[Analyser les ondes gravitationnelles avec la relativité générale]
Après une brève revue des propriétés importantes des ondes gravitationnelles et de la nouvelle astronomie gravitationnelle, nous nous concentrons sur les aspects théoriques. Les méthodes d'approximation analytiques en relativité générale ont joué un rôle crucial dans les récentes détections d'ondes gravitationnelles. Elles sont utilisées pour créer des banques de modèles (patrons) théoriques qui servent à rechercher et analyser les signaux dans les détecteurs au sol LIGO et Virgo et dans les détecteurs dans l'espace de type LISA, développés plus tard. En particulier, l'approximation post-newtonienne décrit avec une grande précision le spiralement initial des systèmes binaires compacts de trous noirs ou d'étoiles à neutrons. Elle consiste principalement à étendre la formule du quadrupôle d'Einstein par une série de corrections relativistes jusqu'à un ordre élevé. Les objets compacts sont modélisés par des masses ponctuelles avec spins. Les calculs pratiques font face à des problèmes difficiles de divergences, qui ont été résolus grâce à la régularisation dimensionnelle. Dans les dernières orbites proches de la fusion, les effets de taille finie et de structure interne des étoiles à neutrons (notamment l'équation d'état interne) affectent l'évolution de l'orbite et l'émission des ondes gravitationnelles. Nous décrivons ces effets dans le cadre d'un modèle newtonien simple.
After a short review of prominent properties of gravitational waves and of the newly born gravitational astronomy, we focus on theoretical aspects. Analytic approximation methods in general relativity have played a crucial role in the recent discoveries of gravitational waves. They are used to build theoretical template banks for searching and analyzing the signals in the ground-based detectors LIGO and Virgo, and, further ahead, space-based LISA-like detectors. In particular, the post-Newtonian approximation describes with high accuracy the early inspiral of compact binary systems, made of black holes or neutron stars. It mainly consists of extending the Einstein quadrupole formula by a series of relativistic corrections up to high order. The compact objects are modeled by point masses with spins. The practical calculations face difficult problems of divergences, which have been solved thanks to dimensional regularization. In the last rotations before the merger, the finite size effects and the internal structure of neutron stars (notably the internal equation of state) affect the evolution of the orbit and the emission of gravitational waves. We describe these effects within a simple Newtonian model.
Mot clés : Ondes gravitationnelles, systèmes compacts binaires, théorie post-newtonienne
Luc Blanchet 1
@article{CRPHYS_2019__20_6_507_0, author = {Luc Blanchet}, title = {Analyzing gravitational waves with general relativity}, journal = {Comptes Rendus. Physique}, pages = {507--520}, publisher = {Elsevier}, volume = {20}, number = {6}, year = {2019}, doi = {10.1016/j.crhy.2019.02.004}, language = {en}, }
Luc Blanchet. Analyzing gravitational waves with general relativity. Comptes Rendus. Physique, Volume 20 (2019) no. 6, pp. 507-520. doi : 10.1016/j.crhy.2019.02.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.02.004/
[1] et al. Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., Volume 116 (2016)
[2] et al. Gw170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett., Volume 119 (2017)
[3]
, Cambridge University Press (1987), pp. 330-458[4] On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys., Volume 65 (1979), p. 45
[5] A simple proof of the positive energy theorem, Commun. Math. Phys., Volume 80 (1981), p. 381
[6] Determining the Hubble constant from gravitational wave observations, Nature, Volume 323 (1986), p. 310
[7] Sources of gravitational waves: theory and observations (A. Ashtekar; B. Berger; J. Isenberg; M. MacCallum, eds.), General Relativity and Gravitation: A Centennial Perspective, 2015, p. 513
[8] Black holes, gravitational waves and fundamental physics: a roadmap, 2018 (eprint) | arXiv
[9] Näherungsweise integration der feldgleichungen der gravitation, Sitz.ber. Preuss. Akad. Wiss. Berl., Volume 1 (1916), p. 688
[10] Über gravitationswellen, Sitz.ber. Preuss. Akad. Wiss. Berl., Volume 1 (1918), p. 154
[11] The Classical Theory of Fields, Pergamon, Oxford, 1971
[12] Gravitational recoil of inspiraling black-hole binaries to second post-Newtonian order, Astrophys. J., Volume 635 (2005), p. 508
[13] Spin and center of mass comparison between the PN approach and the asymptotic formulation, Phys. Rev. D, Volume 98 (2018)
[14] Center-of-mass angular momentum and memory effect in asymptotically flat spacetimes, Phys. Rev. D, Volume 98 (2018)
[15] Flux-balance equations for linear momentum and center-of-mass position of self-gravitating post-Newtonian systems, 2018 (eprint) | arXiv
[16] Gravitational radiation from point masses in a Keplerian orbit, Phys. Rev., Volume 131 (1963), pp. 435-440
[17] Gravitational radiation and the motion of two point masses, Phys. Rev., Volume 136 (1964), p. B1224-B1232
[18] Discovery of a pulsar in a binary system, Astrophys. J., Volume 195 (1975), p. L51
[19] Measurements of general relativistic effects in the binary pulsar psr1913+16, Nature, Volume 277 (1979), pp. 437-440
[20] A new test of general relativity: gravitational radiation and the binary pulsar psr 1913+16, Astrophys. J., Volume 253 (1982), pp. 908-920
[21] On the orbital period change of the binary pulsar psr 1913+16, Astrophys. J., Volume 366 (1991), pp. 501-511
[22] Comments on gravitational radiation damping and energy loss in binary systems, Astrophys. J., Volume 208 (1976), p. L77
[23] The approximation of radiative effects in relativistic gravity—gravitational radiation reaction and energy loss in nearly Newtonian systems, Astrophys. J., Volume 242 (1980), p. L129
[24] The dynamics of general relativity (L. Witten, ed.), An Introduction to Current Research, Wiley, New York, 1962
[25] Gravitational waves in general relativity vii. Waves from axi-symmetric isolated systems, Proc. R. Soc. Lond. Ser. A, Volume 269 (1962), p. 21
[26] The last three minutes: issues in gravitational-wave measurements of coalescing compact binaries, Phys. Rev. Lett., Volume 70 (1993), pp. 2984-2987
[27] Gravitational wave tails and binary star systems, Class. Quantum Gravity, Volume 10 (1993), pp. 2699-2721
[28] Post-Newtonian generation of gravitational-waves, Astrophys. J., Volume 197 (1975), pp. 717-723
[29] Post-Newtonian gravitational radiation from orbiting point masses, Astrophys. J., Volume 210 (1976), pp. 764-775
[30] Post-Newtonian generation of gravitational waves, Ann. Inst. Henri Poincaré Phys. Théor., Volume 50 (1989), pp. 377-408
[31] Higher order gravitational radiation losses in binary systems, Mon. Not. R. Astron. Soc., Volume 239 (1989), pp. 845-867
[32] Evolution of binary black hole spacetimes, Phys. Rev. Lett., Volume 95 (2005)
[33] Gravitational wave extraction from an inspiraling configuration of merging black holes, Phys. Rev. Lett., Volume 96 (2006)
[34] Accurate evolutions of orbiting black-hole binaries without excision, Phys. Rev. Lett., Volume 96 (2006)
[35] Computing the merger of black-hole binaries: the ibbh problem, Phys. Rev. D, Volume 58 (1998)
[36] High-accuracy numerical simulation of black-hole binaries: computation of the gravitational-wave energy flux and comparisons with post-Newtonian approximants, Phys. Rev. D, Volume 78 (2008)
[37] Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of non-precessing, spinning, equal-mass black holes, Phys. Rev. D, Volume 81 (2010)
[38] Matching post-Newtonian and numerical relativity waveforms: systematic errors and a new phenomenological model for non-precessing black hole binaries, Phys. Rev. D, Volume 82 (2010)
[39] Inspiral-merger-ringdown waveforms for black-hole binaries with non-precessing spins, Phys. Rev. Lett., Volume 106 (2011)
[40] Effective one-body approach to general relativistic two-body dynamics, Phys. Rev. D, Volume 59 (1999)
[41] The effective one-body description of the two-body problem (L. Blanchet; A. Spallicci; B. Whiting, eds.), Mass and Motion in General Relativity, Springer, 2011, p. 211
[42] On gravitational-wave spectroscopy of massive black holes with the space interferometer lisa, Phys. Rev. D, Volume 73 (2006)
[43] Gravitational radiation from post-Newtonian sources and inspiralling compact binaries, Living Rev. Relativ., Volume 17 (2014), p. 2
[44] Towards the fourth post-Newtonian Hamiltonian for two-point-mass systems, Phys. Rev. D, Volume 86 (2012) 061503(R)
[45] Dimensional regularization of local singularities in the 4th post-Newtonian two-point-mass Hamiltonian, Phys. Rev. D, Volume 87 (2013) 081503(R)
[46] Non-local-in-time action for the fourth post-Newtonian conservative dynamics of two-body systems, Phys. Rev. D, Volume 89 (2014)
[47] Fokker action of non-spinning compact binaries at the fourth post-Newtonian approximation, Phys. Rev. D, Volume 93 (2016)
[48] Energy and periastron advance of compact binaries on circular orbits at the fourth post-Newtonian order, Phys. Rev. D, Volume 95 (2017)
[49] Dimensional regularization of the ir divergences in the Fokker action of point-particle binaries at the fourth post-Newtonian order, Phys. Rev. D, Volume 96 (2017)
[50] Ambiguity-free completion of the equations of motion of compact binary systems at the fourth post-Newtonian order, Phys. Rev. D, Volume 97 (2018)
[51] The dynamics of the gravitational two-body problem in the post-Newtonian approximation at quadratic order in the Newton's constant, Phys. Rev. D, Volume 87 (2013)
[52] Tail effect in gravitational radiation reaction: time nonlocality and renormalization group evolution, Phys. Rev. D, Volume 93 (2016)
[53] Second post-Newtonian generation of gravitational radiation, Phys. Rev. D, Volume 51 (1995), pp. 2559-2583
[54] Gravitational radiation damping of compact binary systems to second post-Newtonian order, Phys. Rev. Lett., Volume 74 (1995), pp. 3515-3518
[55] Gravitational-wave tails of tails, Class. Quantum Gravity, Volume 15 (1998), pp. 113-141
[56] Gravitational waves from inspiralling compact binaries: energy flux to third post-Newtonian order, Phys. Rev. D, Volume 65 (2002) 129903(E) (Erratum)
[57] Gravitational-wave inspiral of compact binary systems to 7/2 post-Newtonian order, Phys. Rev. D, Volume 65 (2002) 061501(R) Phys. Rev. D, 71, 2005 129902(E) (Erratum)
[58] Hadamard regularization of the third post-Newtonian gravitational wave generation of two point masses, Phys. Rev. D, Volume 71 (2004)
[59] Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order, Phys. Rev. Lett., Volume 93 (2004)
[60] Gravitational-wave tail effects to quartic non-linear order, Class. Quantum Gravity, Volume 33 (2016)
[61] Radiative gravitational fields in general relativity. i. General structure of the field outside the source, Philos. Trans. R. Soc. Lond. A, Volume 320 (1986), pp. 379-430
[62] Radiative gravitational fields in general relativity. ii. Asymptotic behaviour at future null infinity, Proc. R. Soc. Lond. A, Volume 409 (1987), pp. 383-399
[63] Hereditary effects in gravitational radiation, Phys. Rev. D, Volume 46 (1992), pp. 4304-4319
[64] Gravitational waves from inspiralling compact binaries: energy loss and wave form to second post-Newtonian order, Phys. Rev. D, Volume 51 (1995), pp. 5360-5386
[65] Gravitational waves in general relativity. viii. Waves in asymptotically flat space-time, Proc. R. Soc. Lond. Ser. A, Volume 270 (1962), pp. 103-126
[66] On the multipole expansion of the gravitational field, Class. Quantum Gravity, Volume 15 (1998), pp. 1971-1999
[67] Post-Newtonian approximation for isolated systems calculated by matched asymptotic expansions, Phys. Rev. D, Volume 65 (2002)
[68] Structure of the post-Newtonian expansion in general relativity, Phys. Rev. D, Volume 72 (2005)
[69] Dynamics of compact binary systems in scalar–tensor theories: I. Equations of motion to the third post-Newtonian order, Phys. Rev. D, Volume 98 (2018)
[70] Dynamics of compact binary systems in scalar–tensor theories: II. Center-of-mass and conserved quantities to 3 PN order, 2018 (eprint) | arXiv
[71] Detecting the tail effect in gravitational wave experiments, Phys. Rev. Lett., Volume 74 (1995), pp. 1067-1070
[72] Post-Newtonian expansion of gravitational-waves from a particle in circular orbit around a Schwarzschild black-hole, Prog. Theor. Phys., Volume 92 (1994), pp. 745-771
[73] Gravitational waves by a particle in circular orbit around a Schwarzschild black hole: 5.5 post-Newtonian formula, Prog. Theor. Phys., Volume 96 (1996), pp. 1087-1101
[74] Next-to-next-to-leading order spin-orbit effects in the gravitational wave flux and orbital phasing of compact binaries, Class. Quantum Gravity, Volume 30 (2013)
[75] Next-to-leading tail-induced spin-orbit effects in the gravitational radiation of compact binaries, Class. Quantum Gravity, Volume 31 (2013)
[76] Quadratic-in-spin effects in the orbital dynamics and gravitational-wave energy flux of compact binaries at the 3PN order, Class. Quantum Gravity, Volume 32 (2015)
[77] Coalescing binary neutron-stars, Astrophys. J., Volume 398 (1992), pp. 234-247
[78] Tidal interactions of inspiraling compact binaries, Astrophys. J., Volume 400 (1992), p. 175
[79] Coalescence of black hole-neutron star binaries, Living Rev. Relativ., Volume 6 (2011), p. 14
[80] Binary neutron star mergers, Living Rev. Relativ., Volume 15 (2012), p. 8
[81] Constraining neutron-star tidal love numbers with gravitational-wave detectors, Phys. Rev. D, Volume 77 (2008)
[82] Tidal love numbers of neutron stars, Astrophys. J., Volume 677 (2008), p. 1216
[83] Relativistic tidal properties of neutron stars, Phys. Rev. D, Volume 80 (2009) (eprint) | arXiv
[84] Relativistic theory of tidal love numbers, Phys. Rev. D, Volume 80 (2009) (eprint) | arXiv
[85] Effective action approach to higher-order relativistic tidal interactions in binary systems and their effective one body description, Phys. Rev. D, Volume 85 (2012)
[86] Systematic parameter errors in inspiraling neutron star binaries, Phys. Rev. Lett., Volume 112 (2014)
Cité par Sources :
Commentaires - Politique