[Le ferromagnétisme marginal à basse température explique les corrélations à longue portée dans les essaims d'oiseaux]
Nous introduisons un nouveau modèle ferromagnétique capable de reproduire l'une des propriétés les plus intrigantes du comportement collectif des essaims d'oiseaux, à savoir le fait qu'un ordre collectif fort coexiste avec des corrélations sans échelle du module des degrés de liberté microscopiques, à savoir les vitesses des oiseaux. L'idée-clé de la nouvelle théorie est que le potentiel à un corps nécessaire pour lier le module des degrés de liberté microscopiques autour d'une valeur finie est marginal, c'est-à-dire qu'il a une courbure nulle. Nous étudions le modèle en utilisant l'approximation du champ moyen et les simulations de Monte-Carlo en trois dimensions, complétées par l'analyse à l'échelle finie. Alors qu'à la température critique standard,
We introduce a new ferromagnetic model capable of reproducing one of the most intriguing properties of collective behaviour in starling flocks, namely the fact that strong collective order coexists with scale-free correlations of the modulus of the microscopic degrees of freedom, that is, the birds' speeds. The key idea of the new theory is that the single-particle potential needed to bound the modulus of the microscopic degrees of freedom around a finite value is marginal, that is, it has zero curvature. We study the model by using mean-field approximation and Monte Carlo simulations in three dimensions, complemented by finite-size scaling analysis. While at the standard critical temperature,
Mots-clés : Comportement collectif, Physique statistique, Simulation Monte-Carlo
Andrea Cavagna 1 ; Antonio Culla 1, 2 ; Luca Di Carlo 1, 2 ; Irene Giardina 1, 2, 3 ; Tomas S. Grigera 4, 5, 6
@article{CRPHYS_2019__20_4_319_0, author = {Andrea Cavagna and Antonio Culla and Luca Di Carlo and Irene Giardina and Tomas S. Grigera}, title = {Low-temperature marginal ferromagnetism explains anomalous scale-free correlations in natural flocks}, journal = {Comptes Rendus. Physique}, pages = {319--328}, publisher = {Elsevier}, volume = {20}, number = {4}, year = {2019}, doi = {10.1016/j.crhy.2019.05.008}, language = {en}, }
TY - JOUR AU - Andrea Cavagna AU - Antonio Culla AU - Luca Di Carlo AU - Irene Giardina AU - Tomas S. Grigera TI - Low-temperature marginal ferromagnetism explains anomalous scale-free correlations in natural flocks JO - Comptes Rendus. Physique PY - 2019 SP - 319 EP - 328 VL - 20 IS - 4 PB - Elsevier DO - 10.1016/j.crhy.2019.05.008 LA - en ID - CRPHYS_2019__20_4_319_0 ER -
%0 Journal Article %A Andrea Cavagna %A Antonio Culla %A Luca Di Carlo %A Irene Giardina %A Tomas S. Grigera %T Low-temperature marginal ferromagnetism explains anomalous scale-free correlations in natural flocks %J Comptes Rendus. Physique %D 2019 %P 319-328 %V 20 %N 4 %I Elsevier %R 10.1016/j.crhy.2019.05.008 %G en %F CRPHYS_2019__20_4_319_0
Andrea Cavagna; Antonio Culla; Luca Di Carlo; Irene Giardina; Tomas S. Grigera. Low-temperature marginal ferromagnetism explains anomalous scale-free correlations in natural flocks. Comptes Rendus. Physique, Volume 20 (2019) no. 4, pp. 319-328. doi : 10.1016/j.crhy.2019.05.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.05.008/
[1] Field theories with superconductor solutions, Il Nuovo Cimento (1955–1965), Volume 19 (1961), pp. 154-164
[2] Broken symmetries, Phys. Rev., Volume 127 (1962), pp. 965-970 https://link.aps.org/doi/10.1103/PhysRev.127.965 | DOI
[3] Fluctuation Theory of Phase Transitions, Pergamon Press, 1979
[4] Finite-size scaling theory, Finite Size Scaling and Numerical Simulation of Statistical Systems, vol. 1, 1990
[5] Quantum Field Theory, Cambridge University Press, 1996
[6] Collective motion, Phys. Rep., Volume 517 (2012), pp. 71-140
[7] Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., Volume 75 (1995), pp. 1226-1229
[8] Modeling collective motion: variations on the Vicsek model, Eur. Phys. J. B, Volume 64 (2008), pp. 451-456
[9] et al. Flocking and turning: a new model for self-organized collective motion, J. Stat. Phys., Volume 158 (2015), pp. 601-627
[10] Scale-free correlations in starling flocks, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 11865-11870 | DOI
[11] Social interactions dominate speed control in poising natural flocks near criticality, Proc. Natl. Acad. Sci. USA, Volume 111 (2014), pp. 7212-7217 https://www.pnas.org/content/111/20/7212 https://www.pnas.org/content/111/20/7212.full.pdf (arXiv:) | DOI
[12] The Theory of Critical Phenomena: An Introduction to the Renormalization Group, Oxford University Press, Inc., 1992
[13] Local equilibrium in bird flocks, Nat. Phys., Volume 12 (2016), pp. 1153-1157
[14] Modern Theory of Critical Phenomena, Advanced Book Classics, Perseus Books, 2000
[15] Lectures on Phase Transitions and the Renormalization Group, Perseus Books, Reading, Massachusetts, 1992
[16] Statistical Field Theory, Frontiers in Physics, Addison-Wesley, Redwood City, CA, 1988 https://cds.cern.ch/record/111935
[17] Monte Carlo Methods in Statistical Physics, Oxford University Press, 2001
[18] Weak convergence and optimal scaling of random walk metropolis algorithms, Ann. Appl. Probab., Volume 7 (1997), pp. 110-120 | DOI
[19] Longitudinal susceptibility and correlations in degenerate systems, Zh. Eksp. Teor. Fiz., Volume 64 (1973), p. 1445
[20] Critical behavior of a classical Heisenberg ferromagnet with many degrees of freedom, Phys. Rev. B (1973)
[21] Statistical Physics of Fields, Cambridge University Press, Cambridge, UK, 2007
[22] The introduction of the idea that exponents could be derived from real-space scaling arguments, Physics, Volume 2 (1966), pp. 263-273
[23] Critical exponents from field theory, Phys. Rev. B, Volume 21 (1980), pp. 3976-3998 https://link.aps.org/doi/10.1103/PhysRevB.21.3976 | DOI
[24] Critical exponents of the classical three-dimensional Heisenberg model: a single-cluster Monte Carlo study, Phys. Rev. B, Volume 48 (1993), pp. 936-950 https://link.aps.org/doi/10.1103/PhysRevB.48.936 | DOI
[25] Long-range order in a two-dimensional dynamical xy model: how birds fly together, Phys. Rev. Lett., Volume 75 (1995), pp. 4326-4329
[26] Weak pairwise correlations imply strongly correlated network states in a neural population, Nature, Volume 440 (2006), pp. 1007-1012 | DOI
[27] Emergent dynamics of laboratory insect swarms, Sci. Rep., Volume 3 (2013), p. 1073
[28] Collective motion and density fluctuations in bacterial colonies, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 13626-13630
[29] Critical fluctuations in the native state of proteins, Phys. Rev. Lett., Volume 118 (2017)
[30] Are biological systems poised at criticality?, J. Stat. Phys., Volume 144 (2011), pp. 268-302 | DOI
[31] Temporal filtering in retinal bipolar cells. Elements of an optimal computation?, Biophys. J., Volume 58 (1990), pp. 1227-1233 https://www.ncbi.nlm.nih.gov/pubmed/2291942 | DOI
Cité par Sources :
Commentaires - Politique