[Modéliser les villes]
Les villes sont des systèmes avec un grand nombre de constituants et d'agents interagissant les uns avec les autres ; elles peuvent être considérées comme emblématiques des systèmes complexes. La modélisation de ces systèmes est un véritable défi et a suscité l'intérêt de nombreuses disciplines telles que la géographie quantitative, l'économie spatiale, la géomatique et l'urbanisme, et plus récemment la physique. La physique (statistique) joue un rôle majeur en apportant des outils et des concepts capables de jeter des ponts entre la théorie et les résultats empiriques ; nous illustrerons cet aspect à l'aide de certains aspects fondamentaux des villes : la croissance de leur superficie et de leur population, leur organisation spatiale et la distribution spatiale des activités. Nous présenterons l'état de l'art ainsi que des modèles, mais aussi des problèmes ouverts dont nous n'avons encore qu'une compréhension parcellaire, et pour lesquels les approches de la physique pourraient être particulièrement utiles. Nous terminerons cette brève revue en discutant la faisabilité de la construction d'une science des villes.
Cities are systems with a large number of constituents and agents interacting with each other and can be considered as emblematic of complex systems. Modeling these systems is a real challenge and triggered the interest of many disciplines such as quantitative geography, spatial economics, geomatics and urbanism, and more recently physics. (Statistical) Physics plays a major role by bringing tools and concepts able to bridge theory and empirical results, and we will illustrate this on some fundamental aspects of cities: the growth of their surface area and their population, their spatial organization, and the spatial distribution of activities. We will present state-of-the-art results and models but also open problems for which we still have a partial understanding and where physics approaches could be particularly helpful. We will end this short review with a discussion about the possibility of constructing a science of cities.
Mot clés : Science des villes, Physique Statistique, Economie urbaine
Marc Barthelemy 1, 2
@article{CRPHYS_2019__20_4_293_0, author = {Marc Barthelemy}, title = {Modeling cities}, journal = {Comptes Rendus. Physique}, pages = {293--307}, publisher = {Elsevier}, volume = {20}, number = {4}, year = {2019}, doi = {10.1016/j.crhy.2019.05.005}, language = {en}, }
Marc Barthelemy. Modeling cities. Comptes Rendus. Physique, Volume 20 (2019) no. 4, pp. 293-307. doi : 10.1016/j.crhy.2019.05.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.05.005/
[1] World urbanization prospects, 2018 https://esa.un.org/unpd/wup/
[2] The Structure and Dynamics of Cities, Cambridge University Press, 2016
[3] Urban Economic Theory: Land Use and City Size, Cambridge University Press, 1989
[4] Isolated State, Pergamon, 1966
[5] Multiple equilibria and structural transition of non-monocentric urban configurations, Reg. Sci. Urban Econ., Volume 12 (1982) no. 2, pp. 161-196
[6] The Spatial Economy: Cities, Regions, and International Trade, MIT Press, 2001
[7] Fifty years of urban modeling: macro-statics to micro-dynamics, The Dynamics of Complex Urban Systems, Springer, 2008, pp. 1-20
[8] Theoretical principles in interurban simulation models: a comparison, Environ. Plan. A, Volume 45 (2013) no. 9, pp. 2243-2260
[9] Fractal Cities: A Geometry of Form and Function, Academic Press, 1994
[10] Fractals in urban geography: a theoretical outline and an empirical example, Cybergeo: Eur. J. Geogr. (2005)
[11] Diffusion-limited aggregation, Phys. Rev. B, Volume 27 (1983) no. 9, p. 5686
[12] Modelling urban growth, Nature, Volume 377 (1995) no. 19
[13] et al. Modeling urban growth patterns with correlated percolation, Phys. Rev. E, Volume 58 (1998) no. 6, p. 7054
[14] Laws of population growth, Proc. Natl. Acad. Sci. USA, Volume 105 (2008) no. 48, pp. 18702-18707
[15] Dynamic models of segregation, J. Math. Sociol., Volume 1 (1971) no. 2, pp. 143-186
[16] A physical analogue of the schelling model, Proc. Natl. Acad. Sci. USA, Volume 103 (2006) no. 51, pp. 19261-19265
[17] Competition between collective and individual dynamics, Proc. Natl. Acad. Sci. USA, Volume 106 (2009) no. 49, pp. 20622-20626
[18] Phase diagram of a schelling segregation model, Eur. Phys. J. B, Volume 70 (2009) no. 2, pp. 293-304
[19] Statistical physics of the Schelling model of segregation, J. Stat. Mech. Theory Exp., Volume 2008 (2008) no. 07
[20] Giant catalytic effect of altruists in schellings segregation model, Phys. Rev. Lett., Volume 120 (2018) no. 20
[21] The New Science of Cities, MIT Press, 2013
[22] The hypothesis of urban scaling: formalization, implications and challenges, 2013 (preprint) | arXiv
[23] et al. Urban sprawl: diagnosis and remedies, Int. Reg. Sci. Rev., Volume 23 (2000) no. 2, pp. 160-171
[24] Relationship between urban sprawl and physical activity, obesity, and morbidity, Urban Ecology, Springer, 2008, pp. 567-582
[25] The Dynamics of Global Urban Expansion, Citeseer, 2005
[26] Is this scaling nonlinear?, R. Soc. Open Sci., Volume 3 (2016) no. 7
[27] The origins of scaling in cities, Science, Volume 340 (2013) no. 6139, pp. 1438-1441
[28] D. Pumain, Scaling laws and urban systems. Santa Fe Institute, Working Paper n 04-02, 2:26, 2004.
[29] Growth, innovation, scaling, and the pace of life in cities, Proc. Natl. Acad. Sci. USA, Volume 104 (2007) no. 17, pp. 7301-7306
[30]
, Oxford University Press, USA (1997), p. 79103 (chapter 5)[31] Invasion by extremes: population spread with variation in dispersal and reproduction, Am. Nat., Volume 157 (2001) no. 5, pp. 537-554
[32] A dynamical model for the growth and size distribution of multiple metastatic tumors, J. Theor. Biol., Volume 203 (2000) no. 2, pp. 177-186
[33] A dynamical model for tumour growth and metastasis formation, J. Clin. Bioinform., Volume 2 (2012) no. 1
[34] The wave of advance of advantageous genes, Ann. Hum. Genet., Volume 7 (1937) no. 4, pp. 355-369
[35]
, Blackwell Science (2002), p. 350373 (chapter 17)[36] Planning the growth of a metropolis: factors influencing development patterns in West London, 1875–2005, J. Plan. Hist., Volume 12 (2013) no. 1, pp. 28-48
[37] Coalescing colony model: mean-field, scaling, and geometry, Phys. Rev. E, Volume 96 (2017) no. 6
[38] Econophysics: still fringe after 30 years?, 2019 (preprint) | arXiv
[39] Human Behavior and the Principle of Least Effort, Addison-Wesley Press, 1949
[40] Rank clocks, Nature, Volume 444 (2006) no. 7119, pp. 592-596
[41] Zipf's law for cities: a cross-country investigation, Reg. Sci. Urban Econ., Volume 35 (2005) no. 3, pp. 239-263
[42] Les inégalités économiques, Recueil Sirey, 1931
[43] Interacting individuals leading to Zipf's law, Phys. Rev. Lett., Volume 80 (1998) no. 12, p. 2741
[44] Zipf's law for cities: an explanation, Q. J. Econ. (1999), pp. 739-767
[45] Convergent multiplicative processes repelled from zero: power laws and truncated power laws, J. Phys. I, Volume 7 (1997) no. 3, pp. 431-444
[46] Wealth condensation in a simple model of economy, Phys. A, Stat. Mech. Appl., Volume 282 (2000) no. 3, pp. 536-545
[47] The structure of urban equilibria: a unified treatment of the Muth–Mills model, Handb. Reg. Urban Econ., Volume 2 (1987), pp. 821-845
[48] Why do the poor live in cities? the role of public transportation, J. Urban Econ., Volume 63 (2008) no. 1, pp. 1-24
[49] The Self-Organizing Economy, Blackwell, Oxford, UK, 1996
[50] Modeling the polycentric transition of cities, Phys. Rev. Lett., Volume 111 (2013) no. 19
[51] From mobile phone data to the spatial structure of cities, Sci. Rep., Volume 4 (2014)
[52] Statistical theory of the energy levels of complex systems. i, J. Math. Phys., Volume 3 (1962) no. 1, pp. 140-156
[53] Link capacity functions: a review, Transp. Res., Volume 10 (1976) no. 4, pp. 223-236
[54] How congestion shapes cities: from mobility patterns to scaling, Sci. Rep., Volume 4 (2014)
[55] Critical factors for mitigating car traffic in cities, 2019 (preprint) | arXiv
[56] From global scaling to the dynamics of individual cities, Proc. Natl. Acad. Sci. USA, Volume 115 (2018) no. 10, pp. 2317-2322
[57] Is there more traffic congestion in larger cities? Scaling analysis of the 101 largest us urban centers, Transp. Policy, Volume 59 (2017), pp. 54-63
[58] Out of equilibrium dynamics in spin-glasses and other glassy systems, Spin Glass. Rand. Fields (1998), pp. 161-223
[59] Elementary processes governing the evolution of road networks, Sci. Rep., Volume 2 (2012)
[60] Self-organization of surface transportation networks, Transp. Sci., Volume 40 (2006) no. 2, pp. 179-188
[61] Multilayer networks, J. Complex Netw., Volume 2 (2014) no. 3, pp. 203-271
[62] Anatomy and efficiency of urban multimodal mobility, Sci. Rep., Volume 4 (2014)
[63] Multiplex networks in metropolitan areas: generic features and local effects, J. R. Soc. Interface, Volume 12 (2015) no. 111
[64] Role of city texture in urban heat islands at nighttime, Phys. Rev. Lett., Volume 120 (2018) no. 10
Cité par Sources :
Commentaires - Politique