Comptes Rendus
Les effets optiques de la turbulence atmosphérique dans les images astronomiques
[Optical effects of atmospheric turbulence in astronomical images]
Comptes Rendus. Physique, Volume 23 (2022) no. S1, pp. 269-291.

The often blurry appearance of astronomical images at a telescope focus is attributed to atmospheric agitation.

The study of the light propagation through the turbulent Earth atmosphere has made it possible to understand the existence of optical turbulence resulting from diffraction phenomena that accompany the refraction of light rays.

Optical turbulence is described by parameters (Fried parameter, isoplanetism angle, coherence time, external scale) which characterize the amplitude and the phase of the wave front on the telescope pupil.

We deduce the properties of the images (short or long exposure) formed at the telescope focus as well as the description of the effects of turbulence on these images (scintillation, agitation, spreading) and on interferometric observations (piston effect).

L’aspect souvent flou des images astronomiques au foyer d’un télescope est attribué à l’agitation atmosphérique.

L’étude de la propagation des ondes lumineuses à travers l’atmosphère terrestre turbulente a permis de comprendre l’existence d’une turbulence optique résultant des phénomènes de diffraction qui accompagnent la réfraction des rayons lumineux.

La turbulence optique est décrite par des paramètres (paramètre de Fried, angle d’isoplanétisme, temps de cohérence, échelle externe) qui caractérisent l’amplitude et la phase du front d’onde sur la pupille du télescope.

On en déduit les propriétés des images (à courte ou longue pose) formées au foyer du télescope ainsi que la description des effets de la turbulence sur ces images (scintillation, agitation, étalement) et sur les observations interférométriques (effet piston).

Received:
Accepted:
Online First:
Published online:
DOI: 10.5802/crphys.101
Mot clés : Turbulence atmosphérique, Turbulence optique, Formation des images, Haute résolution angulaire, Optique adaptative, Sélection de site, Astronomie
Keywords: Atmospheric turbulence, Optical turbulence, Image formation, High angular resolution, Adaptative optics, Site testing, Astronomy
Daniel Bonneau 1

1 Laboratoire Lagrange, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Blvd de l’Observatoire, CS 34229, F-06304 Nice, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2022__23_S1_269_0,
     author = {Daniel Bonneau},
     title = {Les effets optiques de la turbulence atmosph\'erique dans les images astronomiques},
     journal = {Comptes Rendus. Physique},
     pages = {269--291},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {23},
     number = {S1},
     year = {2022},
     doi = {10.5802/crphys.101},
     language = {fr},
}
TY  - JOUR
AU  - Daniel Bonneau
TI  - Les effets optiques de la turbulence atmosphérique dans les images astronomiques
JO  - Comptes Rendus. Physique
PY  - 2022
SP  - 269
EP  - 291
VL  - 23
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.101
LA  - fr
ID  - CRPHYS_2022__23_S1_269_0
ER  - 
%0 Journal Article
%A Daniel Bonneau
%T Les effets optiques de la turbulence atmosphérique dans les images astronomiques
%J Comptes Rendus. Physique
%D 2022
%P 269-291
%V 23
%N S1
%I Académie des sciences, Paris
%R 10.5802/crphys.101
%G fr
%F CRPHYS_2022__23_S1_269_0
Daniel Bonneau. Les effets optiques de la turbulence atmosphérique dans les images astronomiques. Comptes Rendus. Physique, Volume 23 (2022) no. S1, pp. 269-291. doi : 10.5802/crphys.101. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.101/

[1] I. Newton Optics, 1730, 98 pages (Book I, Part I, Prop. VIII, Prob. III, https://archive.org/details/opticksoratreat00newtgoog/page/n6/mode/2up)

[2] J. Rösch Expériences préliminaires sur la selection dans le temps des images stellaires les mieux définies, C. R. Acad. Sci. B (Paris), Volume 247 (1958), pp. 422-425

[3] G. Bigourdan La scintillation des étoiles, L’Astronomie (Paris), Volume 29 (1915), pp. 203-209

[4] Ch. Fabry A propos du phénomène des ombres volantes, L’Astronomie (Paris), Volume 33 (1919), pp. 17-21

[5] G. I. Taylor Eddy motion in the atmosphere, Phil. Trans., Volume 215 (1915), pp. 1-26

[6] C.-G. Rossby The theory of atmospheric turbulence-an historical résumé and an outlook, Mon. Weather Rev., Volume 55 (1927), pp. 6-10 | DOI

[7] W. H. Pickering Astronomical possibilities at considerable altitudes, Obs, Volume 15 (1892), pp. 283-286

[8] A. Danjon Etude interférentielle de la scintillation et des conditions de stabilité des images télescopiques, C. R. Acad. Sci. B (Paris), Volume 183 (1926), pp. 1032-1034

[9] D. Bonneau Mieux voir les étoiles – 1 er siècle de l’interférométrie optique, EDP Sciences, Les Ulis, 2019

[10] H. W. Babcock The possibility of compensating astronomical seeing, Publ. Astron. Soc. Pac., Volume 65 (1953), pp. 229-236 | DOI

[11] V. P. Linnik Possible development of astronomy from the instrumental viewpoint, Transactions of the Twelfth Astrometric Conference of the USSR (December 7–9, 1955, Pulkovo) Leningrad (1957), pp. 179-185

[12] J. Texereau Limitation à la qualité des images d’un grand télescope, Appl. Opt., Volume 2 (1963), pp. 23-30 | DOI

[13] G. Courtes Instruments et techniques, Bull. Astron., Volume 24 (1964), pp. 239-254

[14] A. Labeyrie Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images, Astron. Astrophys., Volume 6 (1970), pp. 85-87

[15] A. Labeyrie; D. Bonneau; R. V. Stachnik; D. Y. Gezari Speckle interferometry. III. High-resolution measurements of twelve close binary systems, Astrophys. J., Volume 194 (1974), p. L147-L151 | DOI

[16] H. A. McAlister Spectroscopic binaries as a source for astrometric and speckle interferometric studies, Publ. Astron. Soc. Pac., Volume 88 (1976), pp. 317-322 | DOI

[17] D. Bonneau; A. Labeyrie Speckle interferometry : Color-dependent limb darkenig evidenced on alpha orionis and omicron ceti, Astrophys. J., Volume 181 (1973), p. L1-L4 | DOI

[18] M. J. McDonnell; R. H. T. Bates Digital restoration of an image of Betelgeuse, Astrophys. J., Volume 208 (1976), pp. 443-452 | DOI

[19] G. Weigelt; G. Baier R 136a in the 30 Doradus nebula resolved by holographic speckle interferometry, Astron. Astrophys., Volume 150 (1985), p. L18-L20

[20] A. Chelli; P. Léna; F. Sibille Angular dimensions of accreting young stars, Nature, Volume 278 (1979), pp. 143-146 | DOI

[21] J. Meaburn; B. L. Morgant; H. Vinet; A. Pedlar; R. Spencer Speckle observations of the nucleus of NGC1068, Nature, Volume 296 (1982), pp. 331-333 | DOI

[22] D. W. McCarthy; F. J. Low; S. G. Kleinmann; F. C. Gillett Infrared speckle interferometry of the nucleus of NGC 1068, Astrophys. J. Lett., Volume 257 (1982), p. L7-L11 | DOI

[23] F. Roddier The effects of atmospheric turbulence in optical astronomy, Prog. Opt., Volume 19 (1981), pp. 281-376 | DOI

[24] N. J. Woolf High resolution imaging from the ground, Ann. Rev. Astron. Astrophys., Volume 20 (1982), pp. 367-398 | DOI

[25] P. Léna High angular resolution in the infrared with a single very large telescope (VLT), Workshop on ESO’s Very Large Telescope, Cargese, Corse, France, May 16–19, 1983, Proceedings (A84-48051 23-89), European Southern Observatory, Garching, West Germany (1983), pp. 163-169

[26] P. Léna Une histoire de flou – Miroirs, trous noirs et autres mondes, Le Pommier, Paris, 2019 (Traduit en anglais. “Astronomy’s Quest for Sharp Images. From blurred pictures to the Very Large Telescope”, Springer, Germany, 2020) | Numdam

[27] L. F. Richarson The supply of energy from and to atmospheric eddies, Proc. R. Soc., Volume 97 (1920), pp. 354-373

[28] J. D. Woods On Richardson’s number as a criterion for laminar–turbulent–laminar transition in ocean and atmosphere, Radio Sci., Volume 4 (1969), pp. 1289-1298 | DOI

[29] A. N. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Dan. S.S.S.R., Volume 30 (1941), pp. 301-305 | MR

[30] A. M. Obukhov Structure of the temperature field in a turbulent flow, Izv. Akad. Nauk SSSR, Ser Geograf. Geofiz, Volume 13 (1949), pp. 58-69 | MR

[31] V. I. Tatarskii Wave Propagation in a Turbulent Medium, Dover, New York, 1961

[32] T. Von Kármán Progress in the statistical theory of turbulence, Proc. Natl. Acad. Sci. USA, Volume 34 (1948), pp. 530-539 | DOI | MR | Zbl

[33] V. I. Tatarski The Effects of the Turbulent Atmosphere on Wave Propagation, Israel Program for Scientic Translations, Jerusalem, 1971 (https://ui.adsabs.harvard.edu/abs/1971etaw.book.....T/abstract)

[34] D. L. Fried Statistics of a geometric representation of wavefront distorsion, J. Opt. Soc. Am., Volume 55 (1965), pp. 1427-1435 | DOI | MR

[35] D. L. Fried Anisoplanetism in adaptative optics, J. Opt. Soc. Am., Volume 72 (1982), pp. 52-61 | DOI

[36] G. I. Taylor The spectrum of turbulence, Proc. R. Soc. Lond. Ser. A, Volume 164 (1938), pp. 476-490

[37] J. Borgnino Estimation of the spatial coherence outer scale relevant to long baseline interferometry and imaging in optical astronomy, Appl. Opt., Volume 29 (1990), pp. 1863-1865 | DOI

[38] J. Maire Modélisation des effets optiques de la turbulence atmosphérique pour les grands télescopes et les observations à Haute Résolution Angulaire, Ph. D. Thesis, Université Nice-Sophia-Antipolis (2007) (https://tel.archives-ouvertes.fr/tel-00192172)

[39] P. Léna; D. Rouan; F. Lebrun; F. Mignard; D. Pelat; L. Mugnier L’observation en Astrophysique, EdP Sciences/CNRS Editions, Paris, 2008

[40] D. L. Fried Limiting resolution looking down through the atmosphere, J. Opt. Soc. Am., Volume 56 (1966), pp. 1380-1384 | DOI

[41] M. Sarazin; F. Roddier The ESO differential image motion monitor, Astron. Astrophys., Volume 227 (1990), pp. 294-300

[42] D. L. Fried Probability of getting a lucky short-exposure image through turbulence, J. Opt. Soc. Am., Volume 68 (1978), pp. 1651-1658 | DOI

[43] F. Roddier; G. M. Gilli; G. Lund On the origin of speckle boiling ans its effects in stellar speckle interferometry, J. Opt., Volume 13 (1982), pp. 263-271

[44] J. Osborn; D. Föhring; V. S. Dhillon; R. W. Wilson Atmospheric scintillation in astronomical photometry, Mon. Notices Royal Astron. Soc., Volume 452 (2015), pp. 1707-1716 | DOI

[45] J. N. Heasley; K. Janes; B. Labonte; D. Guenther; D. Mickey; P. Demarque The propects for asterosismology from ground-based sites, Publ. Astron. Soc. Pac., Volume 108 (1996), pp. 385-394 | DOI

[46] R. Avila; J. Vernin; E. Masciadri Whole atmospheric-turbulence profile with generalized scidar, Appl. Opt., Volume 36 (1997), pp. 7898-7905 | DOI

[47] V. Kornilov; A. A. Tokovinin; O. Vozyakova; A. Zaitsev; N. Shatsky; S. F. Potanin; M. S. Sarazin MASS : a monitor of the vertical turbulence distribution, SPIE, Volume 4839 (2003), pp. 837-845

[48] J. Rajagopal; A. A. Tokovinin; E. Bustos; J. Sebag LuSci : a lunar scintillometer to study ground layer turbulence, SPIE, Volume 4013 (2008), pp. 1-9

[49] A. Ziad; J. Borgnino; F. Martin; A. Agabi Experimental estimation of the spatial-coherence outer scale from a wavefront statistical analysis, Astron. Astrophys., Volume 282 (1994), pp. 1021-1033

[50] J. Kovalevsky Prospect for space stellar astrometry, Space Sci. Rev., Volume 39 (1984), pp. 1-63 | DOI

[51] S. S. Olivier Tip-tilt compensation for astronomical imaging, J. Opt. Soc. Am. A, Volume 11 (1994), pp. 368-378 | DOI

[52] J. Hecquet; G. Coupinot Gain en résolution par superposition de poses courtes recentrées, J. Opt. (Paris), Volume 16 (1985), pp. 21-26

[53] J. M. Beckers Adaptive optics for astronomy : principles, performance, and applications, Annu. Rev. Astron. Astrophys., Volume 31 (1993), pp. 13-62 | DOI

[54] F. Roddier; P. Léna Long-baseline Michelson interferometry with large ground-based telescopes operating at optical wavelengths I. General formalism. Interferometry at visible wavelengths, J. Opt. (Paris), Volume 15 (1984), pp. 171-182 | DOI

[55] F. Roddier; P. Léna Long-baseline Michelson interferometry with large ground-based telescopes operating at optical wavelengths II. Interferometry at visible wavelengths, J. Opt. (Paris), Volume 15 (1984), pp. 363-374 | DOI

[56] M. M. Colavita; J. K. Wallace; B. E. Hines; Y. Gursel; F. Malbet; D. L. Palmer; X. P. Pan; M. Shao; J. W. Yu; A. F. Boden; P. J. Dumont; J. Gubler; C. D. Koresko; S. R. Kulkarni; B. F. Lane; D. W. Mobley; G. T. Van Belle The Palomar testbed interferometer, Astrophys. J., Volume 510 (1999), pp. 505-521 | DOI

[57] F. Martin; A. Ziad; R. Conan; J. Borgnino; A. Tokovinin Optical parameters for high resolution astronomy estimated from the GSM (Generalized Seeing Monitor) experimented at several major astromical sites in the world, ASP Conf. Ser., Volume 266 (2002), pp. 138-141

[58] L. Koechlin; L. Dettwiller Correction de la dispersion atmosphérique dans l’imagerie par les grands télescopes et les interféromètres atmosphérique, C. R. Phys., Volume 23 (2022) no. S1, pp. 345-364 | DOI

[59] G. Rousset; T. Fusco Optique adaptative  : correction des effets de la turbulence atmosphérique sur les images astronomiques, C. R. Phys., Volume 23 (2022) no. S1, pp. 293-344 | DOI

[60] What the Highest Angular Resolution Can Bring to Stellar Astrophysics ? The 2013 VLTI School (F. Millour; A. Chiavassa; L. Bigot; O. Chesneau; A. Meilland; Ph. Stee, eds.), EAS Publications Series, 69–70, EDP sciences, 2015 | DOI

[61] R. Genzel; F. Eisenhauer; S. Gillessen The galactic center massive black hole and nuclear star cluster, Rev. Mod. Phys., Volume 82 (2010), pp. 3121-3195

[62] A. M. Ghez; B. L. Klein; M. Morris; E. E. Becklin High proper-motion stars in the vicinity of Sagittarius A* : Evidence for a supermassive black hole at the center of our galaxy, Astrophys. J., Volume 509 (1998), pp. 678-686

Cited by Sources:

Comments - Policy


Articles of potential interest

Correction de la dispersion atmosphérique dans l’imagerie par les grands télescopes et les interféromètres astronomiques

Laurent Koechlin; Luc Dettwiller

C. R. Phys (2022)


Optique adaptative  : correction des effets de la turbulence atmosphérique sur les images astronomiques

Gérard Rousset; Thierry Fusco

C. R. Phys (2022)


Application de la technique du SCIDAR généralisé aux étoiles simples

Abdelfettah Habib; Jean Vernin; Zouhair Benkhaldoun

C. R. Phys (2005)