z. Wang Simulating and exploring Weyl semimetal physics with cold atoms in a two-dimensional optical lattice, Phys. Rev. A, Volume 92 (2015) no. 1

[419] W.-Y. He; S. Zhang; K.T. Law Realization and detection of Weyl semimetals and the chiral anomaly in cold atomic systems, Phys. Rev. A, Volume 94 (2016) no. 1

[420] H. Zhai Spin–orbit coupled quantum gases, Int. J. Mod. Phys. B, Volume 26 (2012) no. 01

[421] X. Zhou; Y. Li; Z. Cai; C. Wu Unconventional states of bosons with the synthetic spin–orbit coupling, J. Phys. B, At. Mol. Opt. Phys., Volume 46 (2013) no. 13

[422] I.B. Galitski; V. Spielman Spin–orbit coupling in quantum gases, Nature, Volume 494 (2013) no. 7435

[423] V. Liberman; B.Y. Zel'dovich Spin–orbit interaction of a photon in an inhomogeneous medium, Phys. Rev. A, Volume 46 (1992) no. 8, p. 5199

[424] K.Y. Bliokh; Y.P. Bliokh Modified geometrical optics of a smoothly inhomogeneous isotropic medium: the anisotropy, Berry phase, and the optical Magnus effect, Phys. Rev. E, Volume 70 (2004) no. 2

[425] K.Y. Bliokh; F. Rodríguez-Fortuño; F. Nori; A.V. Zayats Spin–orbit interactions of light, Nat. Photonics, Volume 9 (2015) no. 12, pp. 796-808

[426] S. Rytov On the transition from wave to geometrical optics, Dokl. Akad. Nauk SSSR, Volume 18 (1938), pp. 263-267

[427] V. Vladimirsky On the plane polarization in a curvilinear light ray, Dokl. Acad. Nauk USSR, Volume 31 (1940), p. 222

[428] R.Y. Chiao; Y.-S. Wu Manifestations of Berry's topological phase for the photon, Phys. Rev. Lett., Volume 57 (1986) no. 8, p. 933

[429] A. Tomita; R.Y. Chiao Observation of Berry's topological phase by use of an optical fiber, Phys. Rev. Lett., Volume 57 (1986) no. 8, p. 937

[430] M. Onoda; S. Murakami; N. Nagaosa Hall effect of light, Phys. Rev. Lett., Volume 93 (2004) no. 8

[431] K.Y. Bliokh; Y.P. Bliokh Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet, Phys. Rev. Lett., Volume 96 (2006) no. 7

[432] F. Goos; H. Hänchen Ein neuer und fundamentaler versuch zur totalreflexion, Ann. Phys., Volume 436 (1947) no. 7–8, pp. 333-346

[433] F.I. Fedorov K teorii polnogo otrazheniya, Dokl. Akad. Nauk SSSR, Volume 105 (1955) no. 3, pp. 465-468

[434] C. Imbert Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam, Phys. Rev. D, Volume 5 (1972) no. 4, p. 787

[435] K.Y. Bliokh; A. Aiello Goos–Hänchen and Imbert–Fedorov beam shifts: an overview, J. Opt., Volume 15 (2013) no. 1

[436] F. Pillon; H. Gilles; S. Girard Experimental observation of the Imbert–Fedorov transverse displacement after a single total reflection, Appl. Opt., Volume 43 (2004) no. 9, pp. 1863-1869

[437] O. Hosten; P. Kwiat Observation of the spin Hall effect of light via weak measurements, Science, Volume 319 (2008) no. 5864, pp. 787-790

[438] Y. Qin; Y. Li; H. He; Q. Gong Measurement of spin Hall effect of reflected light, Opt. Lett., Volume 34 (2009) no. 17, pp. 2551-2553

[439] K.Y. Bliokh; A. Niv; V. Kleiner; E. Hasman Geometrodynamics of spinning light, Nat. Photonics, Volume 2 (2008) no. 12, pp. 748-753

[440] Y. Qin; Y. Li; X. Feng; Z. Liu; H. He; Y.-F. Xiao; Q. Gong Spin Hall effect of reflected light at the air-uniaxial crystal interface, Opt. Express, Volume 18 (2010) no. 16, pp. 16832-16839

[441] J.-M. Ménard; A.E. Mattacchione; H.M. van Driel; C. Hautmann; M. Betz Ultrafast optical imaging of the spin Hall effect of light in semiconductors, Phys. Rev. B, Volume 82 (2010) no. 4

[442] N. Hermosa; A. Nugrowati; A. Aiello; J. Woerdman Spin Hall effect of light in metallic reflection, Opt. Lett., Volume 36 (2011) no. 16, pp. 3200-3202

[443] X. Zhou; Z. Xiao; H. Luo; S. Wen Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements, Phys. Rev. A, Volume 85 (2012) no. 4

[444] X. Zhou; X. Ling; H. Luo; S. Wen Identifying graphene layers via spin Hall effect of light, Appl. Phys. Lett., Volume 101 (2012) no. 25

[445] X. Yin; Z. Ye; J. Rho; Y. Wang; X. Zhang Photonic spin Hall effect at metasurfaces, Science, Volume 339 (2013) no. 6126, pp. 1405-1407

[446] Y. Zhao; J.S. Edgar; G.D. Jeffries; D. McGloin; D.T. Chiu Spin-to-orbital angular momentum conversion in a strongly focused optical beam, Phys. Rev. Lett., Volume 99 (2007) no. 7

[447] D. Haefner; S. Sukhov; A. Dogariu Spin Hall effect of light in spherical geometry, Phys. Rev. Lett., Volume 102 (2009) no. 12

[448] O.G. Rodríguez-Herrera; D. Lara; K.Y. Bliokh; E.A. Ostrovskaya; C. Dainty Optical nanoprobing via spin–orbit interaction of light, Phys. Rev. Lett., Volume 104 (2010) no. 25

[449] L. Marrucci; E. Karimi; S. Slussarenko; B. Piccirillo; E. Santamato; E. Nagali; F. Sciarrino Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications, J. Opt., Volume 13 (2011) no. 6

[450] G. Li; M. Kang; S. Chen; S. Zhang; E. Pun; K. Cheah; J. Li Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light, Nano Lett., Volume 13 (2013) no. 9, pp. 4148-4151

[451] N. Baranova; A.Y. Savchenko; B.Y. Zel'Dovich Transverse shift of a focal spot due to switching of the sign of circular polarization, JETP Lett., Volume 59 (1994) no. 4, pp. 232-234

[452] K.Y. Bliokh; Y. Gorodetski; V. Kleiner; E. Hasman Coriolis effect in optics: unified geometric phase and spin-Hall effect, Phys. Rev. Lett., Volume 101 (2008) no. 3

[453] Y. Gorodetski; A. Niv; V. Kleiner; E. Hasman Observation of the spin-based plasmonic effect in nanoscale structures, Phys. Rev. Lett., Volume 101 (2008) no. 4

[454] N. Shitrit; I. Bretner; Y. Gorodetski; V. Kleiner; E. Hasman Optical spin Hall effects in plasmonic chains, Nano Lett., Volume 11 (2011) no. 5, pp. 2038-2042

[455] Y. Gorodetski; K. Bliokh; B. Stein; C. Genet; N. Shitrit; V. Kleiner; E. Hasman; T. Ebbesen Weak measurements of light chirality with a plasmonic slit, Phys. Rev. Lett., Volume 109 (2012) no. 1

[456] X. Ling; X. Yi; X. Zhou; Y. Liu; W. Shu; H. Luo; S. Wen Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect, Appl. Phys. Lett., Volume 105 (2014) no. 15

[457] S.S. Kruk; M. Decker; I. Staude; S. Schlecht; M. Greppmair; D.N. Neshev; Y.S. Kivshar Spin-polarized photon emission by resonant multipolar nanoantennas, ACS Photonics, Volume 1 (2014) no. 11, pp. 1218-1223

[458] J. Lin; J.B. Mueller; Q. Wang; G. Yuan; N. Antoniou; X.-C. Yuan; F. Capasso Polarization-controlled tunable directional coupling of surface plasmon polaritons, Science, Volume 340 (2013) no. 6130, pp. 331-334

[459] N. Shitrit; I. Yulevich; E. Maguid; D. Ozeri; D. Veksler; V. Kleiner; E. Hasman Spin-optical metamaterial route to spin-controlled photonics, Science, Volume 340 (2013) no. 6133, pp. 724-726

[460] N. Meinzer; W.L. Barnes; I.R. Hooper Plasmonic meta-atoms and metasurfaces, Nat. Photonics, Volume 8 (2014) no. 12, pp. 889-898

[461] D. O'connor; P. Ginzburg; F. Rodríguez-Fortuño; G. Wurtz; A. Zayats Spin–orbit coupling in surface plasmon scattering by nanostructures, Nat. Commun., Volume 5 (2014), p. 5327

[462] Y. Liu; Y. Ke; H. Luo; S. Wen Photonic spin Hall effect in metasurfaces: a brief review, Nanophotonics, Volume 6 (2017) no. 1, pp. 51-70

[463] L. Marrucci; C. Manzo; D. Paparo Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media, Phys. Rev. Lett., Volume 96 (2006) no. 16

[464] E. Nagali; F. Sciarrino; F. De Martini; L. Marrucci; B. Piccirillo; E. Karimi; E. Santamato Quantum information transfer from spin to orbital angular momentum of photons, Phys. Rev. Lett., Volume 103 (2009) no. 1

[465] E. Brasselet; N. Murazawa; H. Misawa; S. Juodkazis Optical vortices from liquid crystal droplets, Phys. Rev. Lett., Volume 103 (2009) no. 10

[466] E. Brasselet; C. Loussert Electrically controlled topological defects in liquid crystals as tunable spin–orbit encoders for photons, Opt. Lett., Volume 36 (2011) no. 5, pp. 719-721

[467] M. Born; E. Wolf et al. Principles of Optics, Pergamon Press, 1980

[468] M. Dyakonov; V. Perel Current-induced spin orientation of electrons in semiconductors, Phys. Lett. A, Volume 35 (1971) no. 6, pp. 459-460

[469] G. Pikus; G. Bir Exchange interaction in excitons in semiconductors, Sov. Phys. JETP, Volume 33 (1971), p. 108

[470] M. Maialle; E. de Andrada e Silva; L. Sham Exciton spin dynamics in quantum wells, Phys. Rev. B, Volume 47 (1993) no. 23

[471] A. Kavokin; G. Malpuech; M. Glazov Optical spin Hall effect, Phys. Rev. Lett., Volume 95 (2005) no. 13

[472] C. Leyder; M. Romanelli; J.P. Karr; E. Giacobino; T.C. Liew; M.M. Glazov; A.V. Kavokin; G. Malpuech; A. Bramati Observation of the optical spin Hall effect, Nat. Phys., Volume 3 (2007) no. 9, p. 628

[473] I. Shelykh; A. Kavokin; Y.G. Rubo; T. Liew; G. Malpuech Polariton polarization-sensitive phenomena in planar semiconductor microcavities, Semicond. Sci. Technol., Volume 25 (2009) no. 1

[474] V. Sala; D. Solnyshkov; I. Carusotto; T. Jacqmin; A. Lemaître; H. Terças; A. Nalitov; M. Abbarchi; E. Galopin; I. Sagnes et al. Spin–orbit coupling for photons and polaritons in microstructures, Phys. Rev. X, Volume 5 (2015) no. 1

[475] J. Bloch; F. Boeuf; J. Gérard; B. Legrand; J. Marzin; R. Planel; V. Thierry-Mieg; E. Costard Strong and weak coupling regime in pillar semiconductor microcavities, Physica E, Low-Dimens. Syst. Nanostruct., Volume 2 (1998) no. 1, pp. 915-919

[476] A. Nalitov; G. Malpuech; H. Terças; D. Solnyshkov Spin–orbit coupling and the optical spin Hall effect in photonic graphene, Phys. Rev. Lett., Volume 114 (2015) no. 2

[477] T. Jacqmin; I. Carusotto; I. Sagnes; M. Abbarchi; D. Solnyshkov; G. Malpuech; E. Galopin; A. Lemaître; J. Bloch; A. Amo Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons, Phys. Rev. Lett., Volume 112 (2014) no. 11

[478] H. Terças; H. Flayac; D. Solnyshkov; G. Malpuech Non-Abelian gauge fields in photonic cavities and photonic superfluids, Phys. Rev. Lett., Volume 112 (2014) no. 6

[479] X.-C. Sun; C. He; X.-P. Liu; M.-H. Lu; S.-N. Zhu; Y.-F. Chen Two-dimensional topological photonic systems, Prog. Quantum Electron., Volume 55 (2017), pp. 52-73

[480] F. Gao; Z. Gao; X. Shi; Z. Yang; X. Lin; H. Xu; J.D. Joannopoulos; M. Soljačić; H. Chen; L. Lu et al. Probing topological protection using a designer surface plasmon structure, Nat. Commun., Volume 7 (2016)

[481] A.B. Khanikaev; S. Hossein Mousavi; W.-K. Tse; M. Kargarian; A.H. MacDonald; G. Shvets Photonic topological insulators, Nat. Mater., Volume 12 (2013) no. 3, pp. 233-239

[482] W. Chen; S. Jiang; X. Chen; B. Zhu; L. Zhou; J. Dong; C. Chan Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide, Nat. Commun., Volume 5 (2014), p. 5782

[483] X. Cheng; C. Jouvaud; X. Ni; S.H. Mousavi; A.Z. Genack; A.B. Khanikaev Robust reconfigurable electromagnetic pathways within a photonic topological insulator, Nat. Mater., Volume 15 (2016) no. 5, pp. 542-548

[484] A.P. Slobozhanyuk; A.B. Khanikaev; D.S. Filonov; D.A. Smirnova; A.E. Miroshnichenko; Y.S. Kivshar Experimental demonstration of topological effects in bianisotropic metamaterials, Sci. Rep., Volume 6 (2016)

[485] L. Lu; L. Fu; J.D. Joannopoulos; M. Soljačić Weyl points and line nodes in gyroid photonic crystals, Nat. Photonics, Volume 7 (2013) no. 4, pp. 294-299

[486] L. Lu; Z. Wang; D. Ye; L. Ran; L. Fu; J.D. Joannopoulos; M. Soljačić Experimental observation of Weyl points, Science, Volume 349 (2015) no. 6248, pp. 622-624

[487] W.-j. Chen; M. Xiao; C. Chan Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states, Nat. Commun., Volume 7 (2016)

[488] V. Peano; C. Brendel; M. Schmidt; F. Marquardt Topological phases of sound and light, Phys. Rev. X, Volume 5 (2015)

[489] A.B. Khanikaev; R. Fleury; S.H. Mousavi; A. Alù Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice, Nat. Commun., Volume 6 (2015), p. 8260

[490] T. Kariyado; Y. Hatsugai Manipulation of Dirac cones in mechanical graphene, Sci. Rep., Volume 5 (2015)

[491] C. Brendel; V. Peano; O.J. Painter; F. Marquardt Pseudomagnetic fields for sound at the nanoscale, Proc. Natl. Acad. Sci., Volume 114 (2017) no. 17, p. E3390-E3395

[492] G. Ma; P. Sheng Acoustic metamaterials: from local resonances to broad horizons, Sci. Adv., Volume 2 (2016) no. 2

[493] G. Salerno; A. Berardo; T. Ozawa; H.M. Price; L. Taxis; N.M. Pugno; I. Carusotto Spin–orbit coupling in a hexagonal ring of pendula, New J. Phys., Volume 19 (2017)

[494] S.-Y. Yu; X.-C. Sun; X. Ni; Q. Wang; X.-J. Yan; C. He; X.-P. Liu; L. Feng; M.-H. Lu; Y.-F. Chen Surface phononic graphene, Nat. Mater., Volume 15 (2016) no. 12, pp. 1243-1247

[495] L. Ye; C. Qiu; J. Lu; X. Wen; Y. Shen; M. Ke; F. Zhang; Z. Liu Observation of acoustic valley vortex states and valley-chirality locked beam splitting, Phys. Rev. B, Volume 95 (2017) no. 17

[496] Q. Wei; Y. Tian; S.-Y. Zuo; Y. Cheng; X.-J. Liu Experimental demonstration of topologically protected efficient sound propagation in an acoustic waveguide network, Phys. Rev. B, Volume 95 (2017) no. 9

[497] B.-Z. Xia; T.-T. Liu; H.-Q. Dai; J.-R. Jiao; X.-G. Zang; D.-J. Yu; S.-J. Zheng; J. Liu Topological phononic insulator with robustly pseudospin-dependent transport, Phys. Rev. B, Volume 96 (2017)

[498] F. Wilczek Two applications of axion electrodynamics, Phys. Rev. Lett., Volume 58 (1987) no. 18, p. 1799

[499] B.A. Bernevig It's been a Weyl coming, Nat. Phys., Volume 11 (2015), pp. 698-699

[500] R.A. Bertlmann Anomalies in Quantum Field Theory, vol. 91, Oxford University Press, 2000

[501] S.R. Elliott; M. Franz Colloquium: majorana fermions in nuclear, particle, and solid-state physics, Rev. Mod. Phys., Volume 87 (2015), pp. 137-163

[502] J.I. Cirac; P. Maraner; J.K. Pachos Cold atom simulation of interacting relativistic quantum field theories, Phys. Rev. Lett., Volume 105 (2010)

[503] E. Zohar; J.I. Cirac; B. Reznik Simulating compact quantum electrodynamics with ultracold atoms: probing confinement and nonperturbative effects, Phys. Rev. Lett., Volume 109 (2012)

[504] D. Banerjee; M. Dalmonte; M. Müller; E. Rico; P. Stebler; U.-J. Wiese; P. Zoller Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench, Phys. Rev. Lett., Volume 109 (2012)

[505] L. Tagliacozzo; A. Celi; P. Orland; M.W. Mitchell; M. Lewenstein Simulation of non-Abelian gauge theories with optical lattices, Nat. Commun., Volume 4 (2013), p. 2615

[506] O. Dutta; L. Tagliacozzo; M. Lewenstein; J. Zakrzewski Toolbox for Abelian lattice gauge theories with synthetic matter, Phys. Rev. A, Volume 95 (2017)

[507] E.A. Martinez; C.A. Muschik; P. Schindler; D. Nigg; A. Erhard; M. Heyl; P. Hauke; M. Dalmonte; T. Monz; P. Zoller; R. Blatt Real-time dynamics of lattice gauge theories with a few-qubit quantum computer, Nature, Volume 534 (2016) no. 7608, pp. 516-519

  • Chengpeng Yu Study on axial fields in the dynamically assisted Schwinger effect, Physical Review D, Volume 111 (2025) no. 5 | DOI:10.1103/physrevd.111.056017
  • David Wellnitz; Gustavo A. Domínguez-Castro; Thomas Bilitewski; Monika Aidelsburger; Ana Maria Rey; Luis Santos Emergent interaction-induced topology in Bose-Hubbard ladders, Physical Review Research, Volume 7 (2025) no. 1 | DOI:10.1103/physrevresearch.7.l012012
  • Karyn Le Hur Interacting topological quantum aspects with light and geometrical functions, Physics Reports, Volume 1104 (2025), pp. 1-42 | DOI:10.1016/j.physrep.2024.11.003
  • Cristian Tabares; Christian Kokail; Peter Zoller; Daniel González-Cuadra; Alejandro González-Tudela Programming optical-lattice Fermi-Hubbard quantum simulators, arXiv (2025) | DOI:10.48550/arxiv.2502.05067 | arXiv:2502.05067
  • Ralf Schützhold Ultra-cold atoms as quantum simulators for relativistic phenomena, arXiv (2025) | DOI:10.48550/arxiv.2501.03785 | arXiv:2501.03785
  • Callum W. Duncan; Pablo M. Poggi; Marin Bukov; Nikolaj Thomas Zinner; Steve Campbell Taming quantum systems: A tutorial for using shortcuts-to-adiabaticity, quantum optimal control, and reinforcement learning, arXiv (2025) | DOI:10.48550/arxiv.2501.16436 | arXiv:2501.16436
  • Ling-Na Wu; Xikun Li; Nathan Goldman; Botao Wang Optimal control for preparing fractional quantum Hall states in optical lattices, arXiv (2025) | DOI:10.48550/arxiv.2501.10720 | arXiv:2501.10720
  • Pavel P. Popov; Joana Fraxanet; Luca Barbiero; Maciej Lewenstein Geometrical frustration, power law tunneling and non-local gauge fields from scattered light, arXiv (2025) | DOI:10.48550/arxiv.2502.04330 | arXiv:2502.04330
  • Hao-Yuan Tang; Xiao-Xuan Li; Jia-Bin You; Xiao-Qiang Shao Simulation of chiral motion of excitation within the ground-state manifolds of neutral atoms, APL Quantum, Volume 1 (2024) no. 3 | DOI:10.1063/5.0211177
  • Yi-Jun Chang; Chong Sheng; Ying-Yue Yang; Yong-Heng Lu; Yao Wang; Hui-Ming Wang; Mingyuan Gao; Shi-Bao Wu; Hui Liu; Shining Zhu; Xian-Min Jin Observation of a Photonic Orbital Gauge Field, Advanced Materials, Volume 36 (2024) no. 14 | DOI:10.1002/adma.202310010
  • Christoph Eigen; Robert P. Smith Interacting Bose-condensed gases, Encyclopedia of Condensed Matter Physics (2024), p. 124 | DOI:10.1016/b978-0-323-90800-9.00156-6
  • A. Fabre; S. Nascimbene Atomic topological quantum matter using synthetic dimensions, Europhysics Letters, Volume 145 (2024) no. 6 | DOI:10.1209/0295-5075/ad2ff6
  • Salem Cheknoun; Smail Sait; Boualem Bourahla Lattice dynamics and elastic waves scattering by surrogate atoms in quasi-one dimensional atomic assemblies, International Journal of Modern Physics B, Volume 38 (2024) no. 30 | DOI:10.1142/s0217979224504125
  • Ginestra Bianconi The mass of simple and higher-order networks, Journal of Physics A: Mathematical and Theoretical, Volume 57 (2024) no. 1, p. 015001 | DOI:10.1088/1751-8121/ad0fb5
  • Riccarda Bonsignori; Viktor Eisler Entanglement Hamiltonian for inhomogeneous free fermions, Journal of Physics A: Mathematical and Theoretical, Volume 57 (2024) no. 27 | DOI:10.1088/1751-8121/ad5501
  • Mahmoud Jalali Mehrabad; Mohammad Hafezi Strain-induced Landau levels in photonic crystals, Nature Photonics, Volume 18 (2024) no. 6, pp. 527-528 | DOI:10.1038/s41566-024-01453-8
  • Yago del Valle Inclan Redondo; Xingran Xu; Timothy C. H. Liew; Elena A. Ostrovskaya; Alexander Stegmaier; Ronny Thomale; Christian Schneider; Siddhartha Dam; Sebastian Klembt; Sven Höfling; Seigo Tarucha; Michael D. Fraser Non-reciprocal band structures in an exciton–polariton Floquet optical lattice, Nature Photonics, Volume 18 (2024) no. 6, pp. 548-553 | DOI:10.1038/s41566-024-01424-z
  • Christoph Braun; Raphaël Saint-Jalm; Alexander Hesse; Johannes Arceri; Immanuel Bloch; Monika Aidelsburger Real-space detection and manipulation of topological edge modes with ultracold atoms, Nature Physics, Volume 20 (2024) no. 8, pp. 1306-1312 | DOI:10.1038/s41567-024-02506-z
  • Yang Liu; Fengyi Zhang; Chuang Jiang; Fangmei Liu; Dong Zhao; Shaolin Ke Gauge-flux-controlled orbital angular momentum mode conversion in silicon waveguides, Optics Letters, Volume 49 (2024) no. 23, p. 6789 | DOI:10.1364/ol.539578
  • Zhaoxuan Zhu; Shengjie Yu; Dean Johnstone; Laurent Sanchez-Palencia Localization and spectral structure in two-dimensional quasicrystal potentials, Physical Review A, Volume 109 (2024) no. 1 | DOI:10.1103/physreva.109.013314
  • Xin Zhang; Guohua Liu; Yanwen Hu; Haolin Lin; Zepei Zeng; Xiliang Zhang; Zhen Li; Zhenqiang Chen; Shenhe Fu Photonic spin-orbit coupling induced by deep-subwavelength structured light, Physical Review A, Volume 109 (2024) no. 2 | DOI:10.1103/physreva.109.023522
  • Yang Wang; Chuang Jiang; Miaomiao Zhao; Dong Zhao; Shaolin Ke Compact topological edge modes through hybrid coupling of orbital angular momentum modes, Physical Review A, Volume 109 (2024) no. 6 | DOI:10.1103/physreva.109.063516
  • Sigmund Kohler Quantum dissipation at conical intersections of quasienergies, Physical Review A, Volume 110 (2024) no. 5 | DOI:10.1103/physreva.110.052218
  • Arijit Dutta; Efe Sen; Jun-Hui Zheng; Monika Aidelsburger; Walter Hofstetter Anomalous Floquet Anderson insulator in a continuously driven optical lattice, Physical Review B, Volume 109 (2024) no. 12 | DOI:10.1103/physrevb.109.l121114
  • Jeyson Támara-Isaza; Pablo Burset; William J. Herrera Microscopic Green's function approach for generalized Dirac Hamiltonians, Physical Review B, Volume 109 (2024) no. 19 | DOI:10.1103/physrevb.109.195405
  • Fabian Köhler; Matthias Vojta Nodal semimetals in d ≥3 to sharp pseudo-Landau levels by dimensional reduction, Physical Review B, Volume 109 (2024) no. 7 | DOI:10.1103/physrevb.109.075123
  • Sergi Julià-Farré; Lorenzo Cardarelli; Maciej Lewenstein; Markus Müller; Alexandre Dauphin Topological stripe state in an extended Fermi-Hubbard model, Physical Review B, Volume 109 (2024) no. 7 | DOI:10.1103/physrevb.109.075109
  • Rahul Sahay; Stefan Divic; Daniel E. Parker; Tomohiro Soejima; Sajant Anand; Johannes Hauschild; Monika Aidelsburger; Ashvin Vishwanath; Shubhayu Chatterjee; Norman Y. Yao; Michael P. Zaletel Superconductivity in a topological lattice model with strong repulsion, Physical Review B, Volume 110 (2024) no. 19 | DOI:10.1103/physrevb.110.195126
  • Igor Kuzmenko; Mirosław Brewczyk; Grzegorz Łach; Marek Trippenbach; Y. B. Band Fermionic atoms in a spin-dependent optical lattice potential: Topological insulators with broken time-reversal symmetry, Physical Review B, Volume 110 (2024) no. 20 | DOI:10.1103/physrevb.110.205430
  • Pierpaolo Fontana; Andrea Trombettoni Critical magnetic flux for Weyl points in the three-dimensional Hofstadter model, Physical Review B, Volume 110 (2024) no. 4 | DOI:10.1103/physrevb.110.045121
  • Jinbing Hu; Songlin Zhuang; Yi Yang Higher-Order Topological Insulators via Momentum-Space Nonsymmorphic Symmetries, Physical Review Letters, Volume 132 (2024) no. 21 | DOI:10.1103/physrevlett.132.213801
  • Zehai Pang; Bengy Tsz Tsun Wong; Jinbing Hu; Yi Yang Synthetic Non-Abelian Gauge Fields for Non-Hermitian Systems, Physical Review Letters, Volume 132 (2024) no. 4 | DOI:10.1103/physrevlett.132.043804
  • Paul M. Schindler; Marin Bukov Counterdiabatic Driving for Periodically Driven Systems, Physical Review Letters, Volume 133 (2024) no. 12 | DOI:10.1103/physrevlett.133.123402
  • F. A. Palm; J. Kwan; B. Bakkali-Hassani; M. Greiner; U. Schollwöck; N. Goldman; F. Grusdt Growing extended Laughlin states in a quantum gas microscope: A patchwork construction, Physical Review Research, Volume 6 (2024) no. 1 | DOI:10.1103/physrevresearch.6.013198
  • Logan W. Cooke; Arina Tashchilina; Mason Protter; Joseph Lindon; Tian Ooi; Frank Marsiglio; Joseph Maciejko; Lindsay J. LeBlanc Investigation of Floquet engineered non-Abelian geometric phase for holonomic quantum computing, Physical Review Research, Volume 6 (2024) no. 1 | DOI:10.1103/physrevresearch.6.013057
  • Robbie Cruickshank; Andrea Di Carli; Matthew Mitchell; Arthur La Rooij; Stefan Kuhr; Charles E. Creffield; Elmar Haller Phonon excitations of Floquet-driven superfluids in a tilted optical lattice, Physical Review Research, Volume 6 (2024) no. 2 | DOI:10.1103/physrevresearch.6.023323
  • Madhumita Sarkar; Zala Lenarčič; Denis Golež Floquet engineering of binding in doped and photo-doped Mott insulators, Physical Review Research, Volume 6 (2024) no. 3 | DOI:10.1103/physrevresearch.6.033331
  • Samarth Hawaldar; Prakriti Shahi; Allison L. Carter; Ana Maria Rey; John J. Bollinger; Athreya Shankar Bilayer Crystals of Trapped Ions for Quantum Information Processing, Physical Review X, Volume 14 (2024) no. 3 | DOI:10.1103/physrevx.14.031030
  • Tirth Shah; Christian Brendel; Vittorio Peano; Florian Marquardt Colloquium: Topologically protected transport in engineered mechanical systems, Reviews of Modern Physics, Volume 96 (2024) no. 2 | DOI:10.1103/revmodphys.96.021002
  • Anton Markov; Diana Golovanova; Alexander Yavorsky; Alexey Rubtsov Locality of topological dynamics in Chern insulators, SciPost Physics, Volume 17 (2024) no. 6 | DOI:10.21468/scipostphys.17.6.152
  • Yi Yang; Biao Yang; Guancong Ma; Jensen Li; Shuang Zhang; C. T. Chan Non-Abelian physics in light and sound, Science, Volume 383 (2024) no. 6685 | DOI:10.1126/science.adf9621
  • Alexander Impertro; SeungJung Huh; Simon Karch; Julian F. Wienand; Immanuel Bloch; Monika Aidelsburger Realization of strongly-interacting Meissner phases in large bosonic flux ladders, arXiv (2024) | DOI:10.48550/arxiv.2412.09481 | arXiv:2412.09481
  • Amit Vashisht; Ivan Amelio; Laurens Vanderstraeten; Georg M. Bruun; Oriana K. Diessel; Nathan Goldman Chiral polaron formation on the edge of topological quantum matter, arXiv (2024) | DOI:10.48550/arxiv.2407.19093 | arXiv:2407.19093
  • Ivan Velkovsky; Anya Abraham; Enrico Martello; Jiarui Yu; Yaashnaa Singhal; Antonio Gonzalez; DaVonte Lewis; Hannah Price; Tomoki Ozawa; Bryce Gadway Observation of chiral solitary waves in a nonlinear Aharonov-Bohm ring, arXiv (2024) | DOI:10.48550/arxiv.2406.01732 | arXiv:2406.01732
  • Bengy Tsz Tsun Wong; Zehai Pang; Yi Yang Synthetic non-Abelian Electric Fields and Spin-Orbit Coupling in Photonic Synthetic Dimensions, arXiv (2024) | DOI:10.48550/arxiv.2412.01841 | arXiv:2412.01841
  • Simon Mahler; Eran Bernstein; Sagie Gadasi; Geva Arwas; Asher A. Friesem; Nir Davidson Programmable all optical spin simulator with artificial gauge fields, arXiv (2024) | DOI:10.48550/arxiv.2408.13865 | arXiv:2408.13865
  • Hao-Yuan Tang; Xiao-Xuan Li; Jia-Bin You; Xiao-Qiang Shao Simulation of chiral motion of excitation within the ground-state manifolds of neutral atoms, arXiv (2024) | DOI:10.48550/arxiv.2406.11291 | arXiv:2406.11291
  • Rafał Mirek; Pavel Kokhanchik; Darius Urbonas; Ioannis Georgakilas; Marcin Muszyński; Piotr Kapuściński; Przemysław Oliwa; Barbara Piętka; Jacek Szczytko; Michael Forster; Ullrich Scherf; Przemysław Morawiak; Wiktor Piecek; Przemysław Kula; Dmitry Solnyshkov; Guillaume Malpuech; Rainer Mahrt; Thilo Stöferle In-situ tunneling control in photonic potentials by Rashba-Dresselhaus spin-orbit coupling, arXiv (2024) | DOI:10.48550/arxiv.2408.08582 | arXiv:2408.08582
  • Qiuchen Yan; Zhihao Wang; Dongyi Wang; Rui Ma; Cuicui Lu; Guancong Ma; Xiaoyong Hu; Qihuang Gong Non-Abelian gauge field in optics, Advances in Optics and Photonics, Volume 15 (2023) no. 4, p. 907 | DOI:10.1364/aop.494544
  • Xiang Ni; Simon Yves; Alex Krasnok; Andrea Alù Topological Metamaterials, Chemical Reviews, Volume 123 (2023) no. 12, p. 7585 | DOI:10.1021/acs.chemrev.2c00800
  • Ginestra Bianconi Dirac gauge theory for topological spinors in 3+1 dimensional networks, Journal of Physics A: Mathematical and Theoretical, Volume 56 (2023) no. 27 | DOI:10.1088/1751-8121/acdc6a
  • Dusty R. Lindberg; Naceur Gaaloul; Lev Kaplan; Jason R. Williams; Dennis Schlippert; Patrick Boegel; Ernst-Maria Rasel; Denys I. Bondar Asymmetric tunneling of Bose–Einstein condensates, Journal of Physics B: Atomic, Molecular and Optical Physics, Volume 56 (2023) no. 2 | DOI:10.1088/1361-6455/acae50
  • Konrad Tschernig; Armando Perez-Leija; Kurt Busch Localization effects from local phase shifts in the modulation of waveguide arrays, Journal of the Optical Society of America B, Volume 40 (2023) no. 3 | DOI:10.1364/josab.477338
  • Yago del Valle-Inclan Redondo; Christian Schneider; Sebastian Klembt; Sven Höfling; Seigo Tarucha; Michael D. Fraser Optically Driven Rotation of Exciton-Polariton Condensates, Nano Letters, Volume 23 (2023) no. 10, pp. 4564-4571 | DOI:10.1021/acs.nanolett.3c01021
  • F. A. Palm; M. Kurttutan; A. Bohrdt; U. Schollwöck; F. Grusdt Ferromagnetism and skyrmions in the Hofstadter-Fermi-Hubbard model, New Journal of Physics, Volume 25 (2023) no. 2 | DOI:10.1088/1367-2630/acb963
  • Chuang Jiang; Yiling Song; Xiaohong Li; Peixiang Lu; Shaolin Ke Photonic Möbius topological insulator from projective symmetry in multiorbital waveguides, Optics Letters, Volume 48 (2023) no. 9, p. 2337 | DOI:10.1364/ol.488210
  • N. Goldman; O. K. Diessel; L. Barbiero; M. Prüfer; M. Di Liberto; L. Peralta Gavensky Floquet-Engineered Nonlinearities and Controllable Pair-Hopping Processes: From Optical Kerr Cavities to Correlated Quantum Matter, PRX Quantum, Volume 4 (2023) no. 4 | DOI:10.1103/prxquantum.4.040327
  • Utku Sağlam; Mauro Paternostro; Özgür E. Müstecaplıoğlu Entanglement transfer via chiral and continuous-time quantum walks on a triangular chain, Physica A: Statistical Mechanics and its Applications, Volume 612 (2023) | DOI:10.1016/j.physa.2023.128480
  • Alan Gardin; Jeremy Bourhill; Vincent Vlaminck; Christian Person; Christophe Fumeaux; Vincent Castel; Giuseppe C. Tettamanzi Manifestation of the Coupling Phase in Microwave Cavity Magnonics, Physical Review Applied, Volume 19 (2023) no. 5 | DOI:10.1103/physrevapplied.19.054069
  • Saber Rostamzadeh; Sevval Tasdemir; Mustafa Sarisaman; S. A. Jafari; Mark-Oliver Goerbig Tilt-induced vortical response and mixed anomaly in inhomogeneous Weyl matter, Physical Review B, Volume 107 (2023) no. 7 | DOI:10.1103/physrevb.107.075155
  • Felipe Reyes Osorio; Karen Rodríguez Ramírez Separation of quadrupole, spin, and charge across the magnetic phases of a one-dimensional interacting spin-1 gas, Physical Review B, Volume 107 (2023) no. 8 | DOI:10.1103/physrevb.107.085424
  • Longwen Zhou Non-Abelian generalization of non-Hermitian quasicrystals: PT -symmetry breaking, localization, entanglement, and topological transitions, Physical Review B, Volume 108 (2023) no. 1 | DOI:10.1103/physrevb.108.014202
  • Róbert Németh; József Cserti Differential scattering cross section of the non-Abelian Aharonov-Bohm effect in multiband systems, Physical Review B, Volume 108 (2023) no. 15 | DOI:10.1103/physrevb.108.155402
  • Kevin T. Geier; Giovanni I. Martone; Philipp Hauke; Wolfgang Ketterle; Sandro Stringari Dynamics of Stripe Patterns in Supersolid Spin-Orbit-Coupled Bose Gases, Physical Review Letters, Volume 130 (2023) no. 15 | DOI:10.1103/physrevlett.130.156001
  • Yiming Pan; Zhaopin Chen; Bing Wang; Eilon Poem Floquet Gauge Anomaly Inflow and Arbitrary Fractional Charge in Periodically Driven Topological-Normal Insulator Heterostructures, Physical Review Letters, Volume 130 (2023) no. 22 | DOI:10.1103/physrevlett.130.223403
  • Dali Cheng; Kai Wang; Shanhui Fan Artificial Non-Abelian Lattice Gauge Fields for Photons in the Synthetic Frequency Dimension, Physical Review Letters, Volume 130 (2023) no. 8 | DOI:10.1103/physrevlett.130.083601
  • Yotam Shapira; Tom Manovitz; Nitzan Akerman; Ady Stern; Roee Ozeri Quantum Simulations of Interacting Systems with Broken Time-Reversal Symmetry, Physical Review X, Volume 13 (2023) no. 2 | DOI:10.1103/physrevx.13.021021
  • Bao-Jun Cai; Bao-An Li Equation of state of neutron-rich matter in d-dimensions, Annals of Physics, Volume 444 (2022) | DOI:10.1016/j.aop.2022.169062
  • Maxime Jamotte; Nathan Goldman; Marco Di Liberto Strain and pseudo-magnetic fields in optical lattices from density-assisted tunneling, Communications Physics, Volume 5 (2022) no. 1 | DOI:10.1038/s42005-022-00802-9
  • Takumi Yoshino; Shunsuke Furukawa; Masahito Ueda Vortex lattices in binary Bose-Einstein condensates: collective modes, quantum fluctuations, and intercomponent entanglement, Journal of Physics B: Atomic, Molecular and Optical Physics, Volume 55 (2022) no. 10 | DOI:10.1088/1361-6455/ac68b6
  • Yuqing Li; Jiahui Zhang; Yunfei Wang; Huiying Du; Jizhou Wu; Wenliang Liu; Feng Mei; Jie Ma; Liantuan Xiao; Suotang Jia Atom-optically synthetic gauge fields for a noninteracting Bose gas, Light: Science Applications, Volume 11 (2022) no. 1 | DOI:10.1038/s41377-021-00702-7
  • S. K. Kanungo; J. D. Whalen; Y. Lu; M. Yuan; S. Dasgupta; F. B. Dunning; K. R. A. Hazzard; T. C. Killian Realizing topological edge states with Rydberg-atom synthetic dimensions, Nature Communications, Volume 13 (2022) | DOI:10.1038/s41467-022-28550-y
  • Zhi-Kang Lin; Ying Wu; Bin Jiang; Yang Liu; Shi-Qiao Wu; Feng Li; Jian-Hua Jiang Topological Wannier cycles induced by sub-unit-cell artificial gauge flux in a sonic crystal, Nature Materials, Volume 21 (2022) no. 4, pp. 430-437 | DOI:10.1038/s41563-022-01200-w
  • Entong Zhao; Ting Hin Mak; Chengdong He; Zejian Ren; Ka Kwan Pak; Yu-Jun Liu; Gyu-Boong Jo Observing a topological phase transition with deep neural networks from experimental images of ultracold atoms, Optics Express, Volume 30 (2022) no. 21, p. 37786 | DOI:10.1364/oe.473770
  • Sourav Manna; Callum W. Duncan; Carrie A. Weidner; Jacob F. Sherson; Anne E. B. Nielsen Anyon braiding on a fractal lattice with a local Hamiltonian, Physical Review A, Volume 105 (2022) no. 2 | DOI:10.1103/physreva.105.l021302
  • Anna Berti; Iacopo Carusotto Topological two-particle dynamics in a periodically driven lattice model with on-site interactions, Physical Review A, Volume 105 (2022) no. 2 | DOI:10.1103/physreva.105.023329
  • Han Fu; Andreas Glatz; F. Setiawan; Kai-Xuan Yao; Zhendong Zhang; Cheng Chin; K. Levin Dynamical preparation of an atomic condensate in a Hofstadter band, Physical Review A, Volume 105 (2022) no. 4 | DOI:10.1103/physreva.105.043301
  • Kuldeep Suthar; Kwai-Kong Ng Staggered quantum phases of dipolar bosons at finite temperatures, Physical Review A, Volume 106 (2022) no. 6 | DOI:10.1103/physreva.106.063313
  • Christian Boudreault; Hichem Eleuch; Michael Hilke; Richard MacKenzie Universal quantum computation with symmetric qubit clusters coupled to an environment, Physical Review A, Volume 106 (2022) no. 6 | DOI:10.1103/physreva.106.062610
  • Marcin Muszyński; Mateusz Król; Katarzyna Rechcińska; Przemysław Oliwa; Mateusz Kedziora; Karolina Łempicka-Mirek; Rafał Mazur; Przemysław Morawiak; Wiktor Piecek; Przemysław Kula; Pavlos G. Lagoudakis; Barbara Pietka; Jacek Szczytko Realizing Persistent-Spin-Helix Lasing in the Regime of Rashba-Dresselhaus Spin-Orbit Coupling in a Dye-Filled Liquid-Crystal Optical Microcavity, Physical Review Applied, Volume 17 (2022) no. 1 | DOI:10.1103/physrevapplied.17.014041
  • Tommaso Comparin; Alvin Opler; Elia Macaluso; Alberto Biella; Alexios P. Polychronakos; Leonardo Mazza Measurable fractional spin for quantum Hall quasiparticles on the disk, Physical Review B, Volume 105 (2022) no. 8 | DOI:10.1103/physrevb.105.085125
  • Mary Madelynn Nayga; Matthias Vojta Strain tuning of highly frustrated magnets: Order and disorder in the distorted kagome Heisenberg antiferromagnet, Physical Review B, Volume 105 (2022) no. 9 | DOI:10.1103/physrevb.105.094426
  • Bhilahari Jeevanesan; Claudio Benzoni; Sergej Moroz Surface waves and bulk Ruderman mode of a bosonic superfluid vortex crystal in the lowest Landau level, Physical Review B, Volume 106 (2022) no. 14 | DOI:10.1103/physrevb.106.144501
  • Yi Yang; Hoi Chun Po; Vincent Liu; John D. Joannopoulos; Liang Fu; Marin Soljačić Non-Abelian nonsymmorphic chiral symmetries, Physical Review B, Volume 106 (2022) no. 16 | DOI:10.1103/physrevb.106.l161108
  • Morad Ebrahimkhas; Götz S. Uhrig; Walter Hofstetter; Mohsen Hafez-Torbati Antiferromagnetic Chern insulator in centrosymmetric systems, Physical Review B, Volume 106 (2022) no. 20 | DOI:10.1103/physrevb.106.205107
  • M. Zubair; P. Vasilopoulos; M. Tahir Valley-controlled transport in graphene WSe2 heterostructures under off-resonant polarized light, Physical Review B, Volume 106 (2022) no. 20 | DOI:10.1103/physrevb.106.205402
  • Gabriel Cáceres-Aravena; Diego Guzmán-Silva; Ignacio Salinas; Rodrigo A. Vicencio Controlled Transport Based on Multiorbital Aharonov-Bohm Photonic Caging, Physical Review Letters, Volume 128 (2022) no. 25 | DOI:10.1103/physrevlett.128.256602
  • Francesco Petiziol; André Eckardt Cavity-Based Reservoir Engineering for Floquet-Engineered Superconducting Circuits, Physical Review Letters, Volume 129 (2022) no. 23 | DOI:10.1103/physrevlett.129.233601
  • Pavel Kokhanchik; Dmitry Solnyshkov; Thilo Stöferle; Barbara Pietka; Jacek Szczytko; Guillaume Malpuech Modulated Rashba-Dresselhaus Spin-Orbit Coupling for Topology Control and Analog Simulations, Physical Review Letters, Volume 129 (2022) no. 24 | DOI:10.1103/physrevlett.129.246801
  • Alessandro Alberucci; Chandroth P. Jisha; Monika Monika; Ulf Peschel; Stefan Nolte Wave manipulation via delay-engineered periodic potentials, Physical Review Research, Volume 4 (2022) no. 4 | DOI:10.1103/physrevresearch.4.043162
  • Torsten V. Zache; Christian Kokail; Bhuvanesh Sundar; Peter Zoller Entanglement Spectroscopy and probing the Li-Haldane Conjecture in Topological Quantum Matter, Quantum, Volume 6 (2022), p. 702 | DOI:10.22331/q-2022-04-27-702
  • Botao Wang; Xiaoyu Dong; André Eckardt Measurable signatures of bosonic fractional Chern insulator states and their fractional excitations in a quantum-gas microscope, SciPost Physics, Volume 12 (2022) no. 3 | DOI:10.21468/scipostphys.12.3.095
  • Faruk Abdulla; Ankur Das; Sumathi Rao; Ganpathy Murthy Time-reversal-broken Weyl semimetal in the Hofstadter regime, SciPost Physics Core, Volume 5 (2022) no. 1 | DOI:10.21468/scipostphyscore.5.1.014
  • Aashish Clerk Introduction to quantum non-reciprocal interactions: from non-Hermitian Hamiltonians to quantum master equations and quantum feedforward schemes, SciPost Physics Lecture Notes (2022) | DOI:10.21468/scipostphyslectnotes.44
  • Karolina Łempicka-Mirek; Mateusz Król; Helgi Sigurdsson; Adam Wincukiewicz; Przemysław Morawiak; Rafał Mazur; Marcin Muszyński; Wiktor Piecek; Przemysław Kula; Tomasz Stefaniuk; Maria Kamińska; Luisa De Marco; Pavlos G. Lagoudakis; Dario Ballarini; Daniele Sanvitto; Jacek Szczytko; Barbara Piętka Electrically tunable Berry curvature and strong light-matter coupling in liquid crystal microcavities with 2D perovskite, Science Advances, Volume 8 (2022) no. 40 | DOI:10.1126/sciadv.abq7533
  • Yin Jiang Chiral vortical catalysis, The European Physical Journal C, Volume 82 (2022) no. 10 | DOI:10.1140/epjc/s10052-022-10915-8
  • Mauro Nigro; Pablo Capuzzi; Dora M. Jezek Accessing different regimes by tuning the hopping phase of a weakly connected Bose–Einstein condensate within a two-mode model, The European Physical Journal D, Volume 76 (2022) no. 1 | DOI:10.1140/epjd/s10053-022-00340-7
  • Karyn Le Hur Topological Matter and Fractional Entangled Quantum Geometry through Light, arXiv (2022) | DOI:10.48550/arxiv.2209.15381 | arXiv:2209.15381
  • Nathan Goldman Floquet engineering of optical nonlinearities: a quantum many-body approach, arXiv (2022) | DOI:10.48550/arxiv.2203.05554 | arXiv:2203.05554
  • Aashish A. Clerk Introduction to quantum non-reciprocal interactions: from non-Hermitian Hamiltonians to quantum master equations and quantum feedforward schemes, arXiv (2022) | DOI:10.48550/arxiv.2201.00894 | arXiv:2201.00894
  • Xiang Ni; Simon Yves; Alex Krasnok; Andrea Alu Topological Metamaterials, arXiv (2022) | DOI:10.48550/arxiv.2211.10006 | arXiv:2211.10006
  • Pavel Kokhanchik; Dmitry Solnyshkov; Thilo Stöferle; Barbara Piętka; Jacek Szczytko; Guillaume Malpuech Control of dimer chain topology by Rashba-Dresselhaus spin-orbit coupling, arXiv (2022) | DOI:10.48550/arxiv.2206.01060 | arXiv:2206.01060
  • Sadeq Bahmani; Amir Nader Askarpour, 2021 29th Iranian Conference on Electrical Engineering (ICEE) (2021), p. 821 | DOI:10.1109/icee52715.2021.9544271
  • Zheng‐Yuan Xue; Yong Hu Topological Photonics on Superconducting Quantum Circuits with Parametric Couplings, Advanced Quantum Technologies, Volume 4 (2021) no. 9 | DOI:10.1002/qute.202100017
  • Shujie Cheng; Xianlong Gao Metal-insulator phase transition and topology in a three-component system, Chinese Physics B, Volume 30 (2021) no. 1 | DOI:10.1088/1674-1056/abb305
  • Xin-Xin Hu; Zhu-Bo Wang; Pengfei Zhang; Guang-Jie Chen; Yan-Lei Zhang; Gang Li; Xu-Bo Zou; Tiancai Zhang; Hong X. Tang; Chun-Hua Dong; Guang-Can Guo; Chang-Ling Zou Noiseless photonic non-reciprocity via optically-induced magnetization, Nature Communications, Volume 12 (2021) | DOI:10.1038/s41467-021-22597-z
  • Laura Polimeno; Giovanni Lerario; Milena De Giorgi; Luisa De Marco; Lorenzo Dominici; Francesco Todisco; Annalisa Coriolano; Vincenzo Ardizzone; Marco Pugliese; Carmela T. Prontera; Vincenzo Maiorano; Anna Moliterni; Cinzia Giannini; Vincent Olieric; Giuseppe Gigli; Dario Ballarini; Qihua Xiong; Antonio Fieramosca; Dmitry D. Solnyshkov; Guillaume Malpuech; Daniele Sanvitto Tuning of the Berry curvature in 2D perovskite polaritons, Nature Nanotechnology, Volume 16 (2021) no. 12, pp. 1349-1354 | DOI:10.1038/s41565-021-00977-2
  • C. E. Whittaker; T. Dowling; A. V. Nalitov; A. V. Yulin; B. Royall; E. Clarke; M. S. Skolnick; I. A. Shelykh; D. N. Krizhanovskii Optical analogue of Dresselhaus spin-orbit interaction in photonic graphene, Nature Photonics, Volume 15 (2021) no. 3, pp. 193-196 | DOI:10.1038/s41566-020-00729-z
  • Matan Even Tzur; Ofer Neufeld; Avner Fleischer; Oren Cohen Selection rules for breaking selection rules, New Journal of Physics, Volume 23 (2021) no. 10 | DOI:10.1088/1367-2630/ac27e2
  • S. Flannigan; L. Madail; R. G. Dias; A. J. Daley Hubbard models and state preparation in an optical Lieb lattice, New Journal of Physics, Volume 23 (2021) no. 8 | DOI:10.1088/1367-2630/abfd01
  • L. Polimeno; A. Fieramosca; G. Lerario; L. De Marco; M. De Giorgi; D. Ballarini; L. Dominici; V. Ardizzone; M. Pugliese; C. T. Prontera; V. Maiorano; G. Gigli; C. Leblanc; G. Malpuech; D. D. Solnyshkov; D. Sanvitto Experimental investigation of a non-Abelian gauge field in 2D perovskite photonic platform, Optica, Volume 8 (2021) no. 11, p. 1442 | DOI:10.1364/optica.427088
  • Tomoki Ozawa Artificial magnetic field for synthetic quantum matter without dynamical modulation, Physical Review A, Volume 103 (2021) no. 3 | DOI:10.1103/physreva.103.033318
  • Bernhard Irsigler; Tobias Grass; Jun-Hui Zheng; Mathieu Barbier; Walter Hofstetter Topological Mott transition in a Weyl-Hubbard model: Dynamical mean-field theory study, Physical Review B, Volume 103 (2021) no. 12 | DOI:10.1103/physrevb.103.125132
  • Morad Ebrahimkhas; Mohsen Hafez-Torbati; Walter Hofstetter Lattice symmetry and emergence of antiferromagnetic quantum Hall states, Physical Review B, Volume 103 (2021) no. 15 | DOI:10.1103/physrevb.103.155108
  • F. A. Palm; M. Buser; J. Léonard; M. Aidelsburger; U. Schollwöck; F. Grusdt Bosonic Pfaffian state in the Hofstadter-Bose-Hubbard model, Physical Review B, Volume 103 (2021) no. 16 | DOI:10.1103/physrevb.103.l161101
  • Vincent Liu; Yi Yang; John D. Joannopoulos; Marin Soljačić Three-dimensional non-Abelian generalizations of the Hofstadter model: Spin-orbit-coupled butterfly trios, Physical Review B, Volume 104 (2021) no. 11 | DOI:10.1103/physrevb.104.115127
  • Pierpaolo Fontana; Michele Burrello; Andrea Trombettoni Topological van Hove singularities at phase transitions in Weyl metals, Physical Review B, Volume 104 (2021) no. 19 | DOI:10.1103/physrevb.104.195127
  • V. Brosco; L. Pilozzi; C. Conti Two-flux tunable Aharonov-Bohm effect in a photonic lattice, Physical Review B, Volume 104 (2021) no. 2 | DOI:10.1103/physrevb.104.024306
  • Lukas Homeier; Christian Schweizer; Monika Aidelsburger; Arkady Fedorov; Fabian Grusdt Z2 lattice gauge theories and Kitaev's toric code: A scheme for analog quantum simulation, Physical Review B, Volume 104 (2021) no. 8 | DOI:10.1103/physrevb.104.085138
  • Yuan Chen; Yan-Lei Zhang; Zhen Shen; Chang-Ling Zou; Guang-Can Guo; Chun-Hua Dong Synthetic Gauge Fields in a Single Optomechanical Resonator, Physical Review Letters, Volume 126 (2021) no. 12 | DOI:10.1103/physrevlett.126.123603
  • Kevin T. Geier; Giovanni I. Martone; Philipp Hauke; Sandro Stringari Exciting the Goldstone Modes of a Supersolid Spin-Orbit-Coupled Bose Gas, Physical Review Letters, Volume 127 (2021) no. 11 | DOI:10.1103/physrevlett.127.115301
  • Mikhail Mamaev; Itamar Kimchi; Rahul M. Nandkishore; Ana Maria Rey Tunable-spin-model generation with spin-orbit-coupled fermions in optical lattices, Physical Review Research, Volume 3 (2021) no. 1 | DOI:10.1103/physrevresearch.3.013178
  • J. T. Schneider; J. Despres; S. J. Thomson; L. Tagliacozzo; L. Sanchez-Palencia Spreading of correlations and entanglement in the long-range transverse Ising chain, Physical Review Research, Volume 3 (2021) no. 1 | DOI:10.1103/physrevresearch.3.l012022
  • Shun Uchino Tunneling Hamiltonian analysis of DC Josephson currents in a weakly-interacting Bose-Einstein condensate, Physical Review Research, Volume 3 (2021) no. 4 | DOI:10.1103/physrevresearch.3.043058
  • Hamed Abbaszadeh; Michel Fruchart; Wim van Saarloos; Vincenzo Vitelli Liquid-crystal-based topological photonics, Proceedings of the National Academy of Sciences, Volume 118 (2021) no. 4 | DOI:10.1073/pnas.2020525118
  • Mateusz Łącki; Jakub Zakrzewski; Nathan Goldman A dark state of Chern bands: Designing flat bands with higher Chern number, SciPost Physics, Volume 10 (2021) no. 5 | DOI:10.21468/scipostphys.10.5.112
  • Mary Madelynn Nayga; Matthias Vojta Strain tuning of highly frustrated magnets: Order and disorder in the distorted kagome Heisenberg antiferromagnet, arXiv (2021) | DOI:10.48550/arxiv.2107.14249 | arXiv:2107.14249
  • Kentaro Sugimoto; Seiji Yunoki Emergent long-range interaction and state-selective localization in a strongly driven XXZ model, arXiv (2021) | DOI:10.48550/arxiv.2103.16755 | arXiv:2103.16755
  • M. Nigro; P. Capuzzi; D. M. Jezek Bose-Einstein condensates in rotating ring-shaped lattices: a multimode model, Journal of Physics B: Atomic, Molecular and Optical Physics, Volume 53 (2020) no. 2 | DOI:10.1088/1361-6455/ab56d9
  • Umberto De Giovannini; Hannes Hübener Floquet analysis of excitations in materials, Journal of Physics: Materials, Volume 3 (2020) no. 1 | DOI:10.1088/2515-7639/ab387b
  • Christina Jörg; Gerard Queraltó; Mark Kremer; Gerard Pelegrí; Julian Schulz; Alexander Szameit; Georg von Freymann; Jordi Mompart; Verònica Ahufinger Artificial gauge field switching using orbital angular momentum modes in optical waveguides, Light: Science Applications, Volume 9 (2020) no. 1 | DOI:10.1038/s41377-020-00385-6
  • Yi Yang; Bo Zhen; John D. Joannopoulos; Marin Soljačić Non-Abelian generalizations of the Hofstadter model: spin–orbit-coupled butterfly pairs, Light: Science Applications, Volume 9 (2020) no. 1 | DOI:10.1038/s41377-020-00384-7
  • Michel Fruchart; Yujie Zhou; Vincenzo Vitelli Dualities and non-Abelian mechanics, Nature, Volume 577 (2020) no. 7792, p. 636 | DOI:10.1038/s41586-020-1932-6
  • Karen Wintersperger; Christoph Braun; F. Nur Ünal; André Eckardt; Marco Di Liberto; Nathan Goldman; Immanuel Bloch; Monika Aidelsburger Realization of an anomalous Floquet topological system with ultracold atoms, Nature Physics, Volume 16 (2020) no. 10, p. 1058 | DOI:10.1038/s41567-020-0949-y
  • L. Palm; F. Grusdt; P. M. Preiss Skyrmion ground states of rapidly rotating few-fermion systems, New Journal of Physics, Volume 22 (2020) no. 8 | DOI:10.1088/1367-2630/aba30e
  • Alessio D'Errico; Filippo Cardano; Maria Maffei; Alexandre Dauphin; Raouf Barboza; Chiara Esposito; Bruno Piccirillo; Maciej Lewenstein; Pietro Massignan; Lorenzo Marrucci Two-dimensional topological quantum walks in the momentum space of structured light, Optica, Volume 7 (2020) no. 2, p. 108 | DOI:10.1364/optica.365028
  • Gian Luca Giorgi; Salvatore Lorenzo; Stefano Longhi Topological Protection and Control of Quantum Markovianity, Photonics, Volume 7 (2020) no. 1 | DOI:10.3390/photonics7010018
  • Sheng Li; Zheng-Yuan Xue; Ming Gong; Yong Hu Non-Abelian Aharonov-Bohm caging in photonic lattices, Physical Review A, Volume 102 (2020) no. 2 | DOI:10.1103/physreva.102.023524
  • L. Stenzel; A. L. C. Hayward; U. Schollwöck; F. Heidrich-Meisner Topological phases in the Fermi-Hofstadter-Hubbard model on hybrid-space ladders, Physical Review A, Volume 102 (2020) no. 2 | DOI:10.1103/physreva.102.023315
  • Maximilian Buser; Claudius Hubig; Ulrich Schollwöck; Leticia Tarruell; Fabian Heidrich-Meisner Interacting bosonic flux ladders with a synthetic dimension: Ground-state phases and quantum quench dynamics, Physical Review A, Volume 102 (2020) no. 5 | DOI:10.1103/physreva.102.053314
  • Hai-Tao Ding; Yan-Qing Zhu; Zhi Li; Lubing Shao Tensor monopoles and the negative magnetoresistance effect in optical lattices, Physical Review A, Volume 102 (2020) no. 5 | DOI:10.1103/physreva.102.053325
  • Valentin Crépel; Benoit Estienne; Nicolas Regnault Microscopic study of the coupled-wire construction and plausible realization in spin-dependent optical lattices, Physical Review B, Volume 101 (2020) no. 23 | DOI:10.1103/physrevb.101.235158
  • Mohsen Hafez-Torbati; Jun-Hui Zheng; Bernhard Irsigler; Walter Hofstetter Interaction-driven topological phase transitions in fermionic SU(3) systems, Physical Review B, Volume 101 (2020) no. 24 | DOI:10.1103/physrevb.101.245159
  • Fan Yang; Vivien Perrin; Alexandru Petrescu; Ion Garate; Karyn Le Hur From topological superconductivity to quantum Hall states in coupled wires, Physical Review B, Volume 101 (2020) no. 8 | DOI:10.1103/physrevb.101.085116
  • Matthew D. Horner; Ashk Farjami; Jiannis K. Pachos Equivalence between vortices, twists, and chiral gauge fields in the Kitaev honeycomb lattice model, Physical Review B, Volume 102 (2020) no. 12 | DOI:10.1103/physrevb.102.125152
  • Tymoteusz Salamon; Ravindra W. Chhajlany; Alexandre Dauphin; Maciej Lewenstein; Debraj Rakshit Quantum anomalous Hall phase in synthetic bilayers via twistronics without a twist, Physical Review B, Volume 102 (2020) no. 23 | DOI:10.1103/physrevb.102.235126
  • M. Oliva-Leyva; J. E. Barrios-Vargas; G. Gonzalez de la Cruz Effective magnetic field induced by inhomogeneous Fermi velocity in strained honeycomb structures, Physical Review B, Volume 102 (2020) no. 3 | DOI:10.1103/physrevb.102.035447
  • Zohreh Davoudi; Mohammad Hafezi; Christopher Monroe; Guido Pagano; Alireza Seif; Andrew Shaw Towards analog quantum simulations of lattice gauge theories with trapped ions, Physical Review Research, Volume 2 (2020) no. 2 | DOI:10.1103/physrevresearch.2.023015
  • Lorenzo Pastori; Simone Barbarino; Jan Carl Budich Signatures of topology in quantum quench dynamics and their interrelation, Physical Review Research, Volume 2 (2020) no. 3 | DOI:10.1103/physrevresearch.2.033259
  • Gerard Valentí-Rojas; Niclas Westerberg; Patrik Öhberg Synthetic flux attachment, Physical Review Research, Volume 2 (2020) no. 3 | DOI:10.1103/physrevresearch.2.033453
  • Bhilahari Jeevanesan; Sergej Moroz Thermodynamics of two-dimensional bosons in the lowest Landau level, Physical Review Research, Volume 2 (2020) no. 3 | DOI:10.1103/physrevresearch.2.033323
  • Andreas Haller; Apollonas S. Matsoukas-Roubeas; Yueting Pan; Matteo Rizzi; Michele Burrello Exploring helical phases of matter in bosonic ladders, Physical Review Research, Volume 2 (2020) no. 4 | DOI:10.1103/physrevresearch.2.043433
  • T. Chervy; P. Knüppel; H. Abbaspour; M. Lupatini; S. Fält; W. Wegscheider; M. Kroner; A. Imamoǧlu Accelerating Polaritons with External Electric and Magnetic Fields, Physical Review X, Volume 10 (2020) no. 1 | DOI:10.1103/physrevx.10.011040
  • Vincent Lienhard; Pascal Scholl; Sebastian Weber; Daniel Barredo; Sylvain de Léséleuc; Rukmani Bai; Nicolai Lang; Michael Fleischhauer; Hans Peter Büchler; Thierry Lahaye; Antoine Browaeys Realization of a Density-Dependent Peierls Phase in a Synthetic, Spin-Orbit Coupled Rydberg System, Physical Review X, Volume 10 (2020) no. 2 | DOI:10.1103/physrevx.10.021031
  • En Guo Guan; Hang Yu; Gang Wang Non-Abelian gauge potentials driven localization transition in quasiperiodic optical lattices, Physics Letters A, Volume 384 (2020) | DOI:10.1016/j.physleta.2019.126152
  • Stuart Flannigan; Andrew J. Daley Enhanced repulsively bound atom pairs in topological optical lattice ladders, Quantum Science Technology, Volume 5 (2020) no. 4 | DOI:10.1088/2058-9565/abb028
  • Mari Carmen Bañuls; Krzysztof Cichy Review on novel methods for lattice gauge theories, Reports on Progress in Physics, Volume 83 (2020) no. 2 | DOI:10.1088/1361-6633/ab6311
  • Dung Nguyen; Andrey Gromov; Sergej Moroz Fracton-elasticity duality of two-dimensional superfluid vortex crystals: defect interactions and quantum melting, SciPost Physics, Volume 9 (2020) no. 5 | DOI:10.21468/scipostphys.9.5.076
  • Sk Noor Nabi; Sunayana Dutta; Saurabh Basu Ultracold gases in presence of time-dependent synthetic gauge field, The European Physical Journal B, Volume 93 (2020) no. 1 | DOI:10.1140/epjb/e2019-100495-6
  • Hengjiang Ren; Tirth Shah; Hannes Pfeifer; Christian Brendel; Vittorio Peano; Florian Marquardt; Oskar Painter Topological phonon transport in an optomechanical system, arXiv (2020) | DOI:10.48550/arxiv.2009.06174 | arXiv:2009.06174
  • Wei Zheng; Pengfei Zhang Floquet Engineering of a Dynamical Z2 Lattice Gauge Field with Ultracold Atoms, arXiv (2020) | DOI:10.48550/arxiv.2011.01500 | arXiv:2011.01500
  • Gerard Valentí-Rojas; Niclas Westerberg; Patrik Öhberg Synthetic Flux Attachment, arXiv (2020) | DOI:10.48550/arxiv.2003.14339 | arXiv:2003.14339
  • Joshuah T. Heath; Kevin S. Bedell Gauging away the Stoner model: Engineering unconventional metallic ferromagnetism with artificial gauge fields, arXiv (2020) | DOI:10.48550/arxiv.2008.07535 | arXiv:2008.07535
  • Yixing Fu; Elio J. König; Justin H. Wilson; Yang-Zhi Chou; Jedediah H. Pixley Magic-angle semimetals, npj Quantum Materials, Volume 5 (2020) no. 1 | DOI:10.1038/s41535-020-00271-9
  • Yuntian Chen; Ruo-Yang Zhang; Zhongfei Xiong; Zhi Hong Hang; Jensen Li; Jian Qi Shen; C. T. Chan Non-Abelian gauge field optics, Nature Communications, Volume 10 (2019) | DOI:10.1038/s41467-019-10974-8
  • Christian Schweizer; Fabian Grusdt; Moritz Berngruber; Luca Barbiero; Eugene Demler; Nathan Goldman; Immanuel Bloch; Monika Aidelsburger Floquet approach to ℤ2 lattice gauge theories with ultracold atoms in optical lattices, Nature Physics, Volume 15 (2019) no. 11, p. 1168 | DOI:10.1038/s41567-019-0649-7
  • Stefano Longhi Quantum decay in a topological continuum, Physical Review A, Volume 100 (2019) no. 2 | DOI:10.1103/physreva.100.022123
  • Marco Di Liberto; Sebabrata Mukherjee; Nathan Goldman Nonlinear dynamics of Aharonov-Bohm cages, Physical Review A, Volume 100 (2019) no. 4 | DOI:10.1103/physreva.100.043829
  • Louis Villa; Julien Despres; Laurent Sanchez-Palencia Unraveling the excitation spectrum of many-body systems from quantum quenches, Physical Review A, Volume 100 (2019) no. 6 | DOI:10.1103/physreva.100.063632
  • G. Pelegrí; A. M. Marques; R. G. Dias; A. J. Daley; J. Mompart; V. Ahufinger Topological edge states and Aharanov-Bohm caging with ultracold atoms carrying orbital angular momentum, Physical Review A, Volume 99 (2019) no. 2 | DOI:10.1103/physreva.99.023613
  • L. Stenzel; A. L. C. Hayward; C. Hubig; U. Schollwöck; F. Heidrich-Meisner Quantum phases and topological properties of interacting fermions in one-dimensional superlattices, Physical Review A, Volume 99 (2019) no. 5 | DOI:10.1103/physreva.99.053614
  • Maximilian Buser; Fabian Heidrich-Meisner; Ulrich Schollwöck Finite-temperature properties of interacting bosons on a two-leg flux ladder, Physical Review A, Volume 99 (2019) no. 5 | DOI:10.1103/physreva.99.053601
  • Masoud Bahari; Mir Vahid Hosseini One-dimensional topological metal, Physical Review B, Volume 99 (2019) no. 15 | DOI:10.1103/physrevb.99.155128
  • S. A. Sato; J. W. McIver; M. Nuske; P. Tang; G. Jotzu; B. Schulte; H. Hübener; U. De Giovannini; L. Mathey; M. A. Sentef; A. Cavalleri; A. Rubio Microscopic theory for the light-induced anomalous Hall effect in graphene, Physical Review B, Volume 99 (2019) no. 21 | DOI:10.1103/physrevb.99.214302
  • Muhammad Sajid; János K. Asbóth; Dieter Meschede; Reinhard F. Werner; Andrea Alberti Creating anomalous Floquet Chern insulators with magnetic quantum walks, Physical Review B, Volume 99 (2019) no. 21 | DOI:10.1103/physrevb.99.214303
  • Giandomenico Palumbo; Nathan Goldman Tensor Berry connections and their topological invariants, Physical Review B, Volume 99 (2019) no. 4 | DOI:10.1103/physrevb.99.045154
  • C. E. Whittaker; E. Cancellieri; P. M. Walker; B. Royall; L. E. Tapia Rodriguez; E. Clarke; D. M. Whittaker; H. Schomerus; M. S. Skolnick; D. N. Krizhanovskii Effect of photonic spin-orbit coupling on the topological edge modes of a Su-Schrieffer-Heeger chain, Physical Review B, Volume 99 (2019) no. 8 | DOI:10.1103/physrevb.99.081402
  • Owen Howell; Phillip Weinberg; Dries Sels; Anatoli Polkovnikov; Marin Bukov Asymptotic Prethermalization in Periodically Driven Classical Spin Chains, Physical Review Letters, Volume 122 (2019) no. 1 | DOI:10.1103/physrevlett.122.010602
  • Valentin Crépel; Benoit Estienne; Nicolas Regnault Variational Ansatz for an Abelian to Non-Abelian Topological Phase Transition in ν =1 /2 +1 /2 Bilayers, Physical Review Letters, Volume 123 (2019) no. 12 | DOI:10.1103/physrevlett.123.126804
  • Mary Madelynn Nayga; Stephan Rachel; Matthias Vojta Magnon Landau Levels and Emergent Supersymmetry in Strained Antiferromagnets, Physical Review Letters, Volume 123 (2019) no. 20 | DOI:10.1103/physrevlett.123.207204
  • M. Mochol-Grzelak; A. Dauphin; A. Celi; M. Lewenstein Efficient algorithm to compute the second Chern number in four dimensional systems, Quantum Science and Technology, Volume 4 (2019) no. 1, p. 014009 | DOI:10.1088/2058-9565/aae93b
  • N. R. Cooper; J. Dalibard; I. B. Spielman Topological bands for ultracold atoms, Reviews of Modern Physics, Volume 91 (2019) no. 1 | DOI:10.1103/revmodphys.91.015005
  • Yi Yang; Chao Peng; Di Zhu; Hrvoje Buljan; John D. Joannopoulos; Bo Zhen; Marin Soljačić Synthesis and observation of non-Abelian gauge fields in real space, Science, Volume 365 (2019) no. 6457, pp. 1021-1025 | DOI:10.1126/science.aay3183
  • Katarzyna Rechcińska; Mateusz Król; Rafał Mazur; Przemysław Morawiak; Rafał Mirek; Karolina Łempicka; Witold Bardyszewski; Michał Matuszewski; Przemysław Kula; Wiktor Piecek; Pavlos G. Lagoudakis; Barbara Piętka; Jacek Szczytko Engineering spin-orbit synthetic Hamiltonians in liquid-crystal optical cavities, Science, Volume 366 (2019) no. 6466, pp. 727-730 | DOI:10.1126/science.aay4182
  • Jonatan Melkær Midtgaard; Zhigang Wu; Yu Chen Constraints on the energy spectrum of non-Hermitian models in open environments, The European Physical Journal B, Volume 92 (2019) no. 11 | DOI:10.1140/epjb/e2019-100393-5
  • Mary Madelynn Nayga; Stephan Rachel; Matthias Vojta Magnon Landau levels and emergent supersymmetry in strained antiferromagnets, arXiv (2019) | DOI:10.48550/arxiv.1903.05097 | arXiv:1903.05097
  • Jonatan Melkær Midtgaard; Zhigang Wu; Yu Chen Constraints on the energy spectrum of non-Hermitian models in open environments, arXiv (2019) | DOI:10.48550/arxiv.1905.09603 | arXiv:1905.09603
  • Sthitadhi Roy; Michael Kolodrubetz; Nathan Goldman; Adolfo G. Grushin Tunable axial gauge fields in engineered Weyl semimetals: semiclassical analysis and optical lattice implementations, 2D Materials, Volume 5 (2018) no. 2 | DOI:10.1088/2053-1583/aaa577
  • Stefano Longhi Non-Hermitian Gauged Topological Laser Arrays, Annalen der Physik, Volume 530 (2018) no. 7, p. 1800023 | DOI:10.1002/andp.201800023
  • Laurent Sanchez-Palencia Quantum simulation: From basic principles to applications. Foreword, Comptes rendus - Physique, Volume 19 (2018) no. 6, pp. 357-364 | DOI:10.1016/j.crhy.2018.11.005
  • M. Aidelsburger Artificial gauge fields and topology with ultracold atoms in optical lattices, Journal of Physics B: Atomic, Molecular, and Optical Physics, Volume 51 (2018) no. 19 | DOI:10.1088/1361-6455/aac120
  • Grazia Salerno; Marco Di Liberto; Chiara Menotti; Iacopo Carusotto Topological two-body bound states in the interacting Haldane model, Physical Review A, Volume 97 (2018) no. 1 | DOI:10.1103/physreva.97.013637
  • Viktor Reimer; Kim G. L. Pedersen; Niklas Tanger; Mikhail Pletyukhov; Vladimir Gritsev Nonadiabatic effects in periodically driven dissipative open quantum systems, Physical Review A, Volume 97 (2018) no. 4 | DOI:10.1103/physreva.97.043851
  • Ana Hudomal; Ivana Vasić; Hrvoje Buljan; Walter Hofstetter; Antun Balaž Dynamics of weakly interacting bosons in optical lattices with flux, Physical Review A, Volume 98 (2018) no. 5 | DOI:10.1103/physreva.98.053625
  • C. Wurl; H. Fehske Floquet scattering of light and sound in Dirac optomechanics, Physical Review A, Volume 98 (2018) no. 6 | DOI:10.1103/physreva.98.063812
  • Tomoki Ozawa; Nathan Goldman Extracting the quantum metric tensor through periodic driving, Physical Review B, Volume 97 (2018) no. 20 | DOI:10.1103/physrevb.97.201117
  • Huanan Li; Boris Shapiro; Tsampikos Kottos Floquet scattering theory based on effective Hamiltonians of driven systems, Physical Review B, Volume 98 (2018) no. 12 | DOI:10.1103/physrevb.98.121101
  • Marin Bukov Reinforcement learning for autonomous preparation of Floquet-engineered states: Inverting the quantum Kapitza oscillator, Physical Review B, Volume 98 (2018) no. 22 | DOI:10.1103/physrevb.98.224305
  • Yu Chen; Hui Zhai Hall conductance of a non-Hermitian Chern insulator, Physical Review B, Volume 98 (2018) no. 24 | DOI:10.1103/physrevb.98.245130
  • A. Hayward; C. Schweizer; M. Lohse; M. Aidelsburger; F. Heidrich-Meisner Topological charge pumping in the interacting bosonic Rice-Mele model, Physical Review B, Volume 98 (2018) no. 24 | DOI:10.1103/physrevb.98.245148
  • Giandomenico Palumbo; Nathan Goldman Revealing Tensor Monopoles through Quantum-Metric Measurements, Physical Review Letters, Volume 121 (2018) no. 17 | DOI:10.1103/physrevlett.121.170401
  • Q. Guan; D. Blume Three-Boson Spectrum in the Presence of 1D Spin-Orbit Coupling: Efimov's Generalized Radial Scaling Law, Physical Review X, Volume 8 (2018) no. 2 | DOI:10.1103/physrevx.8.021057
  • S. Lellouch; N. Goldman Parametric instabilities in resonantly-driven Bose-Einstein condensates, Quantum Science and Technology, Volume 3 (2018) no. 2, p. 024011 | DOI:10.1088/2058-9565/aab2b9
  • Giandomenico Palumbo; Nathan Goldman Tensor Berry connections and their topological invariants, arXiv (2018) | DOI:10.48550/arxiv.1811.02434 | arXiv:1811.02434
  • G. Pelegrí; A. M. Marques; R. G. Dias; A. J. Daley; J. Mompart; V. Ahufinger Topological edge states and Aharanov-Bohm caging with ultracold atoms carrying orbital angular momentum, arXiv (2018) | DOI:10.48550/arxiv.1807.08096 | arXiv:1807.08096
  • C. E. Whittaker; E. Cancellieri; P. M. Walker; B. Royall; L. E. Tapia Rodriguez; E. Clarke; D. M. Whittaker; H. Schomerus; M. S. Skolnick; D. N. Krizhanovskii Effect of photonic spin-orbit coupling on the topological edge modes of a Su-Schrieffer-Heeger chain, arXiv (2018) | DOI:10.48550/arxiv.1812.02034 | arXiv:1812.02034
  • Shunsuke Furukawa; Masahito Ueda Quantum Hall phase diagram of two-component Bose gases: Intercomponent entanglement and pseudopotentials, Physical Review A, Volume 96 (2017) no. 5 | DOI:10.1103/physreva.96.053626

Cité par 207 documents. Sources : Crossref, NASA ADS

Commentaires - Politique