L'objectif de cette publication est de faire émerger le fil conducteur qui m'a guidé sur un chemin parfois chaotique depuis la spectroscopie jusqu'à l'interférométrie atomique. La recherche d'un pouvoir de résolution toujours croissant a entraîné les spectroscopistes à prendre en compte le mouvement externe des atomes et des molécules. L'élargissement Doppler habituel puis l'effet Doppler relativiste pouvaient s'accommoder d'un traitement classique de ce mouvement externe. Mais l'effet de recul s'est imposé pour faire respecter la conservation de la quantité de mouvement entre atomes et lumière. Dès lors, il était devenu impératif de traiter simultanément et de façon quantique les degrés de liberté internes et les degrés de liberté externes des atomes et molécules. Les processus impliqués dans les différentes méthodes de spectroscopie sont alors apparus comme des phénomènes d'interférence quantique entre différents chemins d'espace-temps corrélés avec les changements d'état interne des objets. Ces interférences sont bien représentées par des diagrammes de matrice densité. La notion d'interféromètre atomique est alors rendue manifeste dans ces diagrammes. La méthode des champs séparés de Ramsey peut être interprétée comme un processus interférométrique dans l'espace interne aux atomes qui peut être étendue au domaine optique grâce à une interférence dans l'espace externe qui annule l'effet Doppler du premier ordre. Les nouveaux interféromètres sont des senseurs inertiels en même temps que des horloges, une phase externe s'ajoutant à la phase interne. Une description unifiée se fait naturellement dans un espace à cinq dimensions qui combine ces deux aspects en ajoutant la dimension interne liée au temps propre à l'espace-temps externe. Elle offre une classification naturelle des interféromètres à partir du tenseur métrique et de ses dérivées. À titre d'exemple, on introduit ainsi le concept d'interféromètre chiral pour rechercher une propriété chirale de l'espace-temps, telle que sa torsion.
The objective of this publication is to bring out the common thread that has guided me on a sometimes chaotic path from spectroscopy to atomic interferometry. The search for an ever-increasing resolving power has led spectroscopists to take into account the external motion of atoms and molecules. The usual Doppler broadening and then the relativistic Doppler effect could be accommodated with a classical treatment of this external motion. But the recoil effect has required to introduce explicitly momentum conservation between light and atoms. This has imposed to treat simultaneously internal and external degrees of freedom in a quantum way. The processes involved in the different spectroscopy methods then appeared as quantum interference phenomena between different space-time paths correlated with changes in the internal state of objects. These interferences are well represented by density matrix diagrams. The notion of atomic interferometer is made evident in these diagrams. The Ramsey separate field method can be interpreted as an interferometric process in the internal space of atoms and can be extended to the optical domain through an interference in the external space that cancels out the first-order Doppler effect. The new interferometers are inertial sensors together with clocks, with an external phase added to the internal phase. A unified description is naturally made in a five-dimensional space that combines these two aspects by adding the internal dimension represented by proper time to the external space-time. It offers a natural classification of interferometers from the metric tensor and its derivatives. As an example, we introduce the concept of a chiral interferometer to detect any chirality of space-time such as torsion.
Keywords: Saturation spectroscopy, Recoil effect, Density matrix diagrams, Bordé–Ramsey interferometers, 5D-optics
Christian J. Bordé 1, 2
@article{CRPHYS_2019__20_7-8_682_0, author = {Christian J. Bord\'e}, title = {Des premiers lasers \`a gaz carbonique aux interf\'erom\`etres atomiques et mol\'eculaires}, journal = {Comptes Rendus. Physique}, pages = {682--693}, publisher = {Elsevier}, volume = {20}, number = {7-8}, year = {2019}, doi = {10.1016/j.crhy.2019.07.006}, language = {fr}, }
Christian J. Bordé. Des premiers lasers à gaz carbonique aux interféromètres atomiques et moléculaires. Comptes Rendus. Physique, Volume 20 (2019) no. 7-8, pp. 682-693. doi : 10.1016/j.crhy.2019.07.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.07.006/
[1] Émission du gaz ammoniac excité par le rayonnement d'un laser à gaz carbonique, C. r. hebd. séances Acad. sci., Sér. B, Sci. Phys., Volume 262 (1966), pp. 1389-1390
[2] Comportement de différents gaz soumis au rayonnement d'un laser à gaz carbonique, C. r. hebd. séances Acad. sci., Sér. B, Sci. Phys., Volume 263 (1966), p. 619
[3] Action d'un laser à gaz carbonique sur différents hydrocarbures gazeux insaturés, C. r. hebd. séances Acad. sci., Sér. B, Sci. Phys., Volume 265 (1967), p. 267
[4] Theory of an optical maser, Phys. Rev., Volume 143A (1964), p. 1429
[5] Stabilisation d'un laser à gaz carbonique et observation du phénomène de Lamp dip pour les transitions laser vers , C. r. hebd. séances Acad. sci., Sér. B, Sci. Phys., Volume 265 (1967), pp. 1251-1254
[6] Study of the Lamb dip and of rotational competition in a carbon dioxide laser, IEEE J. Quantum Electron., Volume 4 (1968), pp. 874-880
[7] Spectroscopie d'absorption saturée de diverses molécules au moyen des lasers à gaz carbonique et à protoxyde d'azote, C. r. hebd. séances Acad. sci., Sér. B, Sci. Phys., Volume 271 (1970), pp. 371-374
[8] Ultrahigh resolution saturated absorption spectroscopy (A. Mooradian; R. Brewer, eds.), Laser Spectroscopy, Plenum Press, New York, 1973, pp. 125-142
[9] Direct resolution of the recoil doublets using saturated absorption techniques, Bull. Am. Phys. Soc., Volume 19 (1974), p. 1196
[10] Direct optical resolution of the recoil effect using saturated absorption spectroscopy, Phys. Rev. Lett., Volume 37 (1976), pp. 1339-1342
[11] Sur l'effet de recul en spectroscopie d'absorption saturée, C. r. hebd. séances Acad. sci., Sér. B, Sci. Phys., Volume 283 (1976), pp. 181-184
[12] Atomic interferometry with internal state labelling, Phys. Lett. A, Volume 140 (1989), pp. 10-12
[13] Forme de raie en spectroscopie à deux quanta sans élargissement Doppler, C. r. hebd. séances Acad. sci., Sér. B, Sci. Phys., Volume 282 (1976), pp. 341-344
[14] Saturated absorption line shape: calculation of the transit-time broadening by a perturbation approach, Phys. Rev., Volume 14 (1976), pp. 236-263
[15] Étude de l'effet Stark sur une transition de vibration–rotation de l'ammoniac par spectroscopie d'absorption saturée, C. r. hebd. séances Acad. sci., Sér. B, Sci. Phys., Volume 274 (1972), pp. 411-414
[16] Mise en évidence expérimentale du phénomène de dispersion saturée dans l'iode à 514,5 nm, C. r. hebd. séances Acad. sci., Sér. B, Volume 277 (1973), pp. 381-383
[17] Métrologie fondamentale : unités de base et constantes fondamentales, C. R. Physique, Volume 5 (2004), pp. 813-820
[18] Base units of the SI, fundamental constants and modern quantum physics, Philos. Trans. R. Soc., Volume 363 (2005) no. 2177–2202, p. 2182
[19] Atomic clocks and inertial sensors, Metrologia, Volume 39 (2002) no. 5, pp. 435-463
[20] Atom Interferometry (P. Berman, ed.), Academic Press, 1997
[21] Guglielmo M. Tino, Mark A. Kasevich (Eds.), Proceedings of the International School of Physics “Enrico Fermi” – Course CLXXXVIII, Atom Interferometry, 2014.
[22] Matter–wave interferometers: a synthetic approach (P. Berman, ed.), Atom Interferometry, Academic Press, 1997, pp. 257-292
[23] Atom interferometry using internal excitation: foundations and recent theory, International School of Physics “Enrico Fermi” – Course CLXXXVIII, Atom Interferometry, 2014, pp. 143-170
[24] On the theory of linear absorption line shapes in gases, C. R. Physique, Volume 10 (2009), pp. 866-882
[25] Sur les franges de Ramsey en spectroscopie sans élargissement Doppler, C. r. hebd. séances Acad. sci., Sér. B, Sci. Phys., Volume 284 (1977), pp. 101-104
[26] Influence de la dégénérescence des niveaux sur les intensités des composantes d'effet de recul en spectroscopie de saturation, C. r. hebd. séances Acad. sci., Sér. B, Sci. Phys., Volume 285 (1977), p. 287
[27] Theory of relative intensities of hyperfine components in saturation spectroscopy, J. Mol. Spectrosc., Volume 78 (1979), pp. 353-378
[28] Measurement of the recoil shift of saturation resonances of at 514.5 nm: a test of accuracy for high resolution saturation spectroscopy, Phys. Rev. A, Volume 20 (1979), pp. 254-268
[29] Observation of optical Ramsey fringes in the spectral region using a supersonic beam of SF6, J. Phys., Colloq., Volume 42 (1981), p. C8-15-C8-19
[30] Ramsey fringes using transitions in the visible and spectral regions: experimental methods, J. Phys., Colloq., Volume 42 (1981), p. C8-3-C8-14
[31] Observation of optical Ramsey fringes in the spectral region using a supersonic beam of SF6, Appl. Phys. B, Volume 28 (1982) no. 82, pp. 368-374
[32] Density matrix equations and diagrams for high resolution non-linear laser spectroscopy. Application to Ramsey fringes in the optical domain (H. Walther; F. Strumia; T. Arrecchi, eds.), Advances in Laser Spectroscopy, Plenum Press, 1983, pp. 1-70
[33] Direct optical detection of Ramsey fringes in a supersonic beam of SF6 (H.P. Weber; W. Luthy, eds.), Laser Spectroscopy VI, Springer-Verlag, 1983, pp. 150-160
[34] Optical Ramsey fringes with travelling waves, Phys. Rev. A, Volume 30 (1984), pp. 1836-1848
[35] Internal dynamics of simple molecules revealed by the superfine and hyperfine structures of their infrared spectra (T.W. Haensch; Y.R. Shen, eds.), Laser Spectroscopy VII, Springer-Verlag, 1985, pp. 108-114
[36] Méthodes optiques de détection des ondes gravitationnelles, Ann. Phys. Fr., Volume 10 (1985), p. R1-R2
[37] Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter–wave interferometer, Phys. Rev. Lett., Volume 67 (1991), pp. 177-180
[38] et al. Quantum physics exploring gravity in the outer Solar System: the SAGAS project, Exp. Astron., Volume 23 (2009), pp. 651-687 | arXiv
[39] et al. Matter wave explorer of gravity, Exp. Astron., Volume 23 (2009), pp. 611-649
[40] et al. GAUGE: the Grand Unification and Gravity Explorer, Exp. Astron., Volume 23 (2009), pp. 549-572
[41] Molecular interferometry experiments, Phys. Lett. A, Volume 188 (1994), pp. 187-197
[42] Measurement of the Boltzmann constant by the Doppler broadening technique at a accuracy level, C. R. Physique, Volume 10 (2009), pp. 883-893
[43] The physics of optical frequency standards using saturation methods (A. de Marchi, ed.), Frequency Standards and Metrology, Springer-Verlag, 1989, pp. 196-205
[44] Propagation of Laser beams and of atomic systems, 1990 (Fundamental Systems in Quantum Optics) (1992)
[45] Atomic interferometry and laser spectroscopy, Laser Spectroscopy X, World Scientific, 1991, pp. 239-245
[46] New optical interferometers for precise measurements of recoil shifts. Application to atomic hydrogen (L. Bloomfield; T. Gallagher; D. Larson, eds.), Laser Spectroscopy, American Institute of Physics, 1994, pp. 76-78
[47] Doppler-free two-photon Ramsey fringes in the region, Nijmegen, The Netherlands (1994), pp. 101-121
[48] Atominterferometrie und Gravitation, Phys. Bl., Volume 52 (1996), pp. 238-240
[49] Atomic and molecular interferometers: from basic concepts to applications as field sensors (J. Bergquist, ed.), Frequency Standards and Metrology, World Scientific, 1996, pp. 211-222
[50] Quantum theory of clocks and of gravitational sensors using atom interferometry (R. Blatt; J. Eschner; D. Leibfried; F. Schmidt-Kaler, eds.), Laser Spectroscopy, Proceedings of the 14th International Conference on Laser Spectroscopy, World Scientific, Singapore, 1999, pp. 160-169
[51] Relativistic phase shift for Dirac particles interacting with weak gravitational fields in matter-wave interferometers (C. Lämmerzahl; C.W.F. Everitt; F.W. Hehl, eds.), Gyros, Clocks and Interferometers: Testing Relativistic Gravity in Space, Springer-Verlag, 2000, pp. 403-438 | arXiv
[52] Réalisation d'un gyromètre à atomes froids, J. Phys. IV, Volume 10 (2000), pp. 171-172
[53] Theoretical tools for atom optics and interferometry, C. R. Acad. Sci. Paris, Ser. IV, Volume 2 (2001), pp. 509-530
[54] Hydrogen atom interferometer with short light pulses, Europhys. Lett., Volume 57 (2002), pp. 158-163
[55] Atomic clocks and atom interferometry (P.G. Bergmann; V. de Sabbata, eds.), Advances in the Interplay Between Quantum and Gravity Physics, Kluwer Academic Publishers, 2002, pp. 27-55
[56] Quantum theory of atom-wave beam splitters and application to multidimensional atomic gravito-inertial sensors, Gen. Relativ. Gravit., Volume 36 (2004), pp. 475-502
[57] Cold atom gyroscope for precision measurements (P. Hannaford; A. Sidorov; H. Bachor; K. Baldwin, eds.), Laser Spectroscopy, World Scientific, 2004, pp. 68-70
[58] Interféromètre à atomes froids : vers un gyromètre-accéléromètre de grande sensibilité, J. Phys. IV France, Volume 119 (2004), pp. 225-226
[59] Preface, Gen. Relativ. Gravit., Volume 36 (2004) no. 10, pp. 2193-2196
[60] Six-axis inertial sensor using cold-atom interferometry, Phys. Rev. Lett., Volume 97 (2006)
[61] Atom interferometric inertial sensors for space applications (H. Dittus; C. Laemmerzahl; S.G. Turyshev, eds.), Lasers, Clocks and Drag-Free: Exploration of Relativistic Gravity in Space, Springer, 2006
[62] La réforme du système d'unités, Lett. Acad. Sci., Volume 20 (2007), pp. 21-27
[63] Atom interferometers and optical atomic clocks: new quantum sensors for fundamental physics experiments in space, Nucl. Phys. B, Proc. Suppl., Volume 166 (2007), pp. 159-165
[64] 5D optics for atomic clocks and gravito-inertial sensors, Eur. Phys. J. Spec. Top., Volume 163 (2008), pp. 315-332
[65] Matter-wave physics with nanoparticles and biomolecules, Contribution to Les Houches Summer School, Session CVII – Current Trends in Atomic Physics, July 2016
[66] Matter-wave interferometry with composite quantum objects | arXiv
[67] Future gravitational wave detectors based on atom interferometry (G. Auger; E. Plagnol, eds.), An Overview of Gravitational Waves: Theory and Detection, World Scientific, 2017
[68] State of the art in the determination of the fine structure constant and the ratio , C. R. Physique, Volume 20 (2019) no. 1–2, pp. 77-91 (and references therein) | arXiv
[69] The unit of time: present and future directions, C. R. Physique, Volume 20 (2019) no. 1–2, pp. 153-168 (and references therein)
[70] Precision atom interferometry with light pulses (P. Berman, ed.), Atom Interferometry, Academic Press, 1997, pp. 363-406
[71] et al. Atom interferometry based on separated light pulses (P. Berman, ed.), Atom Interferometry, Academic Press, 1997, pp. 293-362
[72] The ampere and the electrical units in the quantum era, C. R. Physique, Volume 20 (2019) no. 1–2, pp. 92-128
[73] Special issue on The new International System of Units, C. R. Physique, 20(1–2) (2019).
[74] Determinations of the Boltzmann constant, C. R. Physique, Volume 20 (2019) no. 1–2, pp. 129-139
[75] A consistent unified framework for the new system of units: matter-wave optics, C. R. Physique, Volume 20 (2019) no. 1–2, pp. 22-32
Cité par Sources :
Commentaires - Politique