Comptes Rendus
From statistical physics to social sciences / De la physique statistique aux sciences sociales
Modeling cities
[Modéliser les villes]
Comptes Rendus. Physique, Volume 20 (2019) no. 4, pp. 293-307.

Les villes sont des systèmes avec un grand nombre de constituants et d'agents interagissant les uns avec les autres ; elles peuvent être considérées comme emblématiques des systèmes complexes. La modélisation de ces systèmes est un véritable défi et a suscité l'intérêt de nombreuses disciplines telles que la géographie quantitative, l'économie spatiale, la géomatique et l'urbanisme, et plus récemment la physique. La physique (statistique) joue un rôle majeur en apportant des outils et des concepts capables de jeter des ponts entre la théorie et les résultats empiriques ; nous illustrerons cet aspect à l'aide de certains aspects fondamentaux des villes : la croissance de leur superficie et de leur population, leur organisation spatiale et la distribution spatiale des activités. Nous présenterons l'état de l'art ainsi que des modèles, mais aussi des problèmes ouverts dont nous n'avons encore qu'une compréhension parcellaire, et pour lesquels les approches de la physique pourraient être particulièrement utiles. Nous terminerons cette brève revue en discutant la faisabilité de la construction d'une science des villes.

Cities are systems with a large number of constituents and agents interacting with each other and can be considered as emblematic of complex systems. Modeling these systems is a real challenge and triggered the interest of many disciplines such as quantitative geography, spatial economics, geomatics and urbanism, and more recently physics. (Statistical) Physics plays a major role by bringing tools and concepts able to bridge theory and empirical results, and we will illustrate this on some fundamental aspects of cities: the growth of their surface area and their population, their spatial organization, and the spatial distribution of activities. We will present state-of-the-art results and models but also open problems for which we still have a partial understanding and where physics approaches could be particularly helpful. We will end this short review with a discussion about the possibility of constructing a science of cities.

Publié le :
DOI : 10.1016/j.crhy.2019.05.005
Keywords: Science of cities, Statistical Physics, Urban economics
Mot clés : Science des villes, Physique Statistique, Economie urbaine

Marc Barthelemy 1, 2

1 Institut de physique théorique, CEA–CNRS URA 2306, 91191 Gif-sur-Yvette, France
2 CAMS (CNRS/EHESS), 54, Boulevard Raspail, 75006 Paris, France
@article{CRPHYS_2019__20_4_293_0,
     author = {Marc Barthelemy},
     title = {Modeling cities},
     journal = {Comptes Rendus. Physique},
     pages = {293--307},
     publisher = {Elsevier},
     volume = {20},
     number = {4},
     year = {2019},
     doi = {10.1016/j.crhy.2019.05.005},
     language = {en},
}
TY  - JOUR
AU  - Marc Barthelemy
TI  - Modeling cities
JO  - Comptes Rendus. Physique
PY  - 2019
SP  - 293
EP  - 307
VL  - 20
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crhy.2019.05.005
LA  - en
ID  - CRPHYS_2019__20_4_293_0
ER  - 
%0 Journal Article
%A Marc Barthelemy
%T Modeling cities
%J Comptes Rendus. Physique
%D 2019
%P 293-307
%V 20
%N 4
%I Elsevier
%R 10.1016/j.crhy.2019.05.005
%G en
%F CRPHYS_2019__20_4_293_0
Marc Barthelemy. Modeling cities. Comptes Rendus. Physique, Volume 20 (2019) no. 4, pp. 293-307. doi : 10.1016/j.crhy.2019.05.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.05.005/

[1] United Nations World urbanization prospects, 2018 https://esa.un.org/unpd/wup/

[2] M. Barthelemy The Structure and Dynamics of Cities, Cambridge University Press, 2016

[3] M. Fujita Urban Economic Theory: Land Use and City Size, Cambridge University Press, 1989

[4] J.H. Von Thunen; P.G. Hall Isolated State, Pergamon, 1966

[5] M. Fujita; H. Ogawa Multiple equilibria and structural transition of non-monocentric urban configurations, Reg. Sci. Urban Econ., Volume 12 (1982) no. 2, pp. 161-196

[6] M. Fujita; P.R. Krugman; A.J. Venables The Spatial Economy: Cities, Regions, and International Trade, MIT Press, 2001

[7] M. Batty Fifty years of urban modeling: macro-statics to micro-dynamics, The Dynamics of Complex Urban Systems, Springer, 2008, pp. 1-20

[8] P. Denise; L. Sanders Theoretical principles in interurban simulation models: a comparison, Environ. Plan. A, Volume 45 (2013) no. 9, pp. 2243-2260

[9] M. Batty; P.A. Longley Fractal Cities: A Geometry of Form and Function, Academic Press, 1994

[10] C. Tannier; D. Pumain Fractals in urban geography: a theoretical outline and an empirical example, Cybergeo: Eur. J. Geogr. (2005)

[11] T.A. Witten; L.M. Sander Diffusion-limited aggregation, Phys. Rev. B, Volume 27 (1983) no. 9, p. 5686

[12] H.A. Makse; S. Havlin; H.E. Stanley Modelling urban growth, Nature, Volume 377 (1995) no. 19

[13] H.A. Makse; J.S. Andrade; M. Batty; S. Havlin; H.E. Stanley et al. Modeling urban growth patterns with correlated percolation, Phys. Rev. E, Volume 58 (1998) no. 6, p. 7054

[14] H.D. Rozenfeld; D. Rybski; J.S. Andrade; M. Batty; H.E. Stanley; H.A. Makse Laws of population growth, Proc. Natl. Acad. Sci. USA, Volume 105 (2008) no. 48, pp. 18702-18707

[15] T.C. Schelling Dynamic models of segregation, J. Math. Sociol., Volume 1 (1971) no. 2, pp. 143-186

[16] V. Dejan; A. Kirman A physical analogue of the schelling model, Proc. Natl. Acad. Sci. USA, Volume 103 (2006) no. 51, pp. 19261-19265

[17] S. Grauwin; É. Bertin; R. Lemoy; P. Jensen Competition between collective and individual dynamics, Proc. Natl. Acad. Sci. USA, Volume 106 (2009) no. 49, pp. 20622-20626

[18] L. Gauvin; J. Vannimenus; J-P. Nadal Phase diagram of a schelling segregation model, Eur. Phys. J. B, Volume 70 (2009) no. 2, pp. 293-304

[19] L. DallAsta; C. Castellano; M. Marsili Statistical physics of the Schelling model of segregation, J. Stat. Mech. Theory Exp., Volume 2008 (2008) no. 07

[20] P. Jensen; T. Matreux; J. Cambe; H. Larralde; É. Bertin Giant catalytic effect of altruists in schellings segregation model, Phys. Rev. Lett., Volume 120 (2018) no. 20

[21] M. Batty The New Science of Cities, MIT Press, 2013

[22] L. Bettencourt; J. Lobo; H. Youn The hypothesis of urban scaling: formalization, implications and challenges, 2013 (preprint) | arXiv

[23] J.K. Brueckner et al. Urban sprawl: diagnosis and remedies, Int. Reg. Sci. Rev., Volume 23 (2000) no. 2, pp. 160-171

[24] R. Ewing; T. Schmid; R. Killingsworth; A. Zlot; S. Raudenbush Relationship between urban sprawl and physical activity, obesity, and morbidity, Urban Ecology, Springer, 2008, pp. 567-582

[25] S. Angel; S. Sheppard; D.L. Civco; R. Buckley; A. Chabaeva; L. Gitlin; A. Kraley; J. Parent; M. Perlin The Dynamics of Global Urban Expansion, Citeseer, 2005

[26] J.C. Leitão; J. María Miotto; M. Gerlach; E.G. Altmann Is this scaling nonlinear?, R. Soc. Open Sci., Volume 3 (2016) no. 7

[27] L.M.A. Bettencourt The origins of scaling in cities, Science, Volume 340 (2013) no. 6139, pp. 1438-1441

[28] D. Pumain, Scaling laws and urban systems. Santa Fe Institute, Working Paper n 04-02, 2:26, 2004.

[29] L.M.A. Bettencourt; J. Lobo; D. Helbing; C. Kühnert; G.B. West Growth, innovation, scaling, and the pace of life in cities, Proc. Natl. Acad. Sci. USA, Volume 104 (2007) no. 17, pp. 7301-7306

[30] N. Shigesada; K. Kawasaki, Oxford University Press, USA (1997), p. 79103 (chapter 5)

[31] J.S. Clark; M. Lewis; L. Horvath Invasion by extremes: population spread with variation in dispersal and reproduction, Am. Nat., Volume 157 (2001) no. 5, pp. 537-554

[32] K. Iwata; K. Kawasaki; N. Shigesada A dynamical model for the growth and size distribution of multiple metastatic tumors, J. Theor. Biol., Volume 203 (2000) no. 2, pp. 177-186

[33] V. Haustein; U. Schumacher A dynamical model for tumour growth and metastasis formation, J. Clin. Bioinform., Volume 2 (2012) no. 1

[34] R.A. Fisher The wave of advance of advantageous genes, Ann. Hum. Genet., Volume 7 (1937) no. 4, pp. 355-369

[35] N. Shigesada; K. Kawasaki, Blackwell Science (2002), p. 350373 (chapter 17)

[36] K. Stanilov Planning the growth of a metropolis: factors influencing development patterns in West London, 1875–2005, J. Plan. Hist., Volume 12 (2013) no. 1, pp. 28-48

[37] G. Carra; K. Mallick; M. Barthelemy Coalescing colony model: mean-field, scaling, and geometry, Phys. Rev. E, Volume 96 (2017) no. 6

[38] J.-P. Bouchaud Econophysics: still fringe after 30 years?, 2019 (preprint) | arXiv

[39] G.K. Zipf Human Behavior and the Principle of Least Effort, Addison-Wesley Press, 1949

[40] M. Batty Rank clocks, Nature, Volume 444 (2006) no. 7119, pp. 592-596

[41] K.T. Soo Zipf's law for cities: a cross-country investigation, Reg. Sci. Urban Econ., Volume 35 (2005) no. 3, pp. 239-263

[42] R. Gibrat Les inégalités économiques, Recueil Sirey, 1931

[43] M. Marsili; Y.-C. Zhang Interacting individuals leading to Zipf's law, Phys. Rev. Lett., Volume 80 (1998) no. 12, p. 2741

[44] X. Gabaix Zipf's law for cities: an explanation, Q. J. Econ. (1999), pp. 739-767

[45] D. Sornette; R. Cont Convergent multiplicative processes repelled from zero: power laws and truncated power laws, J. Phys. I, Volume 7 (1997) no. 3, pp. 431-444

[46] J.-P. Bouchaud; M. Mézard Wealth condensation in a simple model of economy, Phys. A, Stat. Mech. Appl., Volume 282 (2000) no. 3, pp. 536-545

[47] J.K. Brueckner The structure of urban equilibria: a unified treatment of the Muth–Mills model, Handb. Reg. Urban Econ., Volume 2 (1987), pp. 821-845

[48] E.L. Glaeser; M.E. Kahn; J. Rappaport Why do the poor live in cities? the role of public transportation, J. Urban Econ., Volume 63 (2008) no. 1, pp. 1-24

[49] P.R. Krugman The Self-Organizing Economy, Blackwell, Oxford, UK, 1996

[50] R. Louf; M. Barthelemy Modeling the polycentric transition of cities, Phys. Rev. Lett., Volume 111 (2013) no. 19

[51] T. Louail; M. Lenormand; O.G. Cantu Ros; M. Picornell; R. Herranz; E. Frias-Martinez; J.J. Ramasco; M. Barthelemy From mobile phone data to the spatial structure of cities, Sci. Rep., Volume 4 (2014)

[52] F.J. Dyson Statistical theory of the energy levels of complex systems. i, J. Math. Phys., Volume 3 (1962) no. 1, pp. 140-156

[53] D. Branston Link capacity functions: a review, Transp. Res., Volume 10 (1976) no. 4, pp. 223-236

[54] R. Louf; M. Barthelemy How congestion shapes cities: from mobility patterns to scaling, Sci. Rep., Volume 4 (2014)

[55] V. Verbavatz; M. Barthelemy Critical factors for mitigating car traffic in cities, 2019 (preprint) | arXiv

[56] J. Depersin; M. Barthelemy From global scaling to the dynamics of individual cities, Proc. Natl. Acad. Sci. USA, Volume 115 (2018) no. 10, pp. 2317-2322

[57] Y.S. Chang; Y.J. Lee; S.S.B. Choi Is there more traffic congestion in larger cities? Scaling analysis of the 101 largest us urban centers, Transp. Policy, Volume 59 (2017), pp. 54-63

[58] J.-P. Bouchaud; L.F. Cugliandolo; J. Kurchan; M. Mezard Out of equilibrium dynamics in spin-glasses and other glassy systems, Spin Glass. Rand. Fields (1998), pp. 161-223

[59] E. Strano; V. Nicosia; V. Latora; S. Porta; M. Barthelemy Elementary processes governing the evolution of road networks, Sci. Rep., Volume 2 (2012)

[60] D. Levinson; B. Yerra Self-organization of surface transportation networks, Transp. Sci., Volume 40 (2006) no. 2, pp. 179-188

[61] M. Kivelä; A. Arenas; M. Barthelemy; J.P. Gleeson; Y. Moreno; M.A. Porter Multilayer networks, J. Complex Netw., Volume 2 (2014) no. 3, pp. 203-271

[62] R. Gallotti; M. Barthelemy Anatomy and efficiency of urban multimodal mobility, Sci. Rep., Volume 4 (2014)

[63] E. Strano; S. Shai; S. Dobson; M. Barthelemy Multiplex networks in metropolitan areas: generic features and local effects, J. R. Soc. Interface, Volume 12 (2015) no. 111

[64] J.M. Sobstyl; T. Emig; M.J. Abdolhosseini Qomi; F.-J. Ulm; R.J-M. Pellenq Role of city texture in urban heat islands at nighttime, Phys. Rev. Lett., Volume 120 (2018) no. 10

Cité par Sources :

Commentaires - Politique