Comptes Rendus
The new International System of Units / Le nouveau Système international d'unités
Silicon spheres for the future realization of the kilogram and the mole
Comptes Rendus. Physique, The new International System of Units / Le nouveau Système international d’unités, Volume 20 (2019) no. 1-2, pp. 64-76.

New definitions of the units for amount of substance – the mole – and for mass – the kilogram – will presumably come into force on the World Metrology Day 2019. In the revised SI, the mole will be defined by a fixed value of the Avogadro constant and the kilogram by a fixed value of the Planck constant. The X-ray-crystal-density (XRCD) method has been used for the determination of these fundamental constants by counting the number of atoms in 28Si-enriched spheres. Thus, silicon spheres will – after the redefinition – be used to realize the definitions of the mole and the kilogram. This is possible by SI-traceable measurements of lattice parameter, isotopic composition, volume, and surface properties, yielding a relative standard uncertainty below 2⋅10−8. Whereas this high accuracy is only reached with isotopically enriched silicon, it is also planned to use natural silicon spheres on a slightly lower level of accuracy. The future definitions will allow also new realization methods using silicon, in particular for small mass values.

De nouvelles définitions des unités de quantité de matière (la mole) et de masse (le kilogramme) entreront vraisemblablement en vigueur lors de la Journée mondiale de la métrologie de 2019. Dans le Système international révisé, la mole sera définie par une valeur fixe de la constante d'Avogadro et le kilogramme par une valeur fixe de la constante de Planck. La méthode de mesure de densité par cristallographie aux rayons X (XRCD – X-ray crystal density) a été utilisée pour déterminer ces constantes fondamentales par comptage du nombre d'atomes dans des sphères de silicium enrichi en silicium 28. Après la redéfinition, les définitions de la mole et du kilogramme seront ainsi réalisées à l'aide de sphères de silicium. Ceci est possible en effectuant des mesures des paramètres de réseau, de la composition isotopique, du volume et des propriétés de surface traçables au SI. On obtient alors une incertitude-type relative inférieure à 2108. Alors qu'une telle précision ne peut être atteinte qu'avec du silicium enrichi isotopiquement, il est également prévu d'utiliser des sphères de silicium naturel avec un niveau de précision légèrement inférieur. Les futures définitions permettront également de mettre en oeuvre de nouvelles méthodes de réalisation faisant appel au silicium, en particulier pour de faibles valeurs de masses.

Published online:
DOI: 10.1016/j.crhy.2018.12.005
Keywords: XRCD method, Silicon, Spheres, Revised SI, Planck constant, Avogadro constant
Mots-clés : Méthode XRCD, Silicium, Sphères, SI révisé, Constante de Planck, Constante d'Avogadro

Horst Bettin 1; Kenichi Fujii 2; Arnold Nicolaus 1

1 Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
2 National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan
@article{CRPHYS_2019__20_1-2_64_0,
     author = {Horst Bettin and Kenichi Fujii and Arnold Nicolaus},
     title = {Silicon spheres for the future realization of the kilogram and the mole},
     journal = {Comptes Rendus. Physique},
     pages = {64--76},
     publisher = {Elsevier},
     volume = {20},
     number = {1-2},
     year = {2019},
     doi = {10.1016/j.crhy.2018.12.005},
     language = {en},
}
TY  - JOUR
AU  - Horst Bettin
AU  - Kenichi Fujii
AU  - Arnold Nicolaus
TI  - Silicon spheres for the future realization of the kilogram and the mole
JO  - Comptes Rendus. Physique
PY  - 2019
SP  - 64
EP  - 76
VL  - 20
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.12.005
LA  - en
ID  - CRPHYS_2019__20_1-2_64_0
ER  - 
%0 Journal Article
%A Horst Bettin
%A Kenichi Fujii
%A Arnold Nicolaus
%T Silicon spheres for the future realization of the kilogram and the mole
%J Comptes Rendus. Physique
%D 2019
%P 64-76
%V 20
%N 1-2
%I Elsevier
%R 10.1016/j.crhy.2018.12.005
%G en
%F CRPHYS_2019__20_1-2_64_0
Horst Bettin; Kenichi Fujii; Arnold Nicolaus. Silicon spheres for the future realization of the kilogram and the mole. Comptes Rendus. Physique, The new International System of Units / Le nouveau Système international d’unités, Volume 20 (2019) no. 1-2, pp. 64-76. doi : 10.1016/j.crhy.2018.12.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.12.005/

[1] B. Güttler; O. Rienitz; A. Pramann The Avogadro constant for the definition and realization of the mole, Ann. Phys. (2018) (1800292, pp. 1–17)

[2] I.A. Robinson; S. Schlamminger The watt or Kibble balance: a technique for implementing the new SI definition of the unit of mass, Metrologia, Volume 53 (2016), p. A46-A74

[3] K. Fujii; H. Bettin; P. Becker; E. Massa; O. Rienitz; A. Pramann; A. Nicolaus; N. Kuramoto; I. Busch; M. Borys Realization of the kilogram by the XRCD method, Metrologia, Volume 53 (2016), p. A19-A45

[4] U. Bonse; M. Hart An X-ray interferometer, Appl. Phys. Lett., Volume 6 (1965), pp. 155-156

[5] A. Leistner; G. Zosi Polishing a 1-kg silicon sphere for a density standard, Appl. Opt., Volume 26 (1987), pp. 600-601

[6] P. Becker et al. Large-scale production of highly enriched 28Si for the precise determination of the Avogadro constant, Meas. Sci. Technol., Volume 17 (2006), pp. 1854-1860

[7] O. Rienitz; A. Pramann; D. Schiel Novel concept for the mass spectrometric determination of absolute isotopic abundances with improved measurement uncertainty: part 1 – theoretical derivation and feasibility study, Int. J. Mass Spectrom., Volume 289 (2010), pp. 47-53

[8] K. Fujii; E. Massa; H. Bettin; N. Kuramoto; G. Mana Avogadro constant measurements using enriched 28Si monocrystals, Metrologia, Volume 55 (2018), p. L1-L4

[9] D.B. Newell; F. Cabiati; J. Fischer; K. Fujii; S.G. Karshenboim; H.S. Margolis; E. de Mirandes; P.J. Mohr; F. Nez; K. Pachucki; T.J. Quinn; B.N. Taylor; M. Wang; B.M. Wood; Z. Zhang The CODATA 2017 values of h, e, k, and NA for the revision of the SI, Metrologia, Volume 55 (2018), p. L13-L16

[10] P.J. Mohr; D.B. Newell; B.N. Taylor; E. Tiesinga Data and analysis for the CODATA 2017 special fundamental constants adjustment, Metrologia, Volume 55 (2018), pp. 125-146

[11] P. Cladé; F. Biraben; L. Julien; F. Nez; S. Guellati-Khélifa Precise determination of the ratio h/mu: a way to link microscopic mass to the new kilogram, Metrologia, Volume 53 (2016), p. A75-A82

[12] P.J. Mohr; D.B. Newell; B.N. Taylor CODATA recommended values of the fundamental physical constants: 2014, Rev. Mod. Phys., Volume 88 (2016) (pp. 1–73)

[13] R.H. Parker; C. Yu; W. Zhong; B. Estey; H. Müller Measurement of the fine-structure constant as a test of the Standard Model, Science, Volume 360 (2018), pp. 191-195

[14] G. Bartl et al. A new 28Si single crystal: counting the atoms for the new kilogram definition, Metrologia, Volume 54 (2017), pp. 693-715

[15] N. Kuramoto; K. Fujii; A. Nicolaus; G. Bartl; M. Gray; P. Manson; W. Giardini Diameter comparison of a silicon sphere for the international Avogadro coordination project, IEEE Trans. Instrum. Meas., Volume 60 (2011), pp. 2615-2620

[16] R.A. Nicolaus; K. Fujii Primary calibration of the volume of silicon spheres, Meas. Sci. Technol., Volume 17 (2006), pp. 2527-2539

[17] N. Kuramoto; K. Fujii; K. Yamazawa Volume measurement of 28Si spheres using an interferometer with a flat etalon to determine the Avogadro constant, Metrologia, Volume 48 (2011), p. S83-S95

[18] G. Bartl; H. Bettin; M. Krystek; T. Mai; A. Nicolaus; A. Peter Volume determination of the Avogadro spheres of highly enriched 28Si with a spherical Fizeau interferometer, Metrologia, Volume 48 (2011), p. S96-S103

[19] K. Fujii; R. Masui; S. Seino Volume determination of fused quartz spheres, Metrologia, Volume 27 (1990), pp. 25-31

[20] H. Preston-Thomas The international temperature scale of 1990 (ITS-90), Metrologia, Volume 27 (1990), pp. 3-10

[21] G. Bartl; A. Nicolaus; E. Kessler; R. Schödel; P. Becker The coefficient of thermal expansion of highly enriched 28Si, Metrologia, Volume 46 (2009), pp. 416-422

[22] B. Andreas et al. Counting the atoms in a 28Si crystal for a new kilogram definition, Metrologia, Volume 48 (2011), p. S1-S13

[23] N.V. Abrosimov et al. A new generation of 99.999% enriched 28Si single crystals for the determination of Avogadro's constant, Metrologia, Volume 54 (2017), pp. 599-609

[24] P. Becker et al. Large-scale production of highly enriched 28Si for the precise determination of the Avogadro constant, Meas. Sci. Technol., Volume 17 (2006), pp. 1854-1860

[25] I. Busch; Y. Azuma; H. Bettin; L. Cibik; P. Fuchs; K. Fujii; M. Krumrey; U. Kuetgens; N. Kuramoto; S. Mizushima Surface layer determination for the Si spheres of the Avogadro project, Metrologia, Volume 48 (2011), p. S62-S82

[26] M.P. Seah et al. Critical review of the current status of thickness measurements for ultra thin SiO2 on Si – part v: results of a CCQM pilot study, Surf. Interface Anal., Volume 36 (2004), pp. 1269-1303

[27] L. Zhang; N. Kuramoto; Y. Azuma; A. Kurokawa; K. Fujii Thickness measurements of oxide and carbonaceous layer on a 28Si sphere by XPS, IEEE Trans. Instrum. Meas., Volume 66 (2017), pp. 1297-1303

[28] M. Müller; B. Beckhoff; E. Beyer; E. Darlatt; R. Fliegauf; G. Ulm; M. Kolbe Quantitative surface characterization of silicon spheres by combined XRF and XPS analysis for the determination of the Avogadro constant, Metrologia, Volume 54 (2017), pp. 653-662

[29] S. Mizushima Determination of the amount of gas adsorption on SiO2/Si(100) surfaces to realize precise mass measurement, Metrologia, Volume 41 (2004), pp. 137-144

[30] S. Zakel; S. Wundrack; H. Niemann; O. Rienitz; D. Schiel Infrared spectrometric measurements of impurities in highly enriched ‘Si28’, Metrologia, Volume 48 (2011), p. S14-S19

[31] G. D'Agostino; M.D. Luzio; G. Mana; M. Oddone; J.W. Bennett; A. Stopic Purity of 28Si-enriched silicon material used for the determination of the Avogadro constant, Anal. Chem., Volume 88 (2016), pp. 6881-6888

[32] V.V. Voronkov; R. Falster Intrinsic point defects in silicon crystal growth, Solid State Phenom., Volume 178–179 (2011), pp. 3-14

[33] S. Davidson; J. Berry; P. Abbott; K. Marti; R. Green; A. Malengo; L. Nielsen Air-vacuum transfer; establishing traceability to the new kilogram, Metrologia, Volume 53 (2016), p. A95-A113

[34] Y. Azuma et al. Improved measurement results for the Avogadro constant using a 28Si-enriched crystal, Metrologia, Volume 52 (2015), pp. 360-375

[35] E. Massa; G. Mana; E. Ferroglio; E.G. Kessler; D. Schiel; S. Zakel The lattice parameter of the 28Si spheres in the determination of the Avogadro constant, Metrologia, Volume 48 (2011), p. S44-S49

[36] A. Waseda; H. Fujimoto; X.W. Zhang; N. Kuramoto; K. Fujii Uniformity evaluation of lattice spacing of 28Si single crystals, IEEE Trans. Instrum. Meas., Volume 66 (2017), pp. 1304-1308

[37] R. Wegge; H. Bettin Development of a specialized hydrostatic comparator for the accurate density determination of natural silicon spheres: a novel method for a primary realization of the unit kilogram, Paris, France, 8–13 July, Digest (2018), pp. 627-628

Cited by Sources:

Comments - Policy