Comptes Rendus
Science in the making 2: From 1940 to the early 1980s / La science en mouvement 2 : de 1940 aux premières années 1980
The first decades of Doppler-free two-photon spectroscopy
[Les premières décennies de la spectroscopie à deux photons sans élargissement Doppler]
Comptes Rendus. Physique, Volume 20 (2019) no. 7-8, pp. 671-681.

Cet article présente une revue des expériences de spectroscopie à deux photons sans effet Doppler, réalisées depuis le début des années 1970 jusqu'à la fin des années 1990. La méthode de spectroscopie à deux photons sans élargissement Doppler a d'abord été testée sur l'atome de sodium, puis elle a été utilisée extensivement pour étudier l'hydrogène atomique et mesurer la constante de Rydberg et les déplacements de Lamb.

This paper gives a review of the Doppler-free two-photon experiments performed since the beginning of the 1970s until the end of the 1990s. The Doppler-free two-photon method was first tested on the sodium atom, then used extensively to study the hydrogen atom and measure the Rydberg constant and the Lamb shifts.

Publié le :
DOI : 10.1016/j.crhy.2019.04.003
Keywords: Hydrogen spectroscopy, Two-photon transition, Rydberg constant, Proton radius
Mot clés : Spectroscopie de l'hydrogène, Transition à deux photons, Constante de Rydberg, Rayon du proton
François Biraben 1

1 Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL University, Collège de France, 4, place Jussieu, 75005 Paris, France
@article{CRPHYS_2019__20_7-8_671_0,
     author = {Fran\c{c}ois Biraben},
     title = {The first decades of {Doppler-free} two-photon spectroscopy},
     journal = {Comptes Rendus. Physique},
     pages = {671--681},
     publisher = {Elsevier},
     volume = {20},
     number = {7-8},
     year = {2019},
     doi = {10.1016/j.crhy.2019.04.003},
     language = {en},
}
TY  - JOUR
AU  - François Biraben
TI  - The first decades of Doppler-free two-photon spectroscopy
JO  - Comptes Rendus. Physique
PY  - 2019
SP  - 671
EP  - 681
VL  - 20
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crhy.2019.04.003
LA  - en
ID  - CRPHYS_2019__20_7-8_671_0
ER  - 
%0 Journal Article
%A François Biraben
%T The first decades of Doppler-free two-photon spectroscopy
%J Comptes Rendus. Physique
%D 2019
%P 671-681
%V 20
%N 7-8
%I Elsevier
%R 10.1016/j.crhy.2019.04.003
%G en
%F CRPHYS_2019__20_7-8_671_0
François Biraben. The first decades of Doppler-free two-photon spectroscopy. Comptes Rendus. Physique, Volume 20 (2019) no. 7-8, pp. 671-681. doi : 10.1016/j.crhy.2019.04.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.04.003/

[1] M. Goppert-Mayer Über Elementarakte mit zwei Quantensprüngen, Ann. Phys., Volume 9 (1931) no. 3, p. 273

[2] V. Hughes; L. Grabner The radio frequency spectrum of Rb85F and Rb87F by the electric field resonance method, Phys. Rev., Volume 79 (1950) no. 2, p. 314

[3] L. Grabner; V. Hughes Further evidence for a two quantum transition in molecular spectroscopy, Phys. Rev., Volume 82 (1951) no. 4, p. 561

[4] P. Kusch Some observations of double- and triple-quantum transitions, Phys. Rev., Volume 93 (1954) no. 5, p. 1022

[5] J. Brossel; B. Cagnac; A. Kastler Résonance magnétique sur des atomes orientés optiquement, J. Phys. Radium, Volume 15 (1954) no. 1, p. 6

[6] I.D. Abella Optical double-photon absorption in cesium vapor, Phys. Rev. Lett., Volume 9 (1962) no. 11, p. 453

[7] G. Grynberg La découverte des transitions à deux photons sans élargissement Doppler, Bull. Soc. Fr. Phys., Volume 110 (1997), p. 4

[8] L.S. Vasilenko; V.P. Chebotayev; A.V. Shishaev Line shape of two-photon absorption in a standing-wave field in a gas, JETP Lett., Volume 12 (1970) no. 3, p. 161

[9] B. Cagnac; G. Grynberg; F. Biraben Spectroscopie d'absorption multiphotonique sans effet Doppler, J. Phys., Volume 34 (1973), p. 643

[10] F. Biraben; B. Cagnac; G. Grynberg Experimental evidence of two-photon transition without Doppler broadening, Phys. Rev. Lett., Volume 32 (1974) no. 12, p. 643

[11] M.D. Levenson; N. Bloembergen Observation of the two-photon absorption without Doppler broadening on the 3S-5S transition in sodium vapor, Phys. Rev. Lett., Volume 32 (1974) no. 12, p. 645

[12] T.W. Hänsch; K.C. Harvey; G. Meisel; A.L. Schawlow Two-photon spectroscopy of Na 3s-4d without Doppler broadening using a CW dye laser, Opt. Commun., Volume 11 (1974) no. 1, p. 50

[13] F. Biraben Spectroscopie à deux et trois photons sans élargissement Doppler. Application à l'étude des collisions sodium-gaz rare, Université Pierre-et-Marie-Curie, 1977 https://hal.archives-ouvertes.fr/tel-00011828 (Thèse d'État)

[14] F. Biraben; B. Cagnac; G. Grynberg Effet Zeeman en champ magnétique faible sur une transition S–D du sodium par absorption de deux photons sans élargissement Doppler, C. r. hebd. séances Acad. sci., Ser. B, Volume 279 (1974), p. 51

[15] F. Biraben; B. Cagnac; G. Grynberg Paschen-Back effect on the 3S-4D two-photon transition in sodium vapor, Phys. Lett. A, Volume 48 (1974) no. 6, p. 469

[16] N. Bloembergen; M.D. Levenson; M.M. Salour Zeeman effect in the two-photon 3S–5S transition in sodium vapor, Phys. Rev. Lett., Volume 32 (1974) no. 16, p. 867

[17] F. Biraben; B. Cagnac; G. Grynberg Observation of the 3S–5S two-photon transition in sodium vapor without Doppler broadening, using a CW dye laser, Phys. Lett. A, Volume 49 (1974) no. 1, p. 71

[18] F. Biraben; B. Cagnac; E. Giacobino; G. Grynberg Broadening and shift of the sodium 3S–4D and 3S–5S two-photon lines perturbed by noble gases, J. Phys. B, At. Mol. Phys., Volume 10 (1977) no. 12, p. 2369

[19] E. Giacobino; F. Biraben; G. Grynberg; B. Cagnac Doppler free two-photon spectroscopy of neon I. Fine structure and hyperfine constants for the 4d' subconfiguration, J. Phys., Volume 38 (1977), p. 623

[20] C.D. Harper; M.D. Levenson Fine structure splitting of high 2D states of 39K, Phys. Lett. A, Volume 56 (1976) no. 5, p. 361

[21] K.C. Harvey; B.P. Stoicheff Fine structure of the n2D series in rubidium near the ionization limit, Phys. Rev. Lett., Volume 38 (1977) no. 10, p. 537

[22] G. Grynberg; B. Cagnac Doppler-free multiphotonic spectroscopy, Rep. Prog. Phys., Volume 40 (1977), p. 791

[23] C. Dorrer; F. Nez; B. de Beauvoir; L. Julien; F. Biraben Accurate measurement of the 23S123D1 two-photon transition frequency in helium: determination of the 23S1 Lamb shift, Phys. Rev. Lett., Volume 78 (1997) no. 19, p. 3658

[24] E. Giacobino; M. Devaud; F. Biraben; G. Grynberg Doppler-free two-photon dispersion and optical bistability in rubidium vapor, Phys. Rev. Lett., Volume 45 (1980) no. 6, p. 434

[25] J.-M. Chartier; L. Robertsson; M. Sommer; J. Tschirnich; V. Navratil; R. Gata; B. Pucek; J. Blabla; J. Smydke; M. Ziegler; V. Zeleny; F. Petru; Z. Vesela; K. Tomanyiczka; E. Banreti; Yu.G. Zakharenko; L.F. Vitushkin International comparison of iodine-stabilized helium–neon lasers at λ=633nm involving seven laboratories, Metrologia, Volume 28 (1991) no. 1, p. 19

[26] D. Touahri; O. Acef; A. Clairon; J.-J. Zondy; R. Felder; L. Hilico; B. de Beauvoir; F. Biraben; F. Nez Frequency measurement of the 5S1/2(F=3)5D5/2(F=5) two-photon transition in rubidium, Opt. Commun., Volume 133 (1997), p. 471

[27] B. de Beauvoir; F. Nez; L. Hilico; L. Julien; F. Biraben; B. Cagnac; J-J. Zondy; D. Touahri; O. Acef; A. Clairon Transmission of an optical frequency through a 3 km long optical fiber, Eur. Phys. J. D, Volume 1 (1998) no. 2, p. 227

[28] W.E. Lamb; R.C. Retherford Fine structure of the hydrogen atom by a microwave method, Phys. Rev., Volume 72 (1947) no. 3, p. 241

[29] Th.A. Welton Some observable effects of the quantum-mechanical fluctuations of the electromagnetic field, Phys. Rev., Volume 74 (1948) no. 9, p. 1157

[30] P. Mohr; D.B. Newell; B.N. Taylor CODATA recommended values of the fundamental physical constants: 2014, Rev. Mod. Phys., Volume 88 (2016) no. 3

[31] E.V. Baklanov; V.P. Chebotayev On the precise measurement of the frequency transition 1S2S of the hydrogen atom, Opt. Commun., Volume 12 (1974) no. 3, p. 312

[32] T.W. Hänsch; S.A. Lee; R. Wallenstein; C. Wieman Doppler-free two-photon spectroscopy of hydrogen 1S–2S, Phys. Rev. Lett., Volume 34 (1975) no. 6, p. 307

[33] J.R.M. Barr; J.M. Girkin; J.M. Tolchard; A.I. Ferguson Interferometric measurement of the 1S1/22S1/2 transition frequency in atomic hydrogen, Phys. Rev. Lett., Volume 56 (1986) no. 6, p. 580

[34] M.G. Boshier; P.E.G. Baird; C.J. Foot; E.A. Hinds; M.D. Plimmer; D.N. Stacey; J.B. Swan; D.A. Tate; D.M. Warrington; G.K. Woodgate Precision spectroscopy of hydrogen and deuterium, Nature, Volume 330 (1987), p. 463

[35] D.J. Berkeland; E.A. Hinds; M.G. Boshier Precise optical measurement of Lamb shift in atomic hydrogen, Phys. Rev. Lett., Volume 75 (1995) no. 13, p. 2470

[36] C.L. Cesar; D.G. Fried; T.C. Killian; A.D. Polcyn; J.C. Sandberg; I.A. Yu; T.J. Greytak; D. Kleppner; J.M. Doyle Two-photon spectroscopy of trapped atomic hydrogen, Phys. Rev. Lett., Volume 77 (1996) no. 2, p. 255

[37] S. Chu; A.P. Mills Excitation of the positronium 13S123S1 two-photon transition, Phys. Rev. Lett., Volume 48 (1982) no. 19, p. 1333

[38] S. Chu; A.P. Mills; J.L. Hall Measurement of the positronium 13S123S1 interval by Doppler-free two-photon spectroscopy, Phys. Rev. Lett., Volume 52 (1984) no. 19, p. 1689

[39] M.S. Fee; S. Chu; A.P. Mills; R.J. Chichester; D.M. Zuckerman; E.D. Shaw; K. Danzmann Measurement of the positronium 13S123S1 interval by continuous-wave two-photon excitation, Phys. Rev. A, Volume 48 (1993) no. 1, p. 192

[40] S. Chu; A.P. Mills; A.G. Yodh; K. Nagamine; Y. Miyake; T. Kuga Laser excitation of the muonium 1S–2S transition, Phys. Rev. Lett., Volume 60 (1988) no. 2, p. 101

[41] C.J. Foot; B. Couillaud; R.G. Beausoleil; T.W. Hänsch Continuous wave two-photon spectroscopy of the 1S1/22S1/2 transition in hydrogen, Phys. Rev. Lett., Volume 54 (1985) no. 17, p. 1913

[42] T. Andreae; W. Köning; R. Wynands; D. Leibfried; F. Schmidt-Kaler; C. Zimmermann; D. Meschede; T.W. Hänsch Absolute frequency measurement of the 1S–2S transition and a new value of the Rydberg constant, Phys. Rev. Lett., Volume 69 (1992) no. 13, p. 1923

[43] Th. Udem; H. Huber; B. Gross; J. Reichert; M. Prevedelli; M. Weitz; T.W. Hänsch Phase-coherent measurement of the 1S–2S transition frequency with an optical frequency interval divider chain, Phys. Rev. Lett., Volume 79 (1997) no. 14, p. 2646

[44] R. Holzwarth; Th. Udem; T.W. Hänsch; J.C. Knight; W.J. Wadsworth; P.St.J. Russell Optical frequency synthesizer for precision spectroscopy, Phys. Rev. Lett., Volume 85 (2000) no. 11, p. 2264

[45] S.A. Diddams; D.J. Jones; J. Ye; S.T. Cundiff; J.L. Hall; J.K. Ranka; R.S. Windeler; R. Holzwarth; Th. Udem; T.W. Hänsch Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb, Phys. Rev. Lett., Volume 84 (2000) no. 22, p. 5102

[46] C.G. Parthey; A. Matveev; J. Alnis; B. Bernhardt; A. Beyer; R. Holzwarth; A. Maistrou; R. Pohl; K. Predehl; T. Udem; T. Wilken; N. Kolachevsky; M. Abgrall; D. Rovera; C. Salomon; P. Laurent; T.W. Hänsch Improved measurement of the hydrogen 1S2S transition frequency, Phys. Rev. Lett., Volume 107 (2011)

[47] C.D. Thompson; G.H. Woodman; C.J. Foot; P. Hannaford; D.N. Stacey; G.K. Woodgate A comparison of the frequencies of the 1S–2S and 2S–4P transitions in atomic hydrogen, J. Phys. B, At. Mol. Opt. Phys., Volume 25 (1992), p. L1

[48] M. Weitz; A. Huber; F. Schmidt-Kaler; D. Leibfreid; T.W. Hänsch Precision measurement of the hydrogen and deuterium 1S ground state Lamb shift, Phys. Rev. Lett., Volume 72 (1994), p. 328

[49] M. Weitz; A. Huber; F. Schmidt-Kaler; D. Leibfreid; W. Vassen; C. Zimmermann; K. Pachucki; T.W. Hänsch; L. Julien; F. Biraben Precision measurement of the 1S ground state Lamb shift in atomic hydrogen and deuterium by frequency comparison, Phys. Rev. A, Volume 52 (1995) no. 4, p. 2664

[50] S. Bourzeix; B. de Beauvoir; F. Nez; M.D. Plimmer; F. de Tomasi; L. Julien; F. Biraben; D.N. Stacey High resolution spectroscopy of the hydrogen atom: determination of the 1S Lamb shift, Phys. Rev. Lett., Volume 76 (1996) no. 3, p. 384

[51] S. Bourzeix; M.D. Plimmer; F. Nez; L. Julien; F. Biraben Efficient frequency doubling of a continuous wave titanium: sapphire laser in an external enhancement cavity, Opt. Commun., Volume 99 (1993), p. 89

[52] S. Bourzeix; B. de Beauvoir; F. Nez; F. de Tomasi; L. Julien; F. Biraben Ultra-violet light generation at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser, Opt. Commun., Volume 133 (1997), p. 239

[53] S.R. Lundeen; F.M. Pipkin Measurement of the Lamb shift in hydrogen, n=2, Phys. Rev. Lett., Volume 46 (1981) no. 4, p. 232

[54] F. Biraben; L. Julien Doppler-free two-photon spectroscopy of hydrogen Rydberg states using a CW laser, Opt. Commun., Volume 53 (1985) no. 5, p. 319

[55] F. Biraben; J.C. Garreau; L. Julien Determination of the Rydberg constant by Doppler-free two-photon spectroscopy of hydrogen Rydberg states, Europhys. Lett., Volume 2 (1986) no. 12, p. 925

[56] S.R. Amin; C.D. Caldwell; W. Lichten Crossed-beam spectroscopy of hydrogen: a new value for the Rydberg constant, Phys. Rev. Lett., Volume 47 (1981) no. 18, p. 1234

[57] P. Zhao; W. Lichten; H.P. Layer; J.C. Bergquist Remeasurement of the Rydberg constant, Phys. Rev. A, Volume 34 (1986) no. 6, p. 5138

[58] P. Zhao; W. Lichten; H.P. Layer; J.C. Bergquist New value of the Rydberg constant from the hydrogen Balmer-β transition, Phys. Rev. Lett., Volume 58 (1987) no. 13, p. 1293

[59] F. Biraben; J.C. Garreau; L. Julien; M. Allegrini New measurement of the Rydberg constant by two-photon spectroscopy of hydrogen Rydberg states, Phys. Rev. Lett., Volume 62 (1989) no. 6, p. 621

[60] F. Nez; M.D. Plimmer; S. Bourzeix; L. Julien; F. Biraben; R. Felder; O. Acef; J.J. Zondy; P. Laurent; A. Clairon; M. Abed; Y. Millerioux; P. Juncar Precise frequency measurement of the 2S–8S/8D transitions in atomic hydrogen: new determination of the Rydberg constant, Phys. Rev. Lett., Volume 69 (1992) no. 16, p. 2326

[61] F. Nez; M.D. Plimmer; S. Bourzeix; L. Julien; F. Biraben; R. Felder; Y. Millerioux; P. de Natale First pure frequency measurement of an optical transition in atomic hydrogen: better determination of the Rydberg constant, Europhys. Lett., Volume 24 (1993) no. 8, p. 635

[62] B. de Beauvoir; F. Nez; L. Julien; B. Cagnac; F. Biraben; D. Touahri; L. Hilico; O. Acef; A. Clairon; J.J. Zondy Absolute frequency measurement of the 2S–8S/D transitions in hydrogen and deuterium: new determination of the Rydberg constant, Phys. Rev. Lett., Volume 78 (1997) no. 3, p. 440

[63] C. Schwob; L. Jozefowski; B. de Beauvoir; L. Hilico; F. Nez; L. Julien; F. Biraben; O. Acef; A. Clairon Optical frequency measurement of the 2S–12D transitions in hydrogen and deuterium: Rydberg constant and Lamb shift determinations, Phys. Rev. Lett., Volume 82 (1999) no. 25, p. 4960

[64] B. de Beauvoir; C. Schwob; O. Acef; J.-J. Zondy; L. Jozefowski; L. Hilico; F. Nez; L. Julien; A. Clairon; F. Biraben Metrology of the hydrogen and deuterium atoms: determination of the Rydberg constant and Lamb shifts, Eur. Phys. J. D, Volume 12 (2000), p. 61

[65] S.G. Karshenboim The Lamb shift of the excited S-levels in hydrogen and deuterium atoms, Z. Phys. D, Volume 39 (1997), p. 109

[66] A. Czarnecki; U.D. Jentschura; K. Pachucki Calculation of the one- and two-loop Lamb shift for arbitrary excited hydrogenic states, Phys. Rev. Lett., Volume 95 (2005)

[67] K. Pachucki Complete two-loop binding corrections to the Lamb shift, Phys. Rev. Lett., Volume 72 (1994) no. 20, p. 3154

[68] P. Mohr; B.N. Taylor CODATA recommended values of the fundamental physical constants: 2002, Rev. Mod. Phys., Volume 77 (2005), p. 1

[69] I. Sick On the rms-radius of the proton, Phys. Lett. B, Volume 576 (2003), p. 62

[70] W.V. Houston A spectroscopic determination of e/m, Phys. Rev., Volume 30 (1927), p. 608

[71] D.-Y. Chu The fine structure of the line λ4686 of ionized helium, Phys. Rev., Volume 55 (1939), p. 175

[72] J.W. Drinkwater; O. Richardson; W.E. Williams Determinations of the Rydberg constant, e/m, and the fine structures of Hα and Dα by means of a reflexion echelon, Proc. R. Soc. A, Volume 174 (1940), p. 164

[73] L. Csillag Investigations on the Balmer lines of deuterium, Acta Phys. Acad. Sci. Hung., Volume 24 (1968), p. 1

[74] T. Masui A new determination of the Rydberg constant, NBS Spec. Publ., Volume 343 (1971), p. 83

[75] E.G. Kessler Determination of the Rydberg constant from the HeII n=34 (469-nm) line complex, Phys. Rev. A, Volume 7 (1973) no. 2, p. 408

[76] B.P. Kibble; W.R.C. Rowley; R.E. Shawyer; G.W. Series An experimental determination of the Rydberg constant, J. Phys. B, At. Mol. Phys., Volume 6 (1973), p. 1079

[77] T.W. Hänsch; M.H. Nayfeh; A. Lee; S.M. Curry; I.S. Shahin Precision measurement of the Rydberg constant by laser saturation spectroscopy of the Balmer-α line in hydrogen and deuterium, Phys. Rev. Lett., Volume 32 (1974) no. 24, p. 1336

[78] B.W. Petley; K. Morris A measurement of the Rydberg constant, Nature, Volume 279 (1979), p. 141

[79] J.E.M. Goldsmith; E.W. Weber; T.W. Hänsch New measurement of the Rydberg constant using polarization spectroscopy of Hα, Phys. Rev. Lett., Volume 41 (1974) no. 22, p. 1525

[80] E.A. Hildum; U. Boesl; D.H. McIntyre; R.G. Beausoleil; T.W. Hänsch Measurement of the 1S-2S frequency in atomic hydrogen, Phys. Rev. Lett., Volume 56 (1986) no. 6, p. 576

[81] D.H. McIntyre; R.G. Beausoleil; C.J. Foot; E.A. Hildum; B. Couillaud; T.W. Hänsch Continuous-wave measurement of the hydrogen 1S–2S transition frequency, Phys. Rev. A, Volume 39 (1989) no. 9, p. 4591

[82] M.G. Boshier; P.E.G. Baird; C.J. Foot; E.A. Hinds; M.D. Plimmer; D.N. Stacey; J.B. Swan; D.A. Tate; D.M. Warrington; G.K. Woodgate Laser spectroscopy of the 1S–2S transition in hydrogen and deuterium: determination of the 1S Lamb shift and the Rydberg constant, Phys. Rev. A, Volume 40 (1989) no. 11, p. 6169

[83] P.J. Mohr; B.N. Taylor; D.B. Newell CODATA recommended values of the fundamental physical constants: 2006, Rev. Mod. Phys., Volume 80 (2008), p. 633

[84] P.J. Mohr; B.N. Taylor; D.B. Newell CODATA recommended values of the fundamental physical constants: 2010, Rev. Mod. Phys., Volume 84 (2012), p. 1527

[85] R. Pohl; A. Antognini; F. Nez; F.D. Amaro; F. Biraben; J.M.R. Cardoso; D.S. Covita; A. Dax; S. Dhawan; L.M.P. Fernandes; A. Giesen; T. Graf; T.W. Hänsch; P. Indelicato; L. Julien; C.-Y. Kao; P. Knowles; E.-O. Le Bigot; Y.-W. Liu; J.A.M. Lopes; L. Ludhova; C.M.B. Monteiro; F. Mulhauser; T. Nebel; P. Rabinowitz; J.M.F. dos Santos; L.A. Schaller; K. Schuhmann; C. Schwob; D. Taqqu; J.F.C.A. Veloso; F. Kottmann The size of the proton, Nature, Volume 466 (2010), p. 213

[86] A. Antognini; F. Nez; K. Schuhmann; F.D. Amaro; F. Biraben; J.M.R. Cardoso; D.S. Covita; A. Dax; S. Dhawan; M. Diepold; L.M.P. Fernandes; A. Giesen; A.L. Gouvea; T. Graf; T.W. Hansch; P. Indelicato; L. Julien; C.-Y. Kao; P. Knowles; F. Kottmann; E.-O. Le Bigot; Y.-W. Liu; J.A.M. Lopes; L. Ludhova; C.M.B. Monteiro; F. Mulhauser; T. Nebel; P. Rabinowitz; J.M.F. dos Santos; L.A. Schaller; C. Schwob; D. Taqqu; J.F.C.A. Veloso; J. Vogelsang; R. Pohl Proton structure from the measurement of 2S–2P transition frequencies of muonic hydrogen, Science, Volume 339 (2013), p. 417

[87] A. Beyer; L. Maisenbacher; A. Matveev; R. Pohl; K. Khabarova; A. Grinin; T. Lamour; D.C. Yost; T.W. Hänsch; N. Kolachevsky; Th. Udem The Rydberg constant and proton size from atomic hydrogen, Science, Volume 358 (2017), p. 79

[88] H. Fleurbaey; S. Galtier; S. Thomas; M. Bonnaud; L. Julien; F. Biraben; F. Nez; M. Abgrall; J. Guéna New measurement of the 1S–3S transition frequency of hydrogen: contribution to the proton charge radius puzzle, Phys. Rev. Lett., Volume 120 (2018)

[89] D.C. Yost; A. Matveev; A. Grinin; E. Peters; L. Maisenbacher; A. Beyer; R. Pohl; N. Kolachevsky; K. Khabarova; T.W. Hänsch; Th. Udem Spectroscopy of the hydrogen 1S–3S transition with chirped laser pulses, Phys. Rev. A, Volume 93 (2016)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

The early days of quantum optics in France

Claude Cohen-Tannoudji

C. R. Phys (2019)


Measurement of the ratio h/mRb and determination of the fine structure constant

Malo Cadoret; Estefania de Mirandés; Pierre Cladé; ...

C. R. Phys (2011)


Advances in atomic fountains

S. Bize; P. Laurent; M. Abgrall; ...

C. R. Phys (2004)