Comptes Rendus
The new International System of Units / Le nouveau Système international d'unités
Determinations of the Boltzmann constant
[Déterminations de la constante de Boltzmann]
Comptes Rendus. Physique, Volume 20 (2019) no. 1-2, pp. 129-139.

Nous passons en revue des mesures récentes de la constante de Boltzmann, k, dont la valeur sera bientôt figée à 1,380649×1023 J⋅K−1 dans le cadre du nouveau Système international d'unités. Au-delà d'une description des éléments théoriques et de diverses techniques expérimentales (thermométrie acoustique, thermométrie à bruit de Johnson, thermométrie à constante diélectrique d'un gaz et élargissement Doppler en spectroscopie moléculaire), cet article met l'accent sur le rôle clé des calculs ab initio des propriétés thermophysiques des gaz, notamment celles de l'hélium 4. Sont également mentionnées des perspectives pour des améliorations en thermométrie dans le sillage de la nouvelle définition.

We review measurements of the Boltzmann constant, k, the value of which is soon to be fixed at exactly 1.380649×1023 J⋅K−1 for the future revised Système international of units. In addition to a description of the theoretical background and of diverse experimental techniques (acoustic thermometry, Johnson noise thermometry, dielectric constant gas thermometry, and Doppler broadened molecular spectroscopy), the article highlights the decisive role of ab initio calculations of the thermophysical properties of gases, especially helium-4. Perspectives for improvements in thermometry are outlined in the wake of the new definition.

Publié le :
DOI : 10.1016/j.crhy.2018.11.007
Keywords: Boltzmann constant, Primary thermometry, International System of Units (SI)
Mot clés : Constante de Boltzmann, Thermométrie primaire, Système international d'unités

Laurent Pitre 1 ; Mark D. Plimmer 1 ; Fernando Sparasci 1 ; Marc E. Himbert 1

1 LNE-CNAM, 61, rue du Landy, 93210 La Plaine-Saint-Denis, France
@article{CRPHYS_2019__20_1-2_129_0,
     author = {Laurent Pitre and Mark D. Plimmer and Fernando Sparasci and Marc E. Himbert},
     title = {Determinations of the {Boltzmann} constant},
     journal = {Comptes Rendus. Physique},
     pages = {129--139},
     publisher = {Elsevier},
     volume = {20},
     number = {1-2},
     year = {2019},
     doi = {10.1016/j.crhy.2018.11.007},
     language = {en},
}
TY  - JOUR
AU  - Laurent Pitre
AU  - Mark D. Plimmer
AU  - Fernando Sparasci
AU  - Marc E. Himbert
TI  - Determinations of the Boltzmann constant
JO  - Comptes Rendus. Physique
PY  - 2019
SP  - 129
EP  - 139
VL  - 20
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.11.007
LA  - en
ID  - CRPHYS_2019__20_1-2_129_0
ER  - 
%0 Journal Article
%A Laurent Pitre
%A Mark D. Plimmer
%A Fernando Sparasci
%A Marc E. Himbert
%T Determinations of the Boltzmann constant
%J Comptes Rendus. Physique
%D 2019
%P 129-139
%V 20
%N 1-2
%I Elsevier
%R 10.1016/j.crhy.2018.11.007
%G en
%F CRPHYS_2019__20_1-2_129_0
Laurent Pitre; Mark D. Plimmer; Fernando Sparasci; Marc E. Himbert. Determinations of the Boltzmann constant. Comptes Rendus. Physique, Volume 20 (2019) no. 1-2, pp. 129-139. doi : 10.1016/j.crhy.2018.11.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.11.007/

[1] M.R. Moldover; J.P.M. Trusler; T.J. Edwards; J.B. Mehl; R.S. Davis Measurement of the universal gas constant R using a spherical acoustic resonator, J. Res. Natl. Bur. Stand., Volume 93 (1988) no. 2, pp. 85-144

[2] L. Pitre; C. Guianvarc'h; F. Sparasci; A. Guillou; D. Truong; Y. Hermier; M.E. Himbert An improved acoustic method for the determination of the Boltzmann constant at LNE-INM/CNAM, C. R. Physique, Volume 10 (2009) no. 9, pp. 835-848 | DOI

[3] G. Sutton; R. Underwood; L. Pitre; M. de Podesta; S. Valkiers Acoustic resonator experiments at the triple point of water: first results for the Boltzmann constant and remaining challenges, Int. J. Thermophys., Volume 31 (2010), pp. 1310-1346 | DOI

[4] L. Pitre; F. Sparasci; D. Truong; L. Risegari; A. Guillou; M. Himbert Measurement of the Boltzmann constant kB using a quasi-spherical acoustic resonator, Int. J. Thermophys., Volume 32 (2011), pp. 1825-1886 | DOI

[5] L. Pitre; F. Sparasci; L. Risgari; M.D. Plimmer; M.E. Himbert; P.A. Giuliano Albo Determination of the Boltzmann constant k from the speed of sound in helium gas at the triple point of water, Metrologia, Volume 52 (2015), p. S263-S273 | DOI

[6] R.M. Gavioso; D. Madonna Ripa; P.P.M. Steur; C. Gaiser; D. Truong; C. Guianvarc'h; P. Tarizzo; F.M. Stuart; R. Dematteis A determination of the molar gas constant R by acoustic thermometry in helium, Metrologia, Volume 52 (2015), p. S274-S304 | DOI

[7] M. de Podesta; D.F. Mark; R.C. Dymock; R. Underwood; T. Bacquart; G. Sutton; S. Davidson; G. Machin Re-estimation of argon isotope ratios leading to a revised estimate of the Boltzmann constant, Metrologia, Volume 54 (2017), pp. 683-692 | DOI

[8] C. Gaiser; B. Fellmuth; N. Haft; A. Kuhn; B. Thiele-Krivoi; T. Zandt; J. Fischer; O. Jusko; W. Sabuga Final determination of the Boltzmann constant by dielectric-constant gas thermometry, Metrologia, Volume 54 (2017), pp. 280-289 | DOI

[9] X.J. Feng; J.T. Zhang; H. Lin; K.A. Gillis; J.B. Mehl; M.R. Moldover; K. Zhang; Y.N. Duan Determination of the Boltzmann constant with cylindrical acoustic gas thermometry: new and previous results combined, Metrologia, Volume 54 (2018), pp. 748-762 | DOI

[10] L. Pitre; F. Sparasci; L. Risegari; C. Guianvarc'h; C. Martin; M.E. Himbert; M.D. Plimmer; A. Allard; B. Marty; P.A. Giuliano Albo; B. Gao; M.R. Moldover; J.B. Mehl New measurement of the Boltzmann constant k by acoustic thermometry of helium-4 gas, Metrologia, Volume 54 (2017), pp. 856-873 | DOI

[11] J. Qu; S.P. Benz; K. Coakley; H. Rogalla; W.L. Tew; D.R. White; K. Zhou; Z. Zhou An improved electronic determination of the Boltzmann constant by Johnson noise thermometry, Metrologia, Volume 54 (2017), pp. 549-558 | DOI

[12] D.B. Newell; F. Cabiati; J. Fischer; K. Fujii; S.G. Karshenboim; H.S. Margolis; E. de Mirandés; P.J. Mohr; F. Nez; K. Pachucki; T.J. Quinn; B.N. Taylor; M. Wang; B.M. Wood; Z. Zhang The CODATA 2017 values of h, e, k, and NA for the revision of the SI, Metrologia, Volume 55 (2018), p. L13-L16 | DOI

[13] J. Fischer et al. The Boltzmann project, Metrologia, Volume 55 (2018), p. R1-R20 | DOI

[14] P.J. Mohr; D.B. Newell; B.N. Taylor CODATA recommended values of the fundamental physical constants: 2014, Rev. Mod. Phys., Volume 88 (2016) (73 pages) | DOI

[15] A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys., Volume 17 (1905), pp. 549-560

[16] A. Einstein Investigations on the Theory of Brownian Movement, Dover, 1956 Translation (1926) of the 1905 article by Cowper A.D. with annotations by Fürth R.

[17] C. Kittel, Wiley (2004), p. 304

[18] J. Fischer et al. CCT-WG5 on radiation thermometry https://www.bipm.org/cc/CCT/Allowed/22/CCT03-03.pdf

[19] M.R. Moldover; W. Tew; H.W. Yoon Advances in thermometry, Nat. Phys., Volume 12 (2016), pp. 7-11 | DOI

[20] M.R. Moldover; J.B. Mehl; M. Greenspan Gas-filled spherical resonators: theory and experiment, J. Acoust. Soc. Am., Volume 79 (1986) no. 2, pp. 253-272 | DOI

[21] M.R. Moldover; R.M. Gavioso; J.B. Mehl; L. Pitre; M. de Podesta; J.T. Zhang Acoustic gas thermometry, Metrologia, Volume 51 (2014), p. R1-R19 | DOI

[22] M.R. Moldover; R.M. Gavioso; D.B. Newell Correlations among acoustic measurements of the Boltzmann constant, Metrologia, Volume 52 (2015), p. S376-S384 | DOI

[23] W. Cencek; M. Przybytek; J. Komasa; J.B. Mehl; B. Jeziorski; K. Szalewicz Effects of adiabatic, relativistic, and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium, J. Chem. Phys., Volume 136 (2012) | DOI

[24] C. Guianvarc'h; L. Pitre; M. Bruneau; A.M. Bruneau Acoustic field in a quasi-spherical resonator: unified perturbation model, J. Acoust. Soc. Am., Volume 125 (2009), pp. 1416-1425 | DOI

[25] C. Gaiser; T. Zandt; B. Fellmuth Dielectric constant gas thermometry, Metrologia, Volume 52 (2015), p. S217-S226 | DOI

[26] Rayleigh (J.W. Strutt, baron) The Theory of Sound, vol. II, MacMillan, 1878

[27] M. de Podesta; I. Yang; D.F. Mark; R. Underwood; G. Sutton; G. Machin Correction of NPL-2013 estimate of the Boltzmann constant for argon isotopic composition and thermal conductivity, Metrologia, Volume 52 (2015), p. S353-S363 | DOI

[28] J.B. Mehl Second-order electromagnetic eigenfrequencies of a tri-axial ellipsoid, Metrologia, Volume 46 (2009), pp. 554-559 | DOI

[29] J.B. Mehl Spherical acoustic resonator: effects of shell motion, J. Acoust. Soc. Am., Volume 78 (1985) no. 2, pp. 782-788 | DOI

[30] D. Truong; F. Sparasci; E. Foltête; M. Ouisse; L. Pitre Measuring shell resonances of spherical acoustic resonators, Int. J. Thermophys., Volume 32 (2011), pp. 427-440 | DOI

[31] K. Piszczatowski; M. Puchalski; J. Komasa; B. Jeziorski; K. Szalewicz Frequency-dependent polarizability of helium including relativistic effects with nuclear recoil terms, Phys. Rev. Lett., Volume 114 (2015) | DOI

[32] T. Zandt; W. Sabuga; C. Gaiser; B. Fellmuth Measurement of pressures up to 7 MPa applying pressure balances for dielectric-constant gas thermometry, Metrologia, Volume 52 (2015), p. S305-S313 | DOI

[33] F. Sharipov; Y. Yang; J.E. Ricker; J.H. Hendricks Primary pressure standard based on piston-cylinder assemblies. Calculation of effective cross-sectional area based on rarefied gas dynamics, Metrologia, Volume 53 (2016), pp. 1177-1184 | DOI

[34] J.B. Johnson Thermal agitation of electricity in conductors, Phys. Rev., Volume 32 (1928), pp. 97-109

[35] H. Nyquist Thermal agitation of electric charge in conductors, Phys. Rev., Volume 32 (1928), pp. 110-113

[36] S. Awan; B. Kibble; J. Schurr Coaxial Electrical Circuits for Interference-Free Measurements, The Institution of Engineering and Technology, London, 2011

[37] J. Qu, 2018, private communication.

[38] C. Daussy; M. Guinet; A. Amy-Klein; K. Djerroud; Y. Hermier; S. Briaudeau; C.J. Bordé; C. Chardonnet Direct determination of the Boltzmann constant by an optical method, Phys. Rev. Lett., Volume 98 (2007) | DOI

[39] R.H. Parker; C. Yu; W. Zhong; B. Estey; H. Müller Measurement of the fine-structure constant as a test of the Standard Model, Science, Volume 360 (2018), pp. 190-195 | DOI

[40] R. Bouchendira; P. Cladé; S. Guellati-Khélifa; F. Nez; F. Biraben New determination of the fine structure constant and test of the quantum electrodynamics, Phys. Rev. Lett., Volume 106 (2011) | DOI

[41] M.P. Bradley; J.V. Porto; S. Rainville; J.K. Thompson; D.E. Pritchard Penning trap measurements of the masses of 133Cs, 87,85Rb, and 23Na with uncertainties <0.2 ppb, Phys. Rev. Lett., Volume 83 (1999), pp. 4510-4513 | DOI

[42] R.H. Dicke The effect of collisions upon the Doppler width of spectral lines, Phys. Rev., Volume 89 (1953) no. 2, pp. 472-473

[43] C.J. Bordé On the theory of linear absorption line shapes in gases, C. R. Physique, Volume 10 (2009), pp. 866-882 | DOI

[44] F. Rohart; S. Mejri; P.L.T. Sow; S.K. Tokunaga; C. Chardonnet; B. Darquié; H. Dinesan; E. Fasci; A. Castrillo; L. Gianfrani; C. Daussy Absorption-line-shape recovery beyond the detection-bandwidth limit: application to the precision spectroscopic measurement of the Boltzmann constant, Phys. Rev. A, Volume 90 (2014) | DOI

[45] G. Casa; A. Castrillo; G. Galzerano; R. Wehr; A. Merlone; D. Di Serafino; P. Laporta; L. Gianfrani Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant, Phys. Rev. Lett., Volume 100 (2008) | DOI

[46] K. Djerroud; C. Lemarchand; A. Gauguet; C. Daussy; S. Briaudeau; B. Darquié; O. Lopez; A. Amy-Klein; C. Chardonnet; C.J. Bordé Measurement of the Boltzmann constant by the Doppler broadening technique at a 3.8×105 accuracy level, C. R. Physique, Volume 10 (2009), pp. 883-893 | DOI

[47] A. Cygan; D. Lisak; R.S. Trawiński; R. Ciuryło Influence of the line-shape model on the spectroscopic determination of the Boltzmann constant, Phys. Rev. A, Volume 82 (2010) | DOI

[48] C. Lemarchand; M. Triki; B. Darquié; C.J. Bordé; C. Chardonnet; C. Daussy Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy, New J. Phys., Volume 13 (2011) (22 pages) | DOI

[49] C. Lemarchand; S. Mejri; P.L.T. Sow; M. Triki; S.K. Tokunaga; S. Briaudeau; C. Chardonnet; B. Darquié; C. Daussy A revised uncertainty budget for measuring the Boltzmann constant using the Doppler broadening technique on ammonia, Metrologia, Volume 50 (2013), pp. 623-630 | DOI

[50] S. Mejri; P.L.T. Sow; O. Kozlova; C. Ayari; S.K. Tokunaga; C. Chardonnet; S. Briaudeau; B. Darquié; F. Rohart; C. Daussy Measuring the Boltzmann constant by mid-infrared laser spectroscopy of ammonia, Metrologia, Volume 52 (2015), p. S314-S323 | DOI

[51] E. Fasci; M.D. De Vizia; A. Merlone; L. Moretti; A. Castrillo; L. Gianfrani The Boltzmann constant from the H218O vibration–rotation spectrum: complementary tests and revised uncertainty budget, Metrologia, Volume 52 (2015), p. S233-S241 | DOI

[52] M.D. De Vizia; T. Odintsova; L. Gianfrani Hyperfine structure effects in Doppler-broadening thermometry on water vapor at 1.4 μm, Metrologia, Volume 53 (2016), pp. 800-804 | DOI

[53] P. Wcisło; P. Amodio; R. Ciuryło; L. Gianfrani Relativistic formulation of the Voigt profile, Phys. Rev. A, Volume 91 (2015) | DOI

[54] K.M.T. Yamada; A. Onae; F.L. Hong; H. Inaba; T. Shimizu Precise determination of the Doppler width of a rovibrational absorption line using a comb-locked diode laser, C. R. Physique, Volume 10 (2009), pp. 907-915 | DOI

[55] R. Hashemi; C. Povey; M. Derksen; H. Naseri; J. Garber; A. Predoi-Cross Doppler broadening thermometry of acetylene and accurate measurement of the Boltzmann constant, J. Chem. Phys., Volume 141 (2014) | DOI

[56] Y.R. Sun; H. Pan; C.-F. Cheng; A.-W. Liu; J.-T. Zhang; S.-M. Hu Application of cavity ring-down spectroscopy to the Boltzmann constant determination, Opt. Express, Volume 19 (2014) no. 21, pp. 19993-20002 | DOI

[57] F.L. Hong; A. Onae; J. Jiang; R. Guo; H. Inaba; K. Minoshima; T.R. Schibli; H. Matsumoto; K. Nakagawa Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm, Opt. Lett., Volume 28 (2003) no. 23, pp. 2324-2326 | DOI

[58] L. Hilico; R. Felder; D. Touahri; O. Acef; A. Clairon; F. Biraben Metrological features of the rubidium two-photon standards of the BNM-LPTF and Kastler Brossel Laboratories, Eur. Phys. J. Appl. Phys., Volume 4 (1998), pp. 219-225 | DOI

[59] B. de Beauvoir; C. Schwob; O. Acef; L. Jozefowski; L. Hilico; F. Nez; L. Julien; A. Clairon; F. Biraben Metrology of the hydrogen and deuterium atoms: determination of the Rydberg constant and Lamb shifts, Eur. Phys. J. D, Volume 12 (2000), pp. 61-93 | DOI

[60] G.-W. Truong; E.F. May; T.M. Stace; A.N. Luiten Quantitative atomic spectroscopy for primary thermometry, Phys. Rev. A, Volume 83 (2011) | DOI

[61] D. Camuffo; C. Bertolin The earliest temperature observations in the world: the Medici Network (1654–1670), Clim. Change, Volume 111 (2012), pp. 335-363 | DOI

[62] H. Preston-Thomas The International Temperature Scale of 1990 (ITS-90), Metrologia, Volume 27 (1990), pp. 3-10 | DOI

[63] B.W. Mangum et al. Summary of comparison of realizations of the ITS-90 over the range 83.8058 K to 933.473 K: CCT key comparison CCT-K3, Metrologia, Volume 39 (2002), pp. 179-205 | DOI

[64] https://www.bipm.org/utils/common/pdf/CC/CCT/CCT28.pdf (Chapter 8.2). The results have not yet to been published in a review journal

[65] J.V. Nicholas On the thermodynamic accuracy of the ITS-90: platinum resistance thermometry below 273 K, Metrologia, Volume 32 (1995), pp. 71-77 | DOI

[66] https://www.bipm.org/utils/common/pdf/ITS-90/Guide_ITS-90_5_SPRT_2018.pdf (Guide to the realization of the ITS-90, Chapter 5, section 6)

[67] B. Gao; L. Pitre; E.C. Luo; M.D. Plimmer; P. Lin; J.T. Zhang; X.J. Feng; Y.Y. Chen; F. Sparasci Feasibility of primary thermometry using refractive index measurements at a single pressure, Measurement, Volume 103 (2017), pp. 258-262 | DOI

Cité par Sources :

Commentaires - Politique