Comptes Rendus
The new International System of Units / Le nouveau Système international d'unités
The unit of time: Present and future directions
[L'unité de temps : directions actuelles et futures]
Comptes Rendus. Physique, Volume 20 (2019) no. 1-2, pp. 153-168.

Il y a une cinquantaine d'années, les physiciens, et après eux le monde entier, ont commencé à fonder leur référence temporelle sur les propriétés atomiques au lieu des mouvements de la Terre, qui étaient utilisés depuis l'origine. Loin d'être un point d'arrivée, cette décision a marqué le début d'une aventure caractérisée par une amélioration par six ordres de grandeur de l'incertitude de la réalisation des références atomiques de fréquence et de temps. Les étalons de fréquence atomique en constante progression et les références de temps qui en découlent sont des ressources essentielles pour la science et pour la société. Nous décrirons comment l'unité de temps est réalisée avec une précision relative approchant 1016 et comment elle est mise à la disposition des utilisateurs via l'élaboration du temps atomique international. Nous montrerons les progrès considérables de la métrologie des fréquences optiques au cours des vingt dernières années, qui ont conduit à une nouvelle génération d'étalons de fréquence optique avec des incertitudes relatives de 1018. Nous décrirons les travaux en vue d'une éventuelle redéfinition de la seconde du SI basée sur ces étalons. Nous décrirons les applications scientifiques existantes et émergentes des étalons atomiques de fréquence.

Some 50 years ago, physicists, and after them the entire world, started to found their time reference on atomic properties instead of motions of the Earth that have been in use since the origin. Far from being an arrival point, this decision marked the beginning of an adventure characterized by an improvement by 6 orders of magnitude in the uncertainty of realization of atomic frequency and time references. Ever-progressing atomic frequency standards and time references derived from them are key resources for science and for society. We will describe how the unit of time is realized with a fractional accuracy approaching 1016 and how it is delivered to users via the elaboration of the international atomic time. We will describe the tremendous progress of optical frequency metrology over the last 20 years that led to a novel generation of optical frequency standards with fractional uncertainties of 1018. We will describe work toward a possible redefinition of the SI second based on such standards. We will describe existing and emerging applications of atomic frequency standards in science.

Publié le :
DOI : 10.1016/j.crhy.2019.02.002
Keywords: Atomic fountain, Timescale, Optical frequency standard, Fundamental physics test, Chronometric geodesy, Redefinition of the SI second
Mot clés : Fontaine atomique, Échelle de temps, Étalon de fréquence optique, Test de physique fondamentale, Géodésie chronométrique, Redéfinition de la seconde du SI
Sébastien Bize 1

1 SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE, 61, avenue de l'Observatoire, 75014 Paris, France
@article{CRPHYS_2019__20_1-2_153_0,
     author = {S\'ebastien Bize},
     title = {The unit of time: {Present} and future directions},
     journal = {Comptes Rendus. Physique},
     pages = {153--168},
     publisher = {Elsevier},
     volume = {20},
     number = {1-2},
     year = {2019},
     doi = {10.1016/j.crhy.2019.02.002},
     language = {en},
}
TY  - JOUR
AU  - Sébastien Bize
TI  - The unit of time: Present and future directions
JO  - Comptes Rendus. Physique
PY  - 2019
SP  - 153
EP  - 168
VL  - 20
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crhy.2019.02.002
LA  - en
ID  - CRPHYS_2019__20_1-2_153_0
ER  - 
%0 Journal Article
%A Sébastien Bize
%T The unit of time: Present and future directions
%J Comptes Rendus. Physique
%D 2019
%P 153-168
%V 20
%N 1-2
%I Elsevier
%R 10.1016/j.crhy.2019.02.002
%G en
%F CRPHYS_2019__20_1-2_153_0
Sébastien Bize. The unit of time: Present and future directions. Comptes Rendus. Physique, Volume 20 (2019) no. 1-2, pp. 153-168. doi : 10.1016/j.crhy.2019.02.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.02.002/

[1] https://www.bipm.org/en/worldwide-metrology/cgpm/resolutions.html Comptes rendus de la 13e CGPM (1967/68) (1969) 103

[2] H. Lyons Spectral lines as frequency standards, Ann. N.Y. Acad. Sci., Volume 55 (1952) no. 5, pp. 831-871 | DOI

[3] L. Essen; J.V.L. Parry An atomic standard of frequency and time interval: a caesium resonator, Nature, Volume 176 (1955) no. 4476, pp. 280-282 | DOI

[4] W. Markowitz; R.G. Hall; L. Essen; J.V.L. Parry Frequency of cesium in terms of ephemeris time, Phys. Rev. Lett., Volume 1 (1958), pp. 105-107 | DOI

[5] T. Quinn Fifty years of atomic time-keeping: 1955 to 2005, Metrologia, Volume 42 (2005) no. 3 | DOI

[6] C. Salomon The measurement of time/La mesure du temps: Foreword, C. R. Physique, Volume 16 (2015) no. 5, pp. 459-460 | DOI

[7] Comptes rendus de la 17e CGPM (1983) 10.

[8] Comptes rendus de la 26e CGPM (2018).

[9] J.-P. Uzan Varying constants, gravitation and cosmology, Living Rev. Relativ., Volume 14 (2011), p. 2 http://www.livingreviews.org/lrr-2011-2

[10] C.M. Will The confrontation between general relativity and experiment, Living Rev. Relativ., Volume 17 (2014) no. 1, p. 4 | DOI

[11] M.S. Safronova; D. Budker; D. DeMille; D.F.J. Kimball; A. Derevianko; C.W. Clark Search for new physics with atoms and molecules, Rev. Mod. Phys., Volume 90 (2018) no. 2 | DOI

[12] K. Van Tilburg; N. Leefer; L. Bougas; D. Budker Search for ultralight scalar dark matter with atomic spectroscopy, Phys. Rev. Lett., Volume 115 (2015) | DOI

[13] A. Hees; J. Guéna; M. Abgrall; S. Bize; P. Wolf Searching for an oscillating massive scalar field as a dark matter candidate using atomic hyperfine frequency comparisons, Phys. Rev. Lett., Volume 117 (2016) | DOI

[14] N. Ramsey Experiments with separated oscillatory fields and hydrogen masers, Rev. Mod. Phys., Volume 62 (1990), p. 541 | DOI

[15] J. Vanier; C. Audoin The Quantum Physics of Atomic Frequency Standards, Adam Hilger, 1989

[16] C.N. Cohen-Tannoudji Nobel lecture: Manipulating atoms with photons, Rev. Mod. Phys., Volume 70 (1998), pp. 707-719 | DOI

[17] W.D. Phillips Nobel lecture: Laser cooling and trapping of neutral atoms, Rev. Mod. Phys., Volume 70 (1998) no. 3, pp. 721-741 | DOI

[18] S. Chu Nobel lecture: The manipulation of neutral particles, Rev. Mod. Phys., Volume 70 (1998), pp. 685-706 | DOI

[19] M. Kasevich; E. Riis; S. Chu; R. de Voe RF spectroscopy in an atomic fountain, Phys. Rev. Lett., Volume 63 (1989), p. 612

[20] A. Clairon; C. Salomon; S. Guellati; W. Phillips Ramsey resonance in a Zacharias fountain, Europhys. Lett., Volume 16 (1991), p. 165

[21] A. Clairon; P. Laurent; G. Santarelli; S. Ghezali; S. Lea; M. Bahoura A cesium fountain frequency standard: recent results, IEEE Trans. Instrum. Meas., Volume 44 (1995) no. 2, p. 128

[22] G. Santarelli; P. Laurent; P. Lemonde; A. Clairon; A.G. Mann; S. Chang; A.N. Luiten; C. Salomon Quantum projection noise in an atomic fountain: a high stability cesium frequency standard, Phys. Rev. Lett., Volume 82 (1999) no. 23, p. 4619

[23] J. Guéna; M. Abgrall; D. Rovera; P. Laurent; B. Chupin; M. Lours; G. Santarelli; P. Rosenbusch; M. Tobar; R. Li; K. Gibble; A. Clairon; S. Bize Progress in atomic fountains at LNE–SYRTE, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 59 (2012) no. 3, pp. 391-410 | DOI

[24] J. Guéna; R. Li; K. Gibble; S. Bize; A. Clairon Evaluation of Doppler shifts to improve the accuracy of primary atomic fountain clocks, Phys. Rev. Lett., Volume 106 (2011) no. 13 | DOI

[25] R. Li; K. Gibble Evaluating and minimizing distributed cavity phase errors in atomic clocks, Metrologia, Volume 47 (2010) no. 5, p. 534 http://stacks.iop.org/0026-1394/47/i=5/a=004

[26] F. Pereira Dos Santos; H. Marion; S. Bize; Y. Sortais; A. Clairon; C. Salomon Controlling the cold collision shift in high precision atomic interferometry, Phys. Rev. Lett., Volume 89 (2002)

[27] D.J. Papoular; S. Bize; A. Clairon; H. Marion; S.J.J.M.F. Kokkelmans; G.V. Shlyapnikov Feshbach resonances in cesium at ultralow static magnetic fields, Phys. Rev. A, Volume 86 (2012) | DOI

[28] K. Szymaniec; W. Chałupczak; E. Tiesinga; C.J. Williams; S. Weyers; R. Wynands Cancellation of the collisional frequency shift in caesium fountain clocks, Phys. Rev. Lett., Volume 98 (2007) no. 15 | DOI

[29] K. Gibble Scattering of cold-atom coherences by hot atoms: frequency shifts from background-gas collisions, Phys. Rev. Lett., Volume 110 (2013) | DOI

[30] K. Szymaniec; S. Lea; K. Liu An evaluation of the frequency shift caused by collisions with background gas in the primary frequency standard NPL-CsF2, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 61 (2014) no. 1, pp. 203-206 | DOI

[31] K. Gibble Difference between a photon's momentum and an atom's recoil, Phys. Rev. Lett., Volume 97 (2006) no. 7 | DOI

[32] R. Li; K. Gibble; K. Szymaniec Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts, Metrologia, Volume 48 (2011) no. 5, p. 283 http://stacks.iop.org/0026-1394/48/i=5/a=007

[33] K. Gibble Ramsey spectroscopy, matter–wave interferometry, and the microwave-lensing frequency shift, Phys. Rev. A, Volume 90 (2014) | DOI

[34] W. Itano; L. Lewis; D. Wineland Shift of S1/22 hyperfine splittings due to blackbody radiation, Phys. Rev. A, Volume 25 (1982), p. 1233

[35] R. Jefferts; S.P. Heavner; T.E. Parker; T.H. Shirley; J.A. Donley; E.N. Ashby; F. Levi; D. Calonico; G.A. Costanzo High-accuracy measurement of the blackbody radiation frequency shift of the ground-state hyperfine transition in 133Cs, Phys. Rev. Lett., Volume 112 (2014) | DOI

[36] T.P. Heavner; E.A. Donley; F. Levi; G. Costanzo; T.E. Parker; J.H. Shirley; N. Ashby; S. Barlow; S.R. Jefferts First accuracy evaluation of NIST-F2, Metrologia, Volume 51 (2014) no. 3, p. 174 http://stacks.iop.org/0026-1394/51/i=3/a=174

[37] F. Levi; D. Calonico; C.E. Calosso; A. Godone; S. Micalizio; G.A. Costanzo Accuracy evaluation of ITCsF2: a nitrogen cooled caesium fountain, Metrologia, Volume 51 (2014) no. 3, p. 270 http://stacks.iop.org/0026-1394/51/i=3/a=270

[38] A. Jallageas; L. Devenoges; M. Petersen; J. Morel; L.G. Bernier; D. Schenker; P. Thomann; T. Südmeyer First uncertainty evaluation of the FoCS-2 primary frequency standard, Metrologia, Volume 55 (2018) no. 3, p. 366 | DOI

[39] R. Wynands; S. Weyers Atomic fountain clocks, Metrologia, Volume 42 (2005) no. 3 http://stacks.iop.org/0026-1394/42/i=3/a=S08

[40] F. Riehle 8th symposium on frequency standards and metrology 2015, J. Phys. Conf. Ser., Volume 723 (2016) no. 1 http://stacks.iop.org/1742-6596/723/i=1/a=011001

[41] J. Guéna; P. Rosenbusch; P. Laurent; M. Abgrall; D. Rovera; G. Santarelli; M. Tobar; S. Bize; A. Clairon Demonstration of a dual alkali Rb/Cs fountain clock, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 57 (2010) no. 3, p. 647 | DOI

[42] J. Guéna; M. Abgrall; A. Clairon; S. Bize Contributing to TAI with a secondary representation of the SI second, Metrologia, Volume 51 (2014) no. 1, p. 108 http://stacks.iop.org/0026-1394/51/i=1/a=108

[43] See the list of Secondary Representations of the SI second and of other recommended values of standard frequencies on the BIPM website http://www.bipm.org/en/publications/mep.html

[44] A. Bauch; J. Achkar; S. Bize; D. Calonico; R. Dach; R. Hlavac; L. Lorini; T. Parker; G. Petit; D. Piester; K. Szymaniec; P. Uhrich Comparison between frequency standards in Europe and the USA at the 1015 uncertainty level, Metrologia, Volume 43 (2006) no. 1, pp. 109-120 http://stacks.iop.org/0026-1394/43/109

[45] J. Guéna; S. Weyers; M. Abgrall; C. Grebing; V. Gerginov; P. Rosenbusch; S. Bize; B. Lipphardt; H. Denker; N. Quintin; S.M.F. Raupach; D. Nicolodi; F. Stefani; N. Chiodo; S. Koke; A. Kuhl; F. Wiotte; F. Meynadier; E. Camisard; C. Chardonnet; Y.L. Coq; M. Lours; G. Santarelli; A. Amy-Klein; R.L. Targat; O. Lopez; P.E. Pottie; G. Grosche First international comparison of fountain primary frequency standards via a long distance optical fiber link, Metrologia, Volume 54 (2017) no. 3, p. 348 http://stacks.iop.org/0026-1394/54/i=3/a=348

[46] G. Petit; F. Arias; G. Panfilo International atomic time: status and future challenges, C. R. Physique, Volume 16 (2015) no. 5, pp. 480-488 | DOI

[47] https://www.bipm.org/fr/bipm-services/timescales/time-ftp/Circular-T.html (See Circular T and fountain reports on the BIPM website)

[48] T.E. Parker Invited review article: The uncertainty in the realization and dissemination of the SI second from a systems point of view, Rev. Sci. Instrum., Volume 83 (2012) no. 2 | DOI

[49] G. Petit; G. Panfilo Comparison of frequency standards used for TAI, IEEE Trans. Instrum. Meas., Volume 62 (2013) no. 99, p. 1550 | DOI

[50] F. Riehle; P. Gill; F. Arias; L. Robertsson The CIPM list of recommended frequency standard values: guidelines and procedures, Metrologia, Volume 55 (2018) no. 2, p. 188 http://stacks.iop.org/0026-1394/55/i=2/a=188

[51] H. Hachisu; G. Petit; F. Nakagawa; Y. Hanado; T. Ido SI-traceable measurement of an optical frequency at the low 1016 level without a local primary standard, Opt. Express, Volume 25 (2017) no. 8, pp. 8511-8523 | DOI

[52] W.F. McGrew; X. Zhang; H. Leopardi; R.J. Fasano; D. Nicolodi; K. Beloy; J. Yao; J.A. Sherman; S.A. Schäffer; J. Savory; R.C. Brown; S. Römisch; C.W. Oates; T.E. Parker; T.M. Fortier; A.D. Ludlow Towards adoption of an optical second: verifying optical clocks at the SI limit | arXiv

[53] N. Ashby; T.P. Heavner; S.R. Jefferts; T.E. Parker; A.G. Radnaev; Y.O. Dudin Testing Local Position Invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers, Phys. Rev. Lett., Volume 98 (2007) | DOI

[54] N. Ashby; T.E. Parker; B.R. Patla A null test of general relativity based on a long-term comparison of atomic transition frequencies, Nat. Phys., Volume 14 (2018), pp. 822-826 | DOI

[55] A. Bauch; S. Weyers; D. Piester; E. Staliuniene; W. Yang Generation of UTC(PTB) as a fountain-clock based time scale, Metrologia, Volume 49 (2012) no. 3, p. 180 http://stacks.iop.org/0026-1394/49/i=3/a=180

[56] S. Peil; J.L. Hanssen; T.B. Swanson; J. Taylor; C.R. Ekstrom Evaluation of long term performance of continuously running atomic fountains, Metrologia, Volume 51 (2014) no. 3, p. 263 http://stacks.iop.org/0026-1394/51/i=3/a=263

[57] G.D. Rovera; S. Bize; B. Chupin; J. Guéna; P. Laurent; P. Rosenbusch; P. Uhrich; M. Abgrall UTC(OP) based on LNE–SYRTE atomic fountain primary frequency standards, Metrologia, Volume 53 (2016) no. 3, p. S81 http://stacks.iop.org/0026-1394/53/i=3/a=S81

[58] G. Petit; F. Arias; A. Harmegnies; G. Panfilo; L. Tisserand UTCr: a rapid realization of UTC, Metrologia, Volume 51 (2014) no. 1, p. 33 http://stacks.iop.org/0026-1394/51/i=1/a=33

[59] T.W. Hansch Nobel lecture: Passion for precision, Rev. Mod. Phys., Volume 78 (2006) no. 4, p. 1297 | DOI

[60] J.L. Hall Nobel lecture: Defining and measuring optical frequencies, Rev. Mod. Phys., Volume 78 (2006) no. 4, p. 1279 | DOI

[61] W.F. McGrew; X. Zhang; R.J. Fasano; S.A. Schäffer; K. Beloy; D. Nicolodi; R.C. Brown; N. Hinkley; G. Milani; M. Schioppo; T.H. Yoon; A.D. Ludlow Atomic clock performance enabling geodesy below the centimetre level, Nature, Volume 564 (2018), pp. 87-90 | DOI

[62] T. Takano; M. Takamoto; I. Ushijima; N. Ohmae; T. Akatsuka; A. Yamaguchi; Y. Kuroishi; H. Munekane; B. Miyahara; H. Katori Geopotential measurements with synchronously linked optical lattice clocks, Nat. Photonics, Volume 10 (2016), pp. 662-666 | DOI

[63] N. Huntemann; C. Sanner; B. Lipphardt; C. Tamm; E. Peik Single-ion atomic clock with 3×1018 systematic uncertainty, Phys. Rev. Lett., Volume 116 (2016) | DOI

[64] T.L. Nicholson; S.L. Campbell; R.B. Hutson; G.E. Marti; B.J. Bloom; R.L. McNally; W. Zhang; M.D. Barrett; M.S. Safronova; G.F. Strouse; W.L. Tew; J. Ye Systematic evaluation of an atomic clock at 2×1018 total uncertainty, Nat. Commun., Volume 6 (2015), p. 6896 | DOI

[65] I. Ushijima; M. Takamoto; M. Das; T. Ohkubo; H. Katori Cryogenic optical lattice clocks, Nat. Photonics, Volume 9 (2015), p. 185 | DOI

[66] B.J. Bloom; T.L. Nicholson; J.R. Williams; S.L. Campbell; M. Bishof; X. Zhang; W. Zhang; S.L. Bromley; J. Ye An optical lattice clock with accuracy and stability at the 1018 level, Nature, Volume 506 (2014), p. 71 | DOI

[67] K. Beloy; N. Hinkley; N.B. Phillips; J.A. Sherman; M. Schioppo; J. Lehman; A. Feldman; L.M. Hanssen; C.W. Oates; A.D. Ludlow Atomic clock with 1×1018 room-temperature blackbody stark uncertainty, Phys. Rev. Lett., Volume 113 (2014) | DOI

[68] P. Dubé; A.A. Madej; M. Tibbo; J.E. Bernard High-accuracy measurement of the differential scalar polarizability of a Sr+88 clock using the time-dilation effect, Phys. Rev. Lett., Volume 112 (2014) | DOI

[69] T. Middelmann; S. Falke; C. Lisdat; U. Sterr High accuracy correction of blackbody radiation shift in an optical lattice clock, Phys. Rev. Lett., Volume 109 (2012) | DOI

[70] J.A. Sherman; N.D. Lemke; N. Hinkley; M. Pizzocaro; R.W. Fox; A.D. Ludlow; C.W. Oates High-accuracy measurement of atomic polarizability in an optical lattice clock, Phys. Rev. Lett., Volume 108 (2012) | DOI

[71] M. Doležal; P. Balling; P.B.R. Nisbet-Jones; S.A. King; J.M. Jones; H.A. Klein; P. Gill; T. Lindvall; A.E. Wallin; M. Merimaa; C. Tamm; C. Sanner; N. Huntemann; N. Scharnhorst; I.D. Leroux; P.O. Schmidt; T. Burgermeister; T.E. Mehlstäubler; E. Peik Analysis of thermal radiation in ion traps for optical frequency standards, Metrologia, Volume 52 (2015) no. 6, p. 842 http://stacks.iop.org/0026-1394/52/i=6/a=842

[72] J. Lodewyck; M. Zawada; L. Lorini; M. Gurov; P. Lemonde Observation and cancellation of a perturbing dc stark shift in strontium optical lattice clocks, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 59 (2012) no. 3, pp. 411-415 | DOI

[73] P.G. Westergaard; J. Lodewyck; L. Lorini; A. Lecallier; E.A. Burt; M. Zawada; J. Millo; P. Lemonde Lattice-induced frequency shifts in Sr optical lattice clocks at the 1017 level, Phys. Rev. Lett., Volume 106 (2011) no. 21 | DOI

[74] R.C. Brown; N.B. Phillips; K. Beloy; W.F. McGrew; M. Schioppo; R.J. Fasano; G. Milani; X. Zhang; N. Hinkley; H. Leopardi; T.H. Yoon; D. Nicolodi; T.M. Fortier; A.D. Ludlow Hyperpolarizability and operational magic wavelength in an optical lattice clock, Phys. Rev. Lett., Volume 119 (2017) no. 25 | DOI

[75] S.L. Campbell; R.B. Hutson; G.E. Marti; A. Goban; N. Darkwah Oppong; R.L. McNally; L. Sonderhouse; J.M. Robinson; W. Zhang; B.J. Bloom; J. Ye A Fermi-degenerate three-dimensional optical lattice clock, Science, Volume 358 (2017) no. 6359, pp. 90-94 http://science.sciencemag.org/content/358/6359/90.full.pdf | DOI

[76] V.I. Yudin; A.V. Taichenachev; C.W. Oates; Z.W. Barber; N.D. Lemke; A.D. Ludlow; U. Sterr; C. Lisdat; F. Riehle Hyper-Ramsey spectroscopy of optical clock transitions, Phys. Rev. A, Volume 82 (2010) no. 1 | DOI

[77] C.W. Chou; D.B. Hume; J.C.J. Koelemeij; D.J. Wineland; T. Rosenband Frequency comparison of two high-accuracy Al+ optical clocks, Phys. Rev. Lett., Volume 104 (2010) no. 7 | DOI

[78] R. Le Targat; L. Lorini; Y. Le Coq; M. Zawada; J. Guéna; M. Abgrall; M. Gurov; P. Rosenbusch; D.G. Rovera; B. Nagórny; R. Gartman; P.G. Westergaard; M.E. Tobar; M. Lours; G. Santarelli; A. Clairon; S. Bize; P. Laurent; P. Lemonde; J. Lodewyck Experimental realization of an optical second with strontium lattice clocks, Nat. Commun., Volume 4 (2013), p. 2109 | DOI

[79] B.J. Bloom; T.L. Nicholson; J.R. Williams; S.L. Campbell; M. Bishof; X. Zhang; W. Zhang; S.L. Bromley; J. Ye A new generation of atomic clocks: accuracy and stability at the 1018 level | arXiv

[80] Y. Huang; H. Guan; P. Liu; W. Bian; L. Ma; K. Liang; T. Li; K. Gao Frequency comparison of two Ca+40 optical clocks with an uncertainty at the 1017 level, Phys. Rev. Lett., Volume 116 (2016) | DOI

[81] A.D. Ludlow; M.M. Boyd; J. Ye; E. Peik; P.O. Schmidt Optical atomic clocks, Rev. Mod. Phys., Volume 87 (2015), pp. 637-701 | DOI

[82] J. Bergquist; W. Itano; D. Wineland Recoilless optical absorption and Doppler sidebands of a single trapped ion, Phys. Rev. A, Volume 36 (1987), p. 428

[83] W. Paul Electromagnetic traps for charged and neutral particles, Rev. Mod. Phys., Volume 62 (1990), p. 531

[84] D. Leibfried; R. Blatt; C. Monroe; D. Wineland Quantum dynamics of single trapped ions, Rev. Mod. Phys., Volume 75 (2003) no. 1, pp. 281-324 | DOI

[85] H. Katori Spectroscopy of strontium atoms in the Lamb–Dicke confinement, Proc. of the 6th Symposium on Frequency Standards and Metrology, World Scientific, Singapore, 2001, p. 323

[86] H. Katori; M. Takamoto; V.G. Pal'chikov; V.D. Ovsiannikov Ultrastable optical clock with neutral atoms in an engineered light shift trap, Phys. Rev. Lett., Volume 91 (2003) no. 17 | DOI

[87] J. Ye; H.J. Kimble; H. Katori Quantum state engineering and precision metrology using state-insensitive light traps, Science, Volume 320 (2008) no. 5884, pp. 1734-1738 http://www.sciencemag.org/content/320/5884/1734.full.pdf | DOI

[88] M. Schioppo; R.C. Brown; W.F. McGrew; N. Hinkley; R.J. Fasano; K. Beloy; T.H. Yoon; G. Milani; D. Nicolodi; J.A. Sherman; N.B. Phillips; C.W. Oates; A.D. Ludlow Ultrastable optical clock with two cold-atom ensembles, Nat. Photonics, Volume 11 (2017) no. 1, pp. 48-52 | DOI

[89] N. Hinkley; J.A. Sherman; N.B. Phillips; M. Schioppo; N.D. Lemke; K. Beloy; M. Pizzocaro; C.W. Oates; A.D. Ludlow An atomic clock with 1018 instability, Science, Volume 341 (2013) no. 6151, pp. 1215-1218 http://www.sciencemag.org/content/341/6151/1215.full.pdf | DOI

[90] M. Takamoto; T. Takano; H. Katori Frequency comparison of optical lattice clocks beyond the Dick limit, Nat. Photonics, Volume 5 (2011), pp. 288-292 | DOI

[91] T.L. Nicholson; M.J. Martin; J.R. Williams; B.J. Bloom; M. Bishof; M.D. Swallows; S.L. Campbell; J. Ye Comparison of two independent Sr optical clocks with 1×1017 stability at 103s, Phys. Rev. Lett., Volume 109 (2012) | DOI

[92] A. Al-Masoudi; S. Dörscher; S. Häfner; U. Sterr; C. Lisdat Noise and instability of an optical lattice clock, Phys. Rev. A, Volume 92 (2015) | DOI

[93] G.E. Marti; R.B. Hutson; A. Goban; S.L. Campbell; N. Poli; J. Ye Imaging optical frequencies with 100μHz precision and 1.1μm resolution, Phys. Rev. Lett., Volume 120 (2018) no. 10 | DOI

[94] C.W. Chou; D.B. Hume; M.J. Thorpe; D.J. Wineland; T. Rosenband Quantum coherence between two atoms beyond Q=1015, Phys. Rev. Lett., Volume 106 (2011) no. 16 | DOI

[95] K. Numata; A. Kemery; J. Camp Thermal-noise limit in the frequency stabilization of lasers with rigid cavities, Phys. Rev. Lett., Volume 93 (2004) no. 25 | DOI

[96] M. Swallows; M. Martin; M. Bishof; C. Benko; Y. Lin; S. Blatt; A. Rey; J. Ye Operating a 87Sr optical lattice clock with high precision and at high density, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 59 (2012) no. 3, pp. 416-425 | DOI

[97] S. Häfner; S. Falke; C. Grebing; S. Vogt; T. Legero; M. Merimaa; C. Lisdat; U. Sterr 8×1017 fractional laser frequency instability with a long room-temperature cavity, Opt. Lett., Volume 40 (2015) no. 9, pp. 2112-2115 | DOI

[98] T. Kessler; C. Hagemann; C. Grebing; T. Legero; U. Sterr; F. Riehle; M.J. Martin; L. Chen; J. Ye A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity, Nat. Photonics, Volume 6 (2012) no. 10, pp. 687-692 | DOI

[99] D.G. Matei; T. Legero; S. Häfner; C. Grebing; R. Weyrich; W. Zhang; L. Sonderhouse; J.M. Robinson; J. Ye; F. Riehle; U. Sterr 1.5μm lasers with sub 10 mHz linewidth, Phys. Rev. Lett., Volume 118 (2017) | DOI

[100] G.D. Cole; W. Zhang; M.J. Martin; J. Ye; M. Aspelmeyer Tenfold reduction of brownian noise in high-reflectivity optical coatings, Nat. Photonics, Volume 7 (2013) no. 8, pp. 644-650 | DOI

[101] Q.-F. Chen; A. Troshyn; I. Ernsting; S. Kayser; S. Vasilyev; A. Nevsky; S. Schiller Spectrally narrow, long-term stable optical frequency reference based on a Eu3+:Y2SiO5 crystal at cryogenic temperature, Phys. Rev. Lett., Volume 107 (2011) | DOI

[102] M.J. Thorpe; L. Rippe; T.M. Fortier; M.S. Kirchner; T. Rosenband Frequency stabilization to 6×1016 via spectral-hole burning, Nat. Photonics, Volume 6 (2011), p. 688 | DOI

[103] O. Gobron; K. Jung; N. Galland; K. Predehl; R.L. Targat; A. Ferrier; P. Goldner; S. Seidelin; Y.L. Coq Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals, Opt. Express, Volume 25 (2017) no. 13, pp. 15539-15548 | DOI

[104] D. Yu; J. Chen Optical clock with millihertz linewidth based on a phase-matching effect, Phys. Rev. Lett., Volume 98 (2007) no. 5 | DOI

[105] D. Meiser; J. Ye; D.R. Carlson; M.J. Holland Prospects for a millihertz-linewidth laser, Phys. Rev. Lett., Volume 102 (2009) no. 16 | DOI

[106] M.A. Norcia; J.R.K. Cline; J.A. Muniz; J.M. Robinson; R.B. Hutson; A. Goban; G.E. Marti; J. Ye; J.K. Thompson Frequency measurements of superradiance from the strontium clock transition, Phys. Rev. X, Volume 8 (2018) no. 2 | DOI

[107] S. Wehner; D. Elkouss; R. Hanson Quantum internet: a vision for the road ahead, Science, Volume 362 (2018) no. 6412 | DOI

[108] C.L. Degen; F. Reinhard; P. Cappellaro Quantum sensing, Rev. Mod. Phys., Volume 89 (2017) | DOI

[109] P.O. Schmidt; T. Rosenband; C. Langer; W.M. Itano; J.C. Bergquist; D.J. Wineland Spectroscopy using quantum logic, Science, Volume 309 (2005) no. 5735, pp. 749-752 | DOI

[110] D.J. Wineland Nobel lecture: Superposition, entanglement, and raising Schrödinger's cat, Rev. Mod. Phys., Volume 85 (2013), pp. 1103-1114 | DOI

[111] C.F. Roos; M. Chwalla; K. Kim; M. Riebe; R. Blatt “Designer atoms” for quantum metrology, Nature, Volume 443 (2006) no. 7109, pp. 316-319 | DOI

[112] D. Leibfried; B. DeMarco; V. Meyer; M. Rowe; A. Ben-Kish; J. Britton; W.M. Itano; B. Jelenković; C. Langer; T. Rosenband; D.J. Wineland Trapped-ion quantum simulator: Experimental application to nonlinear interferometers, Phys. Rev. Lett., Volume 89 (2002) | DOI

[113] J. Keller; T. Burgermeister; D. Kalincev; A. Didier; A.P. Kulosa; T. Nordmann; J. Kiethe; T.E. Mehlstäubler Controlling systematic frequency uncertainties at the 1019 level in linear Coulomb crystals, Phys. Rev. A, Volume 99 (2019) no. 1 | DOI

[114] I. Bouchoule; K. Mølmer Preparation of spin-squeezed atomic states by optical-phase-shift measurement, Phys. Rev. A, Volume 66 (2002) no. 4 | DOI

[115] D.J. Wineland; J.J. Bollinger; W.M. Itano; F.L. Moore; D.J. Heinzen Spin squeezing and reduced quantum noise in spectroscopy, Phys. Rev. A, Volume 46 (1992), p. R6797-R6800 | DOI

[116] P.J. Windpassinger; D. Oblak; P.G. Petrov; M. Kubasik; M. Saffman; C.L.G. Alzar; J. Appel; J.H. Müller; N. Kjærgaard; E.S. Polzik Nondestructive probing of Rabi oscillations on the cesium clock transition near the standard quantum limit, Phys. Rev. Lett., Volume 100 (2008) no. 10 | DOI

[117] A. Louchet-Chauvet; J. Appel; J.J. Renema; D. Oblak; N. Kjaergaard; E.S. Polzik Entanglement-assisted atomic clock beyond the projection noise limit, New J. Phys., Volume 12 (2010) no. 6 http://stacks.iop.org/1367-2630/12/i=6/a=065032

[118] O. Hosten; N.J. Engelsen; R. Krishnakumar; M.A. Kasevich Measurement noise 100 times lower than the quantum-projection limit using entangled atoms, Nature, Volume 529 (2016) no. 7587, pp. 505-508 | DOI

[119] J. Lodewyck; P.G. Westergaard; P. Lemonde Nondestructive measurement of the transition probability in a Sr optical lattice clock, Phys. Rev. A, Volume 79 (2009) no. 6 | DOI

[120] G. Vallet; E. Bookjans; U. Eismann; S. Bilicki; R.L. Targat; J. Lodewyck A noise-immune cavity-assisted non-destructive detection for an optical lattice clock in the quantum regime, New J. Phys., Volume 19 (2017) no. 8 http://stacks.iop.org/1367-2630/19/i=8/a=083002

[121] N. Shiga; M. Takeuchi Locking the local oscillator phase to the atomic phase via weak measurement, New J. Phys., Volume 14 (2012) no. 2 http://stacks.iop.org/1367-2630/14/i=2/a=023034

[122] R. Kohlhaas; A. Bertoldi; E. Cantin; A. Aspect; A. Landragin; P. Bouyer Phase locking a clock oscillator to a coherent atomic ensemble, Phys. Rev. X, Volume 5 (2015) | DOI

[123] I. Kruse; K. Lange; J. Peise; B. Lücke; L. Pezzè; J. Arlt; W. Ertmer; C. Lisdat; L. Santos; A. Smerzi; C. Klempt Improvement of an atomic clock using squeezed vacuum, Phys. Rev. Lett., Volume 117 (2016) no. 14 | DOI

[124] I.D. Leroux; M.H. Schleier-Smith; V. Vuletić Orientation-dependent entanglement lifetime in a squeezed atomic clock, Phys. Rev. Lett., Volume 104 (2010) no. 25 | DOI

[125] I.D. Leroux; M.H. Schleier-Smith; V. Vuletić Implementation of cavity squeezing of a collective atomic spin, Phys. Rev. Lett., Volume 104 (2010) no. 7 | DOI

[126] S.A. Diddams The evolving optical frequency comb [invited], J. Opt. Soc. Am. B, Volume 27 (2010) no. 11, p. B51-B62 | DOI

[127] N.R. Newbury Searching for applications with a fine-tooth comb, Nat. Photonics, Volume 5 (2011), pp. 186-188 | DOI

[128] D. Nicolodi; B. Argence; W. Zhang; R. Le Targat; G. Santarelli; Y. Le Coq Spectral purity transfer between optical wavelengths at the 1018 level, Nat. Photonics, Volume 8 (2014), p. 219 | DOI

[129] X. Xie; R. Bouchand; D. Nicolodi; M. Giunta; W. Hänsel; M. Lezius; A. Joshi; S. Datta; C. Alexandre; M. Lours; P.-A. Tremblin; G. Santarelli; R. Holzwarth; Y. Le Coq Photonic microwave signals with zeptosecond-level absolute timing noise, Nat. Photonics, Volume 11 (2017) no. 1, pp. 44-47 | DOI

[130] F.N. Baynes; F. Quinlan; T.M. Fortier; Q. Zhou; A. Beling; J.C. Campbell; S.A. Diddams Attosecond timing in optical-to-electrical conversion, Optica, Volume 2 (2015) no. 2, pp. 141-146 | DOI

[131] N. Ohmae; N. Kuse; M.E. Fermann; H. Katori All-polarization-maintaining, single-porter: fiber comb for high-stability comparison of optical lattice clocks, Appl. Phys. Express, Volume 10 (2017) no. 6 http://stacks.iop.org/1882-0786/10/i=6/a=062503

[132] Y. Le Coq et al. Peignes de fréquences femtosecondes pour la mesure des fréquences optiques, Rev. Fr. Métrol., Volume 32 (2012), p. 35

[133] J. Millo; M. Abgrall; M. Lours; E.M.L. English; H. Jiang; J. Guéna; A. Clairon; M.E. Tobar; S. Bize; Y.L. Coq; G. Santarelli Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock, Appl. Phys. Lett., Volume 94 (2009) no. 14 | DOI

[134] S. Weyers; B. Lipphardt; H. Schnatz Reaching the quantum limit in a fountain clock using a microwave oscillator phase locked to an ultrastable laser, Phys. Rev. A, Volume 79 (2009) no. 3 | DOI

[135] B. Lipphardt; V. Gerginov; S. Weyers Optical stabilization of a microwave oscillator for fountain clock interrogation, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 64 (2017) no. 4, pp. 761-766 | DOI

[136] J. Lodewyck; S. Bilicki; E. Bookjans; J.-L. Robyr; C. Shi; G. Vallet; R.L. Targat; D. Nicolodi; Y.L. Coq; J. Guéna; M. Abgrall; P. Rosenbusch; S. Bize Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock, Metrologia, Volume 53 (2016) no. 4, p. 1123 http://stacks.iop.org/0026-1394/53/i=4/a=1123

[137] C. Lisdat; G. Grosche; N. Quintin; C. Shi; S. Raupach; C. Grebing; D. Nicolodi; F. Stefani; A. Al-Masoudi; S. Dorscher; S. Hafner; J.-L. Robyr; N. Chiodo; S. Bilicki; E. Bookjans; A. Koczwara; S. Koke; A. Kuhl; F. Wiotte; F. Meynadier; E. Camisard; M. Abgrall; M. Lours; T. Legero; H. Schnatz; U. Sterr; H. Denker; C. Chardonnet; Y. Le Coq; G. Santarelli; A. Amy-Klein; R. Le Targat; J. Lodewyck; O. Lopez; P.-E. Pottie A clock network for geodesy and fundamental science, Nat. Commun., Volume 7 (2016) | DOI

[138] R. Tyumenev; M. Favier; S. Bilicki; E. Bookjans; R.L. Targat; J. Lodewyck; D. Nicolodi; Y.L. Coq; M. Abgrall; J. Guéna; L.D. Sarlo; S. Bize Comparing a mercury optical lattice clock with microwave and optical frequency standards, New J. Phys., Volume 18 (2016) no. 11 http://stacks.iop.org/1367-2630/18/i=11/a=113002

[139] G. Grosche; B. Lipphardt; H. Schnatz; G. Santarelli; P. Lemonde; S. Bize; M. Lours; F. Narbonneau; A. Clairon; O. Lopez; A. Amy-Klein; C. Chardonnet Transmission of an optical carrier frequency over a telecommunication fiber link, Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Optical Society of America, 2007, p. CMKK1 http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2007-CMKK1

[140] H. Jiang; F. Kéfélian; S. Crane; O. Lopez; M. Lours; J. Millo; D. Holleville; P. Lemonde; C. Chardonnet; A. Amy-Klein; G. Santarelli Long-distance frequency transfer over an urban fiber link using optical phase stabilization, J. Opt. Soc. Am. B, Volume 25 (2008) no. 12, pp. 2029-2035 http://josab.osa.org/abstract.cfm?URI=josab-25-12-2029

[141] G. Grosche; O. Terra; K. Predehl; R. Holzwarth; B. Lipphardt; F. Vogt; U. Sterr; H. Schnatz Optical frequency transfer via 146 km fiber link with 1019 relative accuracy, Opt. Lett., Volume 34 (2009) no. 15, pp. 2270-2272 | DOI

[142] K. Predehl; G. Grosche; S.M.F. Raupach; S. Droste; O. Terra; J. Alnis; T. Legero; T.W. Hänsch; T. Udem; R. Holzwarth; H. Schnatz A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place, Science, Volume 336 (2012) no. 6080, pp. 441-444 http://www.sciencemag.org/content/336/6080/441.full.pdf | DOI

[143] O. Lopez; A. Haboucha; B. Chanteau; C. Chardonnet; A. Amy-Klein; G. Santarelli Ultra-stable long distance optical frequency distribution using the internet fiber network, Opt. Express, Volume 20 (2012) no. 21, pp. 23518-23526 | DOI

[144] F. Guillou-Camargo; V. Ménoret; E. Cantin; O. Lopez; N. Quintin; E. Camisard; V. Salmon; J.-M.L. Merdy; G. Santarelli; A. Amy-Klein; P.-E. Pottie; B. Desruelle; C. Chardonnet First industrial-grade coherent fiber link for optical frequency standard dissemination, Appl. Opt., Volume 57 (2018) no. 25, pp. 7203-7210 | DOI

[145] F. Frank; F. Stefani; P. Tuckey; P.E. Pottie A sub-ps stability time transfer method based on optical modems, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 65 (2018) no. 6, pp. 1001-1006 | DOI

[146] O. Lopez; F. Kéfélian; H. Jiang; A. Haboucha; A. Bercy; F. Stefani; B. Chanteau; A. Kanj; D. Rovera; J. Achkar; C. Chardonnet; P.-E. Pottie; A. Amy-Klein; G. Santarelli Frequency and time transfer for metrology and beyond using telecommunication network fibres, C. R. Physique, Volume 16 (2015) no. 5, pp. 531-539 | DOI

[147] L. Sliwczynski et al. Dissemination of time and RF frequency via a stabilized fibre optic link over a distance of 420 km, Metrologia, Volume 50 (2013) no. 2, p. 133 http://stacks.iop.org/0026-1394/50/i=2/a=133

[148] O. Lopez; A. Kanj; P.-E. Pottie; D. Rovera; J. Achkar; C. Chardonnet; A. Amy-Klein; G. Santarelli Simultaneous remote transfer of accurate timing and optical frequency over a public fiber network, Appl. Phys. B, Lasers Opt., Volume 110 (2013), p. 3 | DOI

[149] J. Geršl; P. Delva; P. Wolf Relativistic corrections for time and frequency transfer in optical fibres, Metrologia, Volume 52 (2015) no. 4, p. 552 http://stacks.iop.org/0026-1394/52/i=4/a=552

[150] S. Schiller Feasibility of giant fiber-optic gyroscopes, Phys. Rev. A, Volume 87 (2013) | DOI

[151] C. Clivati; D. Calonico; G.A. Costanzo; A. Mura; M. Pizzocaro; F. Levi Large-area fiber-optic gyroscope on a multiplexed fiber network, Opt. Lett., Volume 38 (2013) no. 7, pp. 1092-1094 | DOI

[152] G. Marra; C. Clivati; R. Luckett; A. Tampellini; J. Kronjäger; L. Wright; A. Mura; F. Levi; S. Robinson; A. Xuereb; B. Baptie; D. Calonico Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables, Science, Volume 361 (2018) no. 6401, pp. 486-490 | DOI

[153] P. Delva; J. Lodewyck; S. Bilicki; E. Bookjans; G. Vallet; R. Le Targat; P.-E. Pottie; C. Guerlin; F. Meynadier; C. Le Poncin-Lafitte; O. Lopez; A. Amy-Klein; W.-K. Lee; N. Quintin; C. Lisdat; A. Al-Masoudi; S. Dörscher; C. Grebing; G. Grosche; A. Kuhl; S. Raupach; U. Sterr; I.R. Hill; R. Hobson; W. Bowden; J. Kronjäger; G. Marra; A. Rolland; F.N. Baynes; H.S. Margolis; P. Gill Test of special relativity using a fiber network of optical clocks, Phys. Rev. Lett., Volume 118 (2017) | DOI

[154] S. Reynaud; C. Salomon; P. Wolf Testing general relativity with atomic clocks, Space Sci. Rev., Volume 148 (2009) no. 1, pp. 233-247 | DOI

[155] D. Mattingly Modern tests of Lorentz invariance, Living Rev. Relativ., Volume 8 (2005) no. 5 http://www.livingreviews.org/lrr-2005-5

[156] W. Marciano Time variation of the fundamental “constants” and Kaluza–Klein theories, Phys. Rev. Lett., Volume 52 (1984), p. 489

[157] T. Damour; A. Polyakov The string dilaton and a least coupling principle, Nucl. Phys. B, Volume 423 (1994), p. 532

[158] T. Damour Theoretical aspects of the equivalence principle, Class. Quantum Gravity, Volume 29 (2012) no. 18 http://stacks.iop.org/0264-9381/29/i=18/a=184001

[159] J. Guéna; M. Abgrall; D. Rovera; P. Rosenbusch; M.E. Tobar; P. Laurent; A. Clairon; S. Bize Improved tests of local position invariance using Rb87 and Cs133 fountains, Phys. Rev. Lett., Volume 109 (2012) | DOI

[160] P. Wcislo; P. Morzynski; M. Bober; A. Cygan; D. Lisak; R. Ciurylo; M. Zawada Experimental constraint on dark matter detection with optical atomic clocks, Nat. Astron., Volume 1 (2016) | DOI

[161] P. Delva; N. Puchades; E. Schönemann; F. Dilssner; C. Courde; S. Bertone; F. Gonzalez; A. Hees; C. Le Poncin-Lafitte; F. Meynadier; R. Prieto-Cerdeira; B. Sohet; J. Ventura-Traveset; P. Wolf Gravitational redshift test using eccentric Galileo satellites, Phys. Rev. Lett., Volume 121 (2018) no. 23 | DOI

[162] F. Meynadier; P. Delva; C. Le Poncin-Lafitte; C. Guerlin; P. Wolf Atomic clock ensemble in space (ACES) data analysis, Class. Quantum Gravity, Volume 35 (2018) no. 3 | DOI

[163] P. Laurent; D. Massonnet; L. Cacciapuoti; C. Salomon The ACES/PHARAO space mission, C. R. Physique, Volume 16 (2015) no. 5, pp. 540-552 | DOI

[164] L. Cacciapuoti; C. Salomon Space clocks and fundamental tests: the ACES experiment, Eur. Phys. J. Spec. Top., Volume 172 (2009), pp. 57-68 | DOI

[165] L. Cacciapuoti; N. Dimarcq; G. Santarelli; P. Laurent; P. Lemonde; A. Clairon; P. Berthoud; A. Jornod; F. Reina; S. Feltham; C. Salomon Atomic clock ensemble in space: scientific objectives and mission status, Nucl. Phys. B, Proc. Suppl., Volume 166 (2007), pp. 303-306 (Proceedings of the Third International Conference on Particle and Fundamental Physics in Space) | DOI

[166] P. Touboul; G. Métris; M. Rodrigues; Y. André; Q. Baghi; J. Bergé; D. Boulanger; S. Bremer; P. Carle; R. Chhun; B. Christophe; V. Cipolla; T. Damour; P. Danto; H. Dittus; P. Fayet; B. Foulon; C. Gageant; P.-Y. Guidotti; D. Hagedorn; E. Hardy; P.-A. Huynh; H. Inchauspe; P. Kayser; S. Lala; C. Lämmerzahl; V. Lebat; P. Leseur; F. m. c. Liorzou; M. List; F. Löffler; I. Panet; B. Pouilloux; P. Prieur; A. Rebray; S. Reynaud; B. Rievers; A. Robert; H. Selig; L. Serron; T. Sumner; N. Tanguy; P. Visser MICROSCOPE mission: first results of a space test of the equivalence principle, Phys. Rev. Lett., Volume 119 (2017) | DOI

[167] Consultative Committee for Time and Frequency (CCTF) Report of the 15th meeting (June 2001) to the International Committee for Weights and Measures, BIPM, 2001 (Tech. rep.)

[168] H. Marion; F. Pereira Dos Santos; M. Abgrall; S. Zhang; Y. Sortais; S. Bize; I. Maksimovic; D. Calonico; J. Grünert; C. Mandache; P. Lemonde; G. Santarelli; P. Laurent; A. Clairon; C. Salomon Search for variations of fundamental constants using atomic fountain clocks, Phys. Rev. Lett., Volume 90 (2003) | DOI

[169] S. Bize; P. Laurent; M. Abgrall; H. Marion; I. Maksimovic; L. Cacciapuoti; J. Grünert; C. Vian; F. Pereira dos Santos; P. Rosenbusch; P. Lemonde; G. Santarelli; P. Wolf; A. Clairon; A. Luiten; M. Tobar; C. Salomon Advances in 133Cs fountains, C. R. Physique, Volume 5 (2004), p. 829

[170] H.S. Margolis; P. Gill Least-squares analysis of clock frequency comparison data to deduce optimized frequency and frequency ratio values, Metrologia, Volume 52 (2015) no. 5, p. 628 http://stacks.iop.org/0026-1394/52/i=5/a=628

[171] L. Robertsson On the evaluation of ultra-high-precision frequency ratio measurements: examining closed loops in a graph theory framework, Metrologia, Volume 53 (2016) no. 6, pp. 1272-1280 | DOI

[172] C. Grebing; A. Al-Masoudi; S. Dörscher; S. Häfner; V. Gerginov; S. Weyers; B. Lipphardt; F. Riehle; U. Sterr; C. Lisdat Realization of a timescale with an accurate optical lattice clock, Optica, Volume 3 (2016) no. 6, pp. 563-569 | DOI

[173] T. Rosenband; D.B. Hume; P.O. Schmidt; C.W. Chou; A. Brusch; L. Lorini; W.H. Oskay; R.E. Drullinger; T.M. Fortier; J.E. Stalnaker; S.A. Diddams; W.C. Swann; N.R. Newbury; W.M. Itano; D.J. Wineland; J.C. Bergquist Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place, Science, Volume 319 (2008), p. 1808

[174] N. Nemitz; T. Ohkubo; M. Takamoto; I. Ushijima; M. Das; N. Ohmae; H. Katori Frequency ratio of Yb and Sr clocks with 5×1017 uncertainty at 150 seconds averaging time, Nat. Photonics, Volume 10 (2016) no. 4, pp. 258-261 | DOI

[175] K. Yamanaka; N. Ohmae; I. Ushijima; M. Takamoto; H. Katori Frequency ratio of Hg199 and Sr87 optical lattice clocks beyond the SI limit, Phys. Rev. Lett., Volume 114 (2015) | DOI

[176] H. Hachisu; F. Nakagawa; Y. Hanado; T. Ido Months-long real-time generation of a time scale based on an optical clock, Sci. Rep., Volume 8 (2018) no. 1, p. 4243 | DOI

[177] H. Hachisu; M. Fujieda; S. Nagano; T. Gotoh; A. Nogami; T. Ido; S. Falke; N. Huntemann; C. Grebing; B. Lipphardt; C. Lisdat; D. Piester Direct comparison of optical lattice clocks with an intercontinental baseline of 9000 km, Opt. Lett., Volume 39 (2014) no. 14, pp. 4072-4075 | DOI

[178] F. Riehle Optical clock networks, Nat. Photonics, Volume 11 (2017) no. 1, pp. 25-31 | DOI

[179] D. Herman; S. Droste; E. Baumann; J. Roslund; D. Churin; A. Cingoz; J.-D. Deschênes; I.H. Khader; W.C. Swann; C. Nelson; N.R. Newbury; I. Coddington Femtosecond timekeeping: slip-free clockwork for optical timescales, Phys. Rev. Appl., Volume 9 (2018) no. 4 | DOI

[180] P. Delva; H. Denker; G. Lion Chronometric geodesy: methods and applications, Relativistic Geodesy. Foundations and Applications, Springer, Berlin, 2019, pp. 25-85 https://www.springer.com/us/book/9783030114992

[181] H. Denker; L. Timmen; C. Voigt; S. Weyers; E. Peik; H.S. Margolis; P. Delva; P. Wolf; G. Petit Geodetic methods to determine the relativistic redshift at the level of 1018 in the context of international timescales: a review and practical results, J. Geod., Volume 92 (2018) no. 5, pp. 487-516 | DOI

[182] H. Denker Regional gravity field modeling: theory and practical results (G. Xu, ed.), Sciences of Geodesy, vol. II, Springer, Berlin, Heidelberg, 2013, pp. 185-291 (Chapter 5) | DOI

[183] M. Weiss; N. Pavlis A re-evaluation of the relativistic redshift on frequency standards at NIST, Boulder, Colorado, USA, Metrologia, Volume 54 (2017), p. 535 | DOI

[184] D. Calonico; A. Cina; I.H. Bendea; F. Levi; L. Lorini; A. Godone Gravitational redshift at INRIM, Metrologia, Volume 44 (2007) no. 5, p. L44 http://stacks.iop.org/0026-1394/44/i=5/a=N03

[185] N.K. Pavlis; M.A. Weiss The relativistic redshift with 3×17 uncertainty at NIST, Boulder, Colorado, USA, Metrologia, Volume 40 (2003) no. 2, p. 66 http://stacks.iop.org/0026-1394/40/i=2/a=311

[186] C. Voigt; H. Denker; L. Timmen Time-variable gravity potential components for optical clock comparisons and the definition of international time scales, Metrologia, Volume 53 (2016) no. 6, p. 1365 | DOI

[187] G. Lion; I. Panet; P. Wolf; C. Guerlin; S. Bize; P. Delva Determination of a high spatial resolution geopotential model using atomic clock comparisons, J. Geod., Volume 91 (2017) no. 6, pp. 597-611 | DOI

[188] T.E. Mehlstäubler; G. Grosche; C. Lisdat; P.O. Schmidt; H. Denker Atomic clocks for geodesy, Rep. Prog. Phys., Volume 81 (2018) no. 6 | DOI

[189] J. Müller; D. Dirkx; S.M. Kopeikin; G. Lion; I. Panet; G. Petit; P.N.A.M. Visser High performance clocks and gravity field determination, Space Sci. Rev., Volume 214 (2018) no. 1, p. 5 | DOI

[190] R. Bondarescu; A. Schärer; A. Lundgren; G. Hetényi; N. Houlié; P. Jetzer; M. Bondarescu Ground-based optical atomic clocks as a tool to monitor vertical surface motion, Geophys. J. Int., Volume 202 (2015) no. 3, pp. 1770-1774 | DOI

[191] R. Bondarescu; M. Bondarescu; G. Hetényi; L. Boschi; P. Jetzer; J. Balakrishna Geophysical applicability of atomic clocks: direct continental geoid mapping, Geophys. J. Int., Volume 191 (2012) no. 1, pp. 78-82 | DOI

[192] K. Bongs; Y. Singh; L. Smith; W. He; O. Kock; D. Świerad; J. Hughes; S. Schiller; S. Alighanbari; S. Origlia; S. Vogt; U. Sterr; C. Lisdat; R.L. Targat; J. Lodewyck; D. Holleville; B. Venon; S. Bize; G.P. Barwood; P. Gill; I.R. Hill; Y.B. Ovchinnikov; N. Poli; G.M. Tino; J. Stuhler; W. Kaenders Development of a strontium optical lattice clock for the SOC mission on the ISS, C. R. Physique, Volume 16 (2015) no. 5, pp. 553-564 | DOI

[193] S.B. Koller; J. Grotti; S. Vogt; A. Al-Masoudi; S. Dörscher; S. Häfner; U. Sterr; C. Lisdat Transportable optical lattice clock with 7×1017 uncertainty, Phys. Rev. Lett., Volume 118 (2017) | DOI

[194] S. Origlia; M.S. Pramod; S. Schiller; Y. Singh; K. Bongs; R. Schwarz; A. Al-Masoudi; S. Dörscher; S. Herbers; S. Häfner; U. Sterr; C. Lisdat Towards an optical clock for space: compact, high-performance optical lattice clock based on bosonic atoms, Phys. Rev. A, Volume 98 (2018) no. 5 | DOI

[195] J. Grotti; S. Koller; S. Vogt; S. Häfner; U. Sterr; C. Lisdat; H. Denker; C. Voigt; L. Timmen; A. Rolland; F.N. Baynes; H.S. Margolis; M. Zampaolo; P. Thoumany; M. Pizzocaro; B. Rauf; F. Bregolin; A. Tampellini; P. Barbieri; M. Zucco; G.A. Costanzo; C. Clivati; F. Levi; D. Calonico Geodesy and metrology with a transportable optical clock, Nat. Phys., Volume 14 (2018), pp. 437-441 | DOI

[196] K.C. Cossel; E.M. Waxman; F.R. Giorgetta; M. Cermak; I.R. Coddington; D. Hesselius; S. Ruben; W.C. Swann; G.-W. Truong; G.B. Rieker; N.R. Newbury Open-path dual-comb spectroscopy to an airborne retroreflector, Optica, Volume 4 (2017) no. 7, pp. 724-728 | DOI

[197] J.-D. Deschênes; L.C. Sinclair; F.R. Giorgetta; W.C. Swann; E. Baumann; H. Bergeron; M. Cermak; I. Coddington; N.R. Newbury Synchronization of distant optical clocks at the femtosecond level, Phys. Rev. X, Volume 6 (2016) | DOI

[198] F.R. Giorgetta; W.C. Swann; L.C. Sinclair; E. Baumann; I. Coddington; N.R. Newbury Optical two-way time and frequency transfer over free space, Nat. Photonics, Volume 7 (2013) no. 6, pp. 434-438 | DOI

[199] K. Djerroud; O. Acef; A. Clairon; P. Lemonde; C.N. Man; E. Samain; P. Wolf Coherent optical link through the turbulent atmosphere, Opt. Lett., Volume 35 (2010) no. 9, pp. 1479-1481 http://ol.osa.org/abstract.cfm?URI=ol-35-9-1479

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Atomic fountains and optical clocks at SYRTE: Status and perspectives

Michel Abgrall; Baptiste Chupin; Luigi De Sarlo; ...

C. R. Phys (2015)


Advances in atomic fountains

S. Bize; P. Laurent; M. Abgrall; ...

C. R. Phys (2004)


Towards a redefinition of the second based on optical atomic clocks

Fritz Riehle

C. R. Phys (2015)