Comptes Rendus
From statistical physics to social sciences / De la physique statistique aux sciences sociales
Low-temperature marginal ferromagnetism explains anomalous scale-free correlations in natural flocks
[Le ferromagnétisme marginal à basse température explique les corrélations à longue portée dans les essaims d'oiseaux]
Comptes Rendus. Physique, Volume 20 (2019) no. 4, pp. 319-328.

Nous introduisons un nouveau modèle ferromagnétique capable de reproduire l'une des propriétés les plus intrigantes du comportement collectif des essaims d'oiseaux, à savoir le fait qu'un ordre collectif fort coexiste avec des corrélations sans échelle du module des degrés de liberté microscopiques, à savoir les vitesses des oiseaux. L'idée-clé de la nouvelle théorie est que le potentiel à un corps nécessaire pour lier le module des degrés de liberté microscopiques autour d'une valeur finie est marginal, c'est-à-dire qu'il a une courbure nulle. Nous étudions le modèle en utilisant l'approximation du champ moyen et les simulations de Monte-Carlo en trois dimensions, complétées par l'analyse à l'échelle finie. Alors qu'à la température critique standard, Tc, les propriétés du modèle marginal sont exactement les mêmes que celles d'un ferromagnétique normal avec rupture de symétrie continue, nos résultats montrent qu'un nouveau point critique à température nulle émerge, de sorte que, dans sa phase profondément ordonnée, le modèle marginal développe une susceptibilité divergente et une longueur de corrélation du module des degrés de liberté microscopiques, en analogie complète avec les données expérimentales sur des essaims naturels d'oiseaux.

We introduce a new ferromagnetic model capable of reproducing one of the most intriguing properties of collective behaviour in starling flocks, namely the fact that strong collective order coexists with scale-free correlations of the modulus of the microscopic degrees of freedom, that is, the birds' speeds. The key idea of the new theory is that the single-particle potential needed to bound the modulus of the microscopic degrees of freedom around a finite value is marginal, that is, it has zero curvature. We study the model by using mean-field approximation and Monte Carlo simulations in three dimensions, complemented by finite-size scaling analysis. While at the standard critical temperature, Tc, the properties of the marginal model are exactly the same as a normal ferromagnet with continuous symmetry breaking, our results show that a novel zero-temperature critical point emerges, so that in its deeply ordered phase the marginal model develops divergent susceptibility and correlation length of the modulus of the microscopic degrees of freedom, in complete analogy with experimental data on natural flocks of starlings.

Publié le :
DOI : 10.1016/j.crhy.2019.05.008
Keywords: Collective behaviour, Statistical physics, Monte Carlo simulations
Mot clés : Comportement collectif, Physique statistique, Simulation Monte-Carlo

Andrea Cavagna 1 ; Antonio Culla 1, 2 ; Luca Di Carlo 1, 2 ; Irene Giardina 1, 2, 3 ; Tomas S. Grigera 4, 5, 6

1 Istituto Sistemi Complessi, Consiglio Nazionale delle Ricerche, 00185 Roma, Italy
2 Dipartimento di Fisica, Università “La Sapienza”, 00185 Roma, Italy
3 INFN, Unità di Roma 1, 00185 Roma, Italy
4 Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), CONICET y Universidad Nacional de La Plata, Calle 59 no. 789, B1900BTE La Plata, Argentina
5 CCT CONICET La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
6 Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
@article{CRPHYS_2019__20_4_319_0,
     author = {Andrea Cavagna and Antonio Culla and Luca Di Carlo and Irene Giardina and Tomas S. Grigera},
     title = {Low-temperature marginal ferromagnetism explains anomalous scale-free correlations in natural flocks},
     journal = {Comptes Rendus. Physique},
     pages = {319--328},
     publisher = {Elsevier},
     volume = {20},
     number = {4},
     year = {2019},
     doi = {10.1016/j.crhy.2019.05.008},
     language = {en},
}
TY  - JOUR
AU  - Andrea Cavagna
AU  - Antonio Culla
AU  - Luca Di Carlo
AU  - Irene Giardina
AU  - Tomas S. Grigera
TI  - Low-temperature marginal ferromagnetism explains anomalous scale-free correlations in natural flocks
JO  - Comptes Rendus. Physique
PY  - 2019
SP  - 319
EP  - 328
VL  - 20
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crhy.2019.05.008
LA  - en
ID  - CRPHYS_2019__20_4_319_0
ER  - 
%0 Journal Article
%A Andrea Cavagna
%A Antonio Culla
%A Luca Di Carlo
%A Irene Giardina
%A Tomas S. Grigera
%T Low-temperature marginal ferromagnetism explains anomalous scale-free correlations in natural flocks
%J Comptes Rendus. Physique
%D 2019
%P 319-328
%V 20
%N 4
%I Elsevier
%R 10.1016/j.crhy.2019.05.008
%G en
%F CRPHYS_2019__20_4_319_0
Andrea Cavagna; Antonio Culla; Luca Di Carlo; Irene Giardina; Tomas S. Grigera. Low-temperature marginal ferromagnetism explains anomalous scale-free correlations in natural flocks. Comptes Rendus. Physique, Volume 20 (2019) no. 4, pp. 319-328. doi : 10.1016/j.crhy.2019.05.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.05.008/

[1] J. Goldstone Field theories with superconductor solutions, Il Nuovo Cimento (1955–1965), Volume 19 (1961), pp. 154-164

[2] J. Goldstone; A. Salam; S. Weinberg Broken symmetries, Phys. Rev., Volume 127 (1962), pp. 965-970 https://link.aps.org/doi/10.1103/PhysRev.127.965 | DOI

[3] A.Z. Patashinskii; V.L. Pokrovskii Fluctuation Theory of Phase Transitions, Pergamon Press, 1979

[4] V. Privman Finite-size scaling theory, Finite Size Scaling and Numerical Simulation of Statistical Systems, vol. 1, 1990

[5] L.H. Ryder Quantum Field Theory, Cambridge University Press, 1996

[6] T. Vicsek; A. Zafeiris Collective motion, Phys. Rep., Volume 517 (2012), pp. 71-140

[7] T. Vicsek; A. Czirók; E. Ben-Jacob; I. Cohen; O. Shochet Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., Volume 75 (1995), pp. 1226-1229

[8] H. Chaté; F. Ginelli; G. Grégoire; F. Peruani; F. Raynaud Modeling collective motion: variations on the Vicsek model, Eur. Phys. J. B, Volume 64 (2008), pp. 451-456

[9] A. Cavagna; L. Del Castello; I. Giardina; T. Grigera; A. Jelic; S. Melillo; T. Mora; L. Parisi; E. Silvestri; M. Viale et al. Flocking and turning: a new model for self-organized collective motion, J. Stat. Phys., Volume 158 (2015), pp. 601-627

[10] A. Cavagna; A. Cimarelli; I. Giardina; G. Parisi; R. Santagati; F. Stefanini; M. Viale Scale-free correlations in starling flocks, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 11865-11870 | DOI

[11] W. Bialek; A. Cavagna; I. Giardina; T. Mora; O. Pohl; E. Silvestri; M. Viale; A.M. Walczak Social interactions dominate speed control in poising natural flocks near criticality, Proc. Natl. Acad. Sci. USA, Volume 111 (2014), pp. 7212-7217 https://www.pnas.org/content/111/20/7212 https://www.pnas.org/content/111/20/7212.full.pdf (arXiv:) | DOI

[12] J.J. Binney; N. Dowrick; A. Fisher; M. Newman The Theory of Critical Phenomena: An Introduction to the Renormalization Group, Oxford University Press, Inc., 1992

[13] T. Mora; A.M. Walczak; L. Del Castello; F. Ginelli; S. Melillo; L. Parisi; M. Viale; A. Cavagna; I. Giardina Local equilibrium in bird flocks, Nat. Phys., Volume 12 (2016), pp. 1153-1157

[14] S.-K. Ma Modern Theory of Critical Phenomena, Advanced Book Classics, Perseus Books, 2000

[15] N. Goldenfeld Lectures on Phase Transitions and the Renormalization Group, Perseus Books, Reading, Massachusetts, 1992

[16] G. Parisi Statistical Field Theory, Frontiers in Physics, Addison-Wesley, Redwood City, CA, 1988 https://cds.cern.ch/record/111935

[17] G. Barkema; M. Newman Monte Carlo Methods in Statistical Physics, Oxford University Press, 2001

[18] G.O. Roberts; A. Gelman; W.R. Gilks Weak convergence and optimal scaling of random walk metropolis algorithms, Ann. Appl. Probab., Volume 7 (1997), pp. 110-120 | DOI

[19] A.Z. Patashinskii; V.L. Pokrovskii Longitudinal susceptibility and correlations in degenerate systems, Zh. Eksp. Teor. Fiz., Volume 64 (1973), p. 1445

[20] E. Breźin; D.J. Wallace Critical behavior of a classical Heisenberg ferromagnet with many degrees of freedom, Phys. Rev. B (1973)

[21] M. Kardar Statistical Physics of Fields, Cambridge University Press, Cambridge, UK, 2007

[22] L. Kadanoff The introduction of the idea that exponents could be derived from real-space scaling arguments, Physics, Volume 2 (1966), pp. 263-273

[23] J.C. Le Guillou; J. Zinn-Justin Critical exponents from field theory, Phys. Rev. B, Volume 21 (1980), pp. 3976-3998 https://link.aps.org/doi/10.1103/PhysRevB.21.3976 | DOI

[24] C. Holm; W. Janke Critical exponents of the classical three-dimensional Heisenberg model: a single-cluster Monte Carlo study, Phys. Rev. B, Volume 48 (1993), pp. 936-950 https://link.aps.org/doi/10.1103/PhysRevB.48.936 | DOI

[25] J. Toner; Y. Tu Long-range order in a two-dimensional dynamical xy model: how birds fly together, Phys. Rev. Lett., Volume 75 (1995), pp. 4326-4329

[26] E. Schneidman; M.J. Berry; R. Segev; W. Bialek Weak pairwise correlations imply strongly correlated network states in a neural population, Nature, Volume 440 (2006), pp. 1007-1012 | DOI

[27] D.H. Kelley; N.T. Ouellette Emergent dynamics of laboratory insect swarms, Sci. Rep., Volume 3 (2013), p. 1073

[28] H.-P. Zhang; A. Be'er; E.-L. Florin; H.L. Swinney Collective motion and density fluctuations in bacterial colonies, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 13626-13630

[29] Q.-Y. Tang; Y.-Y. Zhang; J. Wang; W. Wang; D.R. Chialvo Critical fluctuations in the native state of proteins, Phys. Rev. Lett., Volume 118 (2017)

[30] T. Mora; W. Bialek Are biological systems poised at criticality?, J. Stat. Phys., Volume 144 (2011), pp. 268-302 | DOI

[31] W. Bialek; W.G. Owen Temporal filtering in retinal bipolar cells. Elements of an optimal computation?, Biophys. J., Volume 58 (1990), pp. 1227-1233 https://www.ncbi.nlm.nih.gov/pubmed/2291942 | DOI

Cité par Sources :

Commentaires - Politique