[Déterminations de la constante de Boltzmann]
Nous passons en revue des mesures récentes de la constante de Boltzmann, k, dont la valeur sera bientôt figée à
We review measurements of the Boltzmann constant, k, the value of which is soon to be fixed at exactly
Mots-clés : Constante de Boltzmann, Thermométrie primaire, Système international d'unités
Laurent Pitre 1 ; Mark D. Plimmer 1 ; Fernando Sparasci 1 ; Marc E. Himbert 1
@article{CRPHYS_2019__20_1-2_129_0, author = {Laurent Pitre and Mark D. Plimmer and Fernando Sparasci and Marc E. Himbert}, title = {Determinations of the {Boltzmann} constant}, journal = {Comptes Rendus. Physique}, pages = {129--139}, publisher = {Elsevier}, volume = {20}, number = {1-2}, year = {2019}, doi = {10.1016/j.crhy.2018.11.007}, language = {en}, }
TY - JOUR AU - Laurent Pitre AU - Mark D. Plimmer AU - Fernando Sparasci AU - Marc E. Himbert TI - Determinations of the Boltzmann constant JO - Comptes Rendus. Physique PY - 2019 SP - 129 EP - 139 VL - 20 IS - 1-2 PB - Elsevier DO - 10.1016/j.crhy.2018.11.007 LA - en ID - CRPHYS_2019__20_1-2_129_0 ER -
Laurent Pitre; Mark D. Plimmer; Fernando Sparasci; Marc E. Himbert. Determinations of the Boltzmann constant. Comptes Rendus. Physique, The new International System of Units / Le nouveau Système international d’unités, Volume 20 (2019) no. 1-2, pp. 129-139. doi : 10.1016/j.crhy.2018.11.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.11.007/
[1] Measurement of the universal gas constant R using a spherical acoustic resonator, J. Res. Natl. Bur. Stand., Volume 93 (1988) no. 2, pp. 85-144
[2] An improved acoustic method for the determination of the Boltzmann constant at LNE-INM/CNAM, C. R. Physique, Volume 10 (2009) no. 9, pp. 835-848 | DOI
[3] Acoustic resonator experiments at the triple point of water: first results for the Boltzmann constant and remaining challenges, Int. J. Thermophys., Volume 31 (2010), pp. 1310-1346 | DOI
[4] Measurement of the Boltzmann constant kB using a quasi-spherical acoustic resonator, Int. J. Thermophys., Volume 32 (2011), pp. 1825-1886 | DOI
[5] Determination of the Boltzmann constant k from the speed of sound in helium gas at the triple point of water, Metrologia, Volume 52 (2015), p. S263-S273 | DOI
[6] A determination of the molar gas constant R by acoustic thermometry in helium, Metrologia, Volume 52 (2015), p. S274-S304 | DOI
[7] Re-estimation of argon isotope ratios leading to a revised estimate of the Boltzmann constant, Metrologia, Volume 54 (2017), pp. 683-692 | DOI
[8] Final determination of the Boltzmann constant by dielectric-constant gas thermometry, Metrologia, Volume 54 (2017), pp. 280-289 | DOI
[9] Determination of the Boltzmann constant with cylindrical acoustic gas thermometry: new and previous results combined, Metrologia, Volume 54 (2018), pp. 748-762 | DOI
[10] New measurement of the Boltzmann constant k by acoustic thermometry of helium-4 gas, Metrologia, Volume 54 (2017), pp. 856-873 | DOI
[11] An improved electronic determination of the Boltzmann constant by Johnson noise thermometry, Metrologia, Volume 54 (2017), pp. 549-558 | DOI
[12] The CODATA 2017 values of h, e, k, and NA for the revision of the SI, Metrologia, Volume 55 (2018), p. L13-L16 | DOI
[13] et al. The Boltzmann project, Metrologia, Volume 55 (2018), p. R1-R20 | DOI
[14] CODATA recommended values of the fundamental physical constants: 2014, Rev. Mod. Phys., Volume 88 (2016) (73 pages) | DOI
[15] Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys., Volume 17 (1905), pp. 549-560
[16] Investigations on the Theory of Brownian Movement, Dover, 1956 Translation (1926) of the 1905 article by Cowper A.D. with annotations by Fürth R.
[17]
, Wiley (2004), p. 304[18] et al. CCT-WG5 on radiation thermometry https://www.bipm.org/cc/CCT/Allowed/22/CCT03-03.pdf
[19] Advances in thermometry, Nat. Phys., Volume 12 (2016), pp. 7-11 | DOI
[20] Gas-filled spherical resonators: theory and experiment, J. Acoust. Soc. Am., Volume 79 (1986) no. 2, pp. 253-272 | DOI
[21] Acoustic gas thermometry, Metrologia, Volume 51 (2014), p. R1-R19 | DOI
[22] Correlations among acoustic measurements of the Boltzmann constant, Metrologia, Volume 52 (2015), p. S376-S384 | DOI
[23] Effects of adiabatic, relativistic, and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium, J. Chem. Phys., Volume 136 (2012) | DOI
[24] Acoustic field in a quasi-spherical resonator: unified perturbation model, J. Acoust. Soc. Am., Volume 125 (2009), pp. 1416-1425 | DOI
[25] Dielectric constant gas thermometry, Metrologia, Volume 52 (2015), p. S217-S226 | DOI
[26] The Theory of Sound, vol. II, MacMillan, 1878
[27] Correction of NPL-2013 estimate of the Boltzmann constant for argon isotopic composition and thermal conductivity, Metrologia, Volume 52 (2015), p. S353-S363 | DOI
[28] Second-order electromagnetic eigenfrequencies of a tri-axial ellipsoid, Metrologia, Volume 46 (2009), pp. 554-559 | DOI
[29] Spherical acoustic resonator: effects of shell motion, J. Acoust. Soc. Am., Volume 78 (1985) no. 2, pp. 782-788 | DOI
[30] Measuring shell resonances of spherical acoustic resonators, Int. J. Thermophys., Volume 32 (2011), pp. 427-440 | DOI
[31] Frequency-dependent polarizability of helium including relativistic effects with nuclear recoil terms, Phys. Rev. Lett., Volume 114 (2015) | DOI
[32] Measurement of pressures up to 7 MPa applying pressure balances for dielectric-constant gas thermometry, Metrologia, Volume 52 (2015), p. S305-S313 | DOI
[33] Primary pressure standard based on piston-cylinder assemblies. Calculation of effective cross-sectional area based on rarefied gas dynamics, Metrologia, Volume 53 (2016), pp. 1177-1184 | DOI
[34] Thermal agitation of electricity in conductors, Phys. Rev., Volume 32 (1928), pp. 97-109
[35] Thermal agitation of electric charge in conductors, Phys. Rev., Volume 32 (1928), pp. 110-113
[36] Coaxial Electrical Circuits for Interference-Free Measurements, The Institution of Engineering and Technology, London, 2011
[37] J. Qu, 2018, private communication.
[38] Direct determination of the Boltzmann constant by an optical method, Phys. Rev. Lett., Volume 98 (2007) | DOI
[39] Measurement of the fine-structure constant as a test of the Standard Model, Science, Volume 360 (2018), pp. 190-195 | DOI
[40] New determination of the fine structure constant and test of the quantum electrodynamics, Phys. Rev. Lett., Volume 106 (2011) | DOI
[41] Penning trap measurements of the masses of 133Cs, 87,85Rb, and 23Na with uncertainties <0.2 ppb, Phys. Rev. Lett., Volume 83 (1999), pp. 4510-4513 | DOI
[42] The effect of collisions upon the Doppler width of spectral lines, Phys. Rev., Volume 89 (1953) no. 2, pp. 472-473
[43] On the theory of linear absorption line shapes in gases, C. R. Physique, Volume 10 (2009), pp. 866-882 | DOI
[44] Absorption-line-shape recovery beyond the detection-bandwidth limit: application to the precision spectroscopic measurement of the Boltzmann constant, Phys. Rev. A, Volume 90 (2014) | DOI
[45] Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant, Phys. Rev. Lett., Volume 100 (2008) | DOI
[46] Measurement of the Boltzmann constant by the Doppler broadening technique at a
[47] Influence of the line-shape model on the spectroscopic determination of the Boltzmann constant, Phys. Rev. A, Volume 82 (2010) | DOI
[48] Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy, New J. Phys., Volume 13 (2011) (22 pages) | DOI
[49] A revised uncertainty budget for measuring the Boltzmann constant using the Doppler broadening technique on ammonia, Metrologia, Volume 50 (2013), pp. 623-630 | DOI
[50] Measuring the Boltzmann constant by mid-infrared laser spectroscopy of ammonia, Metrologia, Volume 52 (2015), p. S314-S323 | DOI
[51] The Boltzmann constant from the H218O vibration–rotation spectrum: complementary tests and revised uncertainty budget, Metrologia, Volume 52 (2015), p. S233-S241 | DOI
[52] Hyperfine structure effects in Doppler-broadening thermometry on water vapor at 1.4 μm, Metrologia, Volume 53 (2016), pp. 800-804 | DOI
[53] Relativistic formulation of the Voigt profile, Phys. Rev. A, Volume 91 (2015) | DOI
[54] Precise determination of the Doppler width of a rovibrational absorption line using a comb-locked diode laser, C. R. Physique, Volume 10 (2009), pp. 907-915 | DOI
[55] Doppler broadening thermometry of acetylene and accurate measurement of the Boltzmann constant, J. Chem. Phys., Volume 141 (2014) | DOI
[56] Application of cavity ring-down spectroscopy to the Boltzmann constant determination, Opt. Express, Volume 19 (2014) no. 21, pp. 19993-20002 | DOI
[57] Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm, Opt. Lett., Volume 28 (2003) no. 23, pp. 2324-2326 | DOI
[58] Metrological features of the rubidium two-photon standards of the BNM-LPTF and Kastler Brossel Laboratories, Eur. Phys. J. Appl. Phys., Volume 4 (1998), pp. 219-225 | DOI
[59] Metrology of the hydrogen and deuterium atoms: determination of the Rydberg constant and Lamb shifts, Eur. Phys. J. D, Volume 12 (2000), pp. 61-93 | DOI
[60] Quantitative atomic spectroscopy for primary thermometry, Phys. Rev. A, Volume 83 (2011) | DOI
[61] The earliest temperature observations in the world: the Medici Network (1654–1670), Clim. Change, Volume 111 (2012), pp. 335-363 | DOI
[62] The International Temperature Scale of 1990 (ITS-90), Metrologia, Volume 27 (1990), pp. 3-10 | DOI
[63] et al. Summary of comparison of realizations of the ITS-90 over the range 83.8058 K to 933.473 K: CCT key comparison CCT-K3, Metrologia, Volume 39 (2002), pp. 179-205 | DOI
[64] https://www.bipm.org/utils/common/pdf/CC/CCT/CCT28.pdf (Chapter 8.2). The results have not yet to been published in a review journal
[65] On the thermodynamic accuracy of the ITS-90: platinum resistance thermometry below 273 K, Metrologia, Volume 32 (1995), pp. 71-77 | DOI
[66] https://www.bipm.org/utils/common/pdf/ITS-90/Guide_ITS-90_5_SPRT_2018.pdf (Guide to the realization of the ITS-90, Chapter 5, section 6)
[67] Feasibility of primary thermometry using refractive index measurements at a single pressure, Measurement, Volume 103 (2017), pp. 258-262 | DOI
Cité par Sources :
Commentaires - Politique