Comptes Rendus
Interactions of exoplanets with their environment
[Interactions des exoplanètes avec leur environnement]
Comptes Rendus. Physique, Online first (2023), pp. 1-22.

Les exoplanètes en orbite rapprochée sont soumises à des interactions intenses avec leur étoile hôte. Elles reçoivent une forte irradiation de l’étoile, déclenchent des phénomènes de marées dans leur hôte, et les étoiles et les planètes proches peuvent être connectées magnétiquement. Dans cette revue, je présente les concepts physiques qui sous-tendent ces trois types d’interaction. Je présente des lois d’échelle simples pour estimer leurs forces relatives et je souligne les aspects des interactions qui échappent encore à notre compréhension. Pour chaque interaction, je passe également en revue leurs effets détectables à la fois sur des systèmes étoile-planète spécifiques et sur la population d’exoplanètes telle que nous la connaissons aujourd’hui.

Exoplanets on close-in orbit are subject to intense interactions with their host star. They receive a strong irradiation from the star, trigger tides within their host, and stars and close-in planets can be magnetically connected. In this review, I introduce the physical concepts behind these three types of interaction. I provide simple scaling-laws for their relative strengths, and highlight the aspects of the interactions that still elude our understanding. For each interaction, I also review their detectable effects on both specific star-planet systems and on the population of exoplanets as we know it today.

Reçu le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.138
Keywords: Planet-star interactions, Planetary systems, Stellar wind, Stellar and planetary outflows, Magnetohydrodynamics (MHD)
Mot clés : Interactions étoile-planète, systèmes planétaires, vent stellaire, échappements stellaire et planétaire, magnétohydrodynamique (MHD)
Antoine Strugarek 1

1 Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, 91191, Gif-sur-Yvette, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2023__24_S2_A8_0,
     author = {Antoine Strugarek},
     title = {Interactions of exoplanets with their environment},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2023},
     doi = {10.5802/crphys.138},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Antoine Strugarek
TI  - Interactions of exoplanets with their environment
JO  - Comptes Rendus. Physique
PY  - 2023
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.138
LA  - en
ID  - CRPHYS_2023__24_S2_A8_0
ER  - 
%0 Journal Article
%A Antoine Strugarek
%T Interactions of exoplanets with their environment
%J Comptes Rendus. Physique
%D 2023
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.138
%G en
%F CRPHYS_2023__24_S2_A8_0
Antoine Strugarek. Interactions of exoplanets with their environment. Comptes Rendus. Physique, Online first (2023), pp. 1-22. doi : 10.5802/crphys.138.

[1] Michel Mayor; Didier Queloz A Jupiter-mass companion to a solar-type star, Nature, Volume 378 (1995) no. 6, pp. 355-359 | DOI

[2] Katia Biazzo; Valerio Bozza; Luigi Mancini; Alessandro Sozzetti The Demographics of Close-In Planets, Demographics of Exoplanetary Systems: Lecture Notes of the 3rd Advanced School on Exoplanetary Science (Astrophysics and Space Science Library), Volume 466, Springer, 2022, pp. 143-234 | DOI

[3] Claire Moutou; Jean-François Donati; Florian Debras Les exoplanètes et leurs étoiles vues par SPIRou: vélocimétrie de précision dans l’infrarouge proche et spectropolarimétrie, C. R. Phys., Volume 24 (2023) no. S2 (Online first) | DOI

[4] Raphaël Galicher; Johan Mazoyer Imager des exoplanètes grâce aux instruments coronographiques, C. R. Phys., Volume 24 (2023) no. S2 (Online first) | DOI

[5] Benjamin J. Fulton; Erik A. Petigura; Andrew W. Howard et al. The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets, Astron. J., Volume 154 (2017) no. 3, 109 | DOI

[6] A. McQuillan; T. Mazeh; S. Aigrain Stellar Rotation Periods of the Kepler Objects of Interest: A Dearth of Close-in Planets around Fast Rotators, Astrophys. J. Lett., Volume 775 (2013) no. 1, L11 | DOI

[7] Ravi Kumar Kopparapu; Ramses Ramirez; James F. Kasting et al. Habitable zones around main-sequence stars: New estimates, Astrophys. J., Volume 765 (2013) no. 2, 131 | DOI

[8] A. Lecavelier des Etangs A diagram to determine the evaporation status of extrasolar planets, Astron. Astrophys., Volume 461 (2007) no. 3, pp. 1185-1193 | DOI

[9] Benjamin J. Fulton; Erik A. Petigura The California-Kepler Survey. VII. Precise Planet Radii Leveraging Gaia DR2 Reveal the Stellar Mass Dependence of the Planet Radius Gap, Astron. J., Volume 156 (2018) no. 6, 264 | DOI

[10] Eric Chassefière; François Leblanc Mars atmospheric escape and evolution; interaction with the solar wind, Planet. Space Sci., Volume 52 (2004) no. 11, pp. 1039-1058 | DOI

[11] Helmut Lammer; James F. Kasting; Eric Chassefière et al. Atmospheric escape and evolution of terrestrial planets and satellites, Space Sci. Rev., Volume 139 (2008) no. 1-4, pp. 399-436 | DOI

[12] Guillaume Gronoff; Phil Arras; S. Baraka et al. Atmospheric Escape Processes and Planetary Atmospheric Evolution, J. Geophys. Res. Sp. Phys., Volume 125 (2020) no. 8, e2019JA027639 | DOI

[13] E. N. Parker Dynamics of the Interplanetary Gas and Magnetic Fields, Astrophys. J., Volume 128 (1958) no. 1905, p. 664 | DOI

[14] A. García Muñoz Physical and chemical aeronomy of HD 209458b, Planet. Space Sci., Volume 55 (2007) no. 10, pp. 1426-1455 | DOI

[15] Robert E. Johnson; Alexey N. Volkov; Justin T. Erwin Molecular-kinetic simulations of escape from the ex-planet and exoplanets: Criterion for transonic flow, Astrophys. J. Lett., Volume 768 (2013) no. 1, L4 | DOI

[16] N. V. Erkaev; Helmut Lammer; P. Odert et al. EUV-driven mass-loss of protoplanetary cores with hydrogen-dominated atmospheres: The influences of ionization and orbital distance, Mon. Not. R. Astron. Soc., Volume 460 (2016) no. 2, pp. 1300-1309 | DOI

[17] Ruth A. Murray-Clay; Eugene I. Chiang; Norman Murray Atmospheric escape from hot Jupiters, Astrophys. J., Volume 693 (2009) no. 1, pp. 23-42 | DOI

[18] Titos Matsakos; Ana Uribe; Arieh Königl Classification of magnetized star-planet interactions: bow shocks, tails, and inspiraling flows, Astron. Astrophys., Volume 578 (2015), A6 | DOI

[19] C. Villarreal D’Angelo; Aline A. Vidotto et al. GJ 436b and the stellar wind interaction: simulations constraints using Ly-alpha and Halpha transits (2020) (http://arxiv.org/abs/2012.05128)

[20] M. L. Khodachenko; I. F. Shaikhislamov; Helmut Lammer et al. The impact of intrinsic magnetic field on the absorption signatures of elements probing the upper atmosphere of HD209458b, Mon. Not. R. Astron. Soc., Volume 507 (2021) no. 3, pp. 3626-3637 | DOI

[21] Lile Wang; Fei Dai Metastable Helium Absorptions with 3D Hydrodynamics and Self-consistent Photochemistry. I. WASP-69b, Dimensionality, X-Ray and UV Flux Level, Spectral Types, and Flares, Astrophys. J., Volume 914 (2021) no. 2, 98 | DOI

[22] Laura N. R. do Amaral; Rory Barnes; Antígona Segura; Rodrigo Luger The Contribution of M-dwarf Flares to the Thermal Escape of Potentially Habitable Planet Atmospheres, Astrophys. J., Volume 928 (2022) no. 1, 12 | DOI

[23] A. Vidal-Madjar; A. Lecavelier des Etangs; J. M. Désert et al. An extended upper atmosphere around the extrasolar planet HD209458b, Nature, Volume 422 (2003) no. 6928, pp. 143-146 | DOI

[24] Vincent Bourrier; Alain Lecavelier des Etangs Characterizing Evaporating Atmospheres of Exoplanets, Handbook of Exoplanets, Springer, 2018, pp. 1509-1526 | DOI

[25] Evgenya L. Shkolnik; David A. Bohlender; Gordon A. H. Walker; Andrew Collier Cameron The On/Off Nature of Star‐Planet Interactions, Astrophys. J., Volume 676 (2008) no. 1, pp. 628-638 | DOI

[26] I. Pillitteri; A. Maggio; G. Micela et al. FUV variability of HD 189733. Is the star accreting material from its hot Jupiter?, Astrophys. J., Volume 805 (2015) no. 1, 52 | DOI

[27] L. Fossati; T. R. Ayres; C. A. Haswell et al. Absorbing Gas around the WASP-12 Planetary System, Astrophys. J. Lett., Volume 766 (2013) no. 2, L20 | DOI

[28] L. Fossati; T. Koskinen; K. France et al. Suppressed Far-UV Stellar Activity and Low Planetary Mass Loss in the WASP-18 System, Astron. J., Volume 155 (2018) no. 3, 113 | DOI

[29] James E. Owen; Dong Lai Photoevaporation and high-eccentricity migration created the sub-Jovian desert, Mon. Not. R. Astron. Soc., Volume 479 (2018) no. 4, pp. 5012-5021 | DOI

[30] James E. Owen; Yanqin Wu The Evaporation Valley in the Kepler Planets, Astrophys. J., Volume 847 (2017) no. 1, 29 | DOI

[31] D. Kubyshkina; M. Lendl; L. Fossati et al. Young planets under extreme UV irradiation, Astron. Astrophys., Volume 612 (2018), A25 | DOI

[32] D. Kubyshkina; L. Fossati; N. V. Erkaev et al. Grid of upper atmosphere models for 1–40 Mearth planets: application to CoRoT-7 b and HD 219134 b,c, Astron. Astrophys., Volume 619 (2018), A151 | DOI

[33] Gordon I. Ogilvie Tidal dissipation in stars and giant planets, Annu. Rev. Astron. Astrophys., Volume 52 (2014), pp. 171-210 | DOI

[34] Stéphane Mathis Tidal Star-Planet Interactions: A Stellar and Planetary Perspective, Handbook of Exoplanets (Hans J. Deeg; Juan Antonio Belmonte, eds.), Springer, 2018, pp. 1801-1831 | DOI

[35] Jean-Paul Zahn Les marées dans une étoile double serrée (suite), Ann. d’Astrophysique, Volume 29 (1966), pp. 489-506

[36] James G. Williams; Dale H. Boggs Secular tidal changes in lunar orbit and Earth rotation, Celest. Mech. Dyn. Astron., Volume 126 (2016) no. 1-3, pp. 89-129 | DOI | MR | Zbl

[37] William M. Kaula Tidal Dissipation by Solid Friction and the Resulting Orbital Evolution, Rev. Geophys., Volume 2 (1964) no. 4, pp. 661-685 | DOI

[38] Gordon I. Ogilvie; Douglas N. C. Lin Tidal Dissipation in Rotating Solar‐Type Stars, Astrophys. J., Volume 661 (2007) no. 2, pp. 1180-1191 | DOI

[39] Valéry Lainey; Robert A. Jacobson; Radwan Tajeddine et al. New constraints on Saturn’s interior from Cassini astrometric data, Icarus, Volume 281 (2017), pp. 286-296 | DOI

[40] F. Remus; Stéphane Mathis; Jean-Paul Zahn The equilibrium tide in stars and giant planets. I. The coplanar case, Astron. Astrophys., Volume 544 (2012), 132 | DOI

[41] Antonino F. Lanza Orbital period modulation in hot Jupiter systems, Mon. Not. R. Astron. Soc., Volume 497 (2020) no. 3, pp. 3911-3924 | DOI

[42] Michael Efroimsky; Valeri V. Makarov Tidal Quality of the Hot Jupiter WASP-12b, Universe, Volume 8 (2022) no. 4, 211 | DOI

[43] Ian Wong; Avi Shporer; Shreyas Vissapragada et al. TESS Revisits WASP-12: Updated Orbital Decay Rate and Constraints on Atmospheric Variability, Astron. J., Volume 163 (2022) no. 4, 175 | DOI

[44] Kishore C. Patra; Joshua N. Winn; Matthew J. Holman et al. The Apparently Decaying Orbit of WASP-12b, Astron. J., Volume 154 (2017) no. 1, 4 | DOI

[45] Samuel W. Yee; Joshua N. Winn; Heather A. Knutson et al. The Orbit of WASP-12b Is Decaying, Astrophys. J. Lett., Volume 888 (2020) no. 1, L5 | DOI

[46] Jake D. Turner; Andrew Ridden-Harper; Ray Jayawardhana Decaying Orbit of the Hot Jupiter WASP-12b: Confirmation with TESS Observations, Astron. J., Volume 161 (2021) no. 2, 72 | DOI

[47] Brad M. S. Hansen Calibration of Equilibrium Tide Theory for Extrasolar Planet Systems. II, Astrophys. J., Volume 757 (2012) no. 1, p. 6 | DOI

[48] A. S. Bonomo; S. Desidera; S. Benatti et al. The GAPS Programme with HARPS-N at TNG, Astron. Astrophys., Volume 602 (2017), A107, 16 pages | DOI

[49] Andrew Collier Cameron; Moira Jardine Hierarchical Bayesian calibration of tidal orbit decay rates among hot Jupiters, Mon. Not. R. Astron. Soc., Volume 476 (2018) no. 2, pp. 2542-2555 | arXiv | DOI

[50] Stéphane Mathis Variation of tidal dissipation in the convective envelope of low-mass stars along their evolution, Astron. Astrophys., Volume 580 (2015), L3 | DOI

[51] Frédéric Pont Empirical evidence for tidal evolution in transiting planetary systems, Mon. Not. R. Astron. Soc., Volume 396 (2009) no. 3, pp. 1789-1796 | DOI

[52] Y. S. Messias; L. L. A. de Oliveira; R. L. Gomes et al. A dearth of close-in planets around rapidly rotating stars or a dearth of data? (2022) (http://arxiv.org/abs/2205.04893)

[53] E. Bolmont; S. N. Raymond; J. Leconte; S. P. Matt Effect of the stellar spin history on the tidal evolution of close-in planets, Astron. Astrophys., Volume 544 (2012), A124 | DOI

[54] Michael M. Zhang; Kaloyan Penev Stars get dizzy after lunch, Astrophys. J., Volume 787 (2014) no. 2, 131 | DOI

[55] J. Ahuir; Antoine Strugarek; A.-S. Brun; Stéphane Mathis Magnetic and tidal migration of close-in planets, Astron. Astrophys., Volume 650 (2021), A126 | DOI

[56] Christoph Mordasini Planetary population synthesis, Handbook of Exoplanets, Springer, 2018, pp. 2425-2474 | DOI

[57] F. Gallet TATOO: Tidal-chronology standalone tool to estimate the age of massive close-in planetary systems, Astron. Astrophys., Volume 641 (2020), A38 | DOI

[58] Daniel Verscharen; Kristopher G. Klein; Bennett A. Maruca The multi-scale nature of the solar wind, Living Rev. Sol. Phys., Volume 16 (2019) no. 1, p. 5 | DOI

[59] Aline A. Vidotto The evolution of the solar wind, Living Rev. Sol. Phys., Volume 18 (2021) no. 1, p. 3 | DOI

[60] Antoine Strugarek Physics of star-planet magnetic interactions (2021) (http://arxiv.org/abs/2104.05968, to appear in Proceedings of the Evry Schatzman School 2019 “Interactions star-planet”)

[61] Philippe Zarka Plasma interactions of exoplanets with their parent star and associated radio emissions, Planet. Space Sci., Volume 55 (2007) no. 5, pp. 598-617 | DOI

[62] Edmund J. Weber; Leverett Jr. Davis The Angular Momentum of the Solar Wind, Astrophys. J., Suppl. Ser., Volume 148 (1967), pp. 217-227 | DOI

[63] J. C. Kasper; C. H. K. Chen; Universite De Paris; Jules Janssen Parker Solar Probe enters the magnetically-dominated solar corona, Phys. Rev. Lett., Volume 127 (2021) no. 25, 255101 | DOI

[64] Philippe Zarka; Rudolf A. Treumann; Boris P. Ryabov; Vladimir B. Ryabov Magnetically-Driven Planetary Radio Emissions and Application to Extrasolar Planets, Astrophys. Space Sci., Volume 277 (2001) no. 1, pp. 293-300 | DOI

[65] Fritz M. Neubauer The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere, J. Geophys. Res. Planets, Volume 103 (1998) no. E9, pp. 19843-19866 | DOI

[66] Antoine Strugarek Models of star-planet magnetic interaction, Handbook of Exoplanets, Springer, 2018, pp. 1833-1855 | DOI

[67] P. Goldreich; D. Lynden-Bell Io, a jovian unipolar inductor, Astrophys. J., Volume 156 (1969), pp. 59-78 | DOI

[68] Joachim Saur A model of Io’s local electric field for a combined Alfvénic and unipolar inductor far-field coupling, J. Geophys. Res. Sp. Phys., Volume 109 (2004) no. A1, A01210 | DOI

[69] Randy O Laine; Douglas N. C. Lin Interaction of Close-in Planets with the Magnetosphere of Their Host Stars. II. Super-Earths as Unipolar Inductors and Their Orbital Evolution, Astrophys. J., Volume 745 (2012) no. 1, 2

[70] Dong Lai DC circuit powered by orbital motion: Magnetic interactions in compact object binaries and exoplanetary systems, Astrophys. J. Lett., Volume 757 (2012) no. 1, L3 | DOI

[71] Antonino F. Lanza Star-planet magnetic interaction and evaporation of planetary atmospheres, Astron. Astrophys., Volume 557 (2013), A31 | DOI

[72] Fritz M. Neubauer Nonlinear standing Alfvén wave current system at Io: Theory, J. Geophys. Res. Sp. Phys., Volume 85 (1980) no. A3, pp. 1171-1178 | DOI

[73] Antoine Strugarek; A.-S. Brun; S. P. Matt; V. Réville Magnetic games between a planet and its host star: the key role of topology, Astrophys. J., Volume 815 (2015) no. 2, 111 | DOI

[74] Joachim Saur; T. Grambusch; S. Duling; Fritz M. Neubauer; S. Simon Magnetic energy fluxes in sub-Alfvénic planet star and moon planet interactions, Astron. Astrophys., Volume 552 (2013), A119 | DOI

[75] Antoine Strugarek Assessing magnetic torques and energy fluxes in close-in star–planet systems, Astrophys. J., Volume 833 (2016) no. 2, 140 | DOI

[76] Antoine Strugarek Magnetic inclination effects in star-planet magnetic interactions, EWASS Spec. Sess. 4 Star-planet Interact., Volume 4 (2017), pp. 1-4 | DOI

[77] Margaret G. Kivelson; Fran Bagenal; William S. Kurth et al. Magnetospheric interactions with satellites, Jupiter. The planet, satellites and magnetosphere (Fran Bagenal; Timothy E. Dowling; William B. McKinnon, eds.) (Cambridge Planetary Science), Volume 1, Cambridge University Press, 2004, pp. 513-536

[78] C. P. Johnstone; M. L. Khodachenko; T. Lüftinger et al. Extreme hydrodynamic losses of Earth-like atmospheres in the habitable zones of very active stars, Astron. Astrophys., Volume 624 (2019), L10 | DOI

[79] Antoine Strugarek; A.-S. Brun; S. P. Matt; V. Réville On the diversity of magnetic interactions in close-in star–planet systems, Astrophys. J., Volume 795 (2014) no. 1, 86 | DOI

[80] Evgenya L. Shkolnik; Gordon A. H. Walker; David A. Bohlender Evidence for Planet‐induced Chromospheric Activity on HD 179949, Astrophys. J., Volume 597 (2003) no. 2, pp. 1092-1096 | DOI

[81] Manfred Cuntz; Steven H. Saar; Zdzislaw E. Musielak On Stellar Activity Enhancement Due to Interactions with Extrasolar Giant Planets, Astrophys. J., Volume 533 (2000) no. 2, p. L151-L154 | DOI

[82] Evgenya L. Shkolnik; Joe Llama Signatures of Star-Planet Interactions, Handbook of Exoplanets, Springer, 2017, pp. 1-17 | DOI

[83] P. Wilson Cauley; Evgenya L. Shkolnik; Joe Llama; Antonino F. Lanza Magnetic field strengths of hot Jupiters from signals of star–planet interactions, Nat. Astron., Volume 3 (2019) no. 12, pp. 1128-1134 | DOI

[84] P. Wilson Cauley; Evgenya L. Shkolnik; Joe Llama et al. Evidence of Magnetic Star-Planet Interactions in the HD 189733 System from Orbitally Phased Ca II K Variations, Astron. J., Volume 156 (2018), 262 | DOI

[85] J.-F. Donati; J. D. Landstreet Magnetic Fields of Nondegenerate Stars, Annu. Rev. Astron. Astrophys., Volume 47 (2009) no. 1, pp. 333-370 | DOI

[86] V. See; Moira Jardine; Aline A. Vidotto et al. The energy budget of stellar magnetic fields, Mon. Not. R. Astron. Soc., Volume 453 (2015) no. 4, pp. 4301-4310 | DOI

[87] Christian Fischer; Joachim Saur Time-variable Electromagnetic Star–Planet Interaction: The TRAPPIST-1 System as an Exemplary Case, Astrophys. J., Volume 872 (2019) no. 1, 113 | DOI

[88] Antoine Strugarek; R. Fares; Vincent Bourrier et al. MOVES – V. Modelling star–planet magnetic interactions of HD 189733, Mon. Not. R. Astron. Soc., Volume 512 (2022) no. 3, pp. 4556-4572 | DOI

[89] R. Fares; Vincent Bourrier; Aline A. Vidotto et al. MOVES-I. The evolving magnetic field of the planet-hosting star HD189733, Mon. Not. R. Astron. Soc., Volume 471 (2017) no. 1, pp. 1246-1257 | DOI

[90] Renée Prangé; Daniel Rego; David Southwood et al. Rapid energy dissipation and variability of the lo-Jupiter electrodynamic circuit, Nature, Volume 379 (1996) no. 6, pp. 323-325 | DOI

[91] J. T. Clarke; J. Ajello; G. E. Ballester et al. Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter, Nature, Volume 415 (2002) no. 6875, pp. 997-1000 | DOI

[92] Philippe Zarka Star-Planet Interactions in the Radio Domain: Prospect for Their Detection, Handbook of Exoplanets (Hans J. Deeg; Juan A. Belmonte, eds.), Springer, 2018, pp. 1775-1790 | DOI

[93] Jake D. Turner; Philippe Zarka; Jean-mathias Grießmeier The search for radio emission from the exoplanetary systems 55 Cnc, Upsilon Andromedae, and Tau Boötis using LOFAR beam-formed observations, EPSC-DPS Jt. Meet. 2019, Volume 13, EPSC (2019), pp. 4-5

[94] H. K. Vedantham; J. R. Callingham; T. W. Shimwell et al. Coherent radio emission from a quiescent red dwarf indicative of star-planet interaction, Nat. Astron. (2020), pp. 1-7 (Online First) | DOI

[95] M. Perger; G. Anglada-Escudé; I. Ribas et al. Auto-correlation functions of astrophysical processes, and their relation to Gaussian processes. Application to radial velocities of different starspot configurations, Astron. Astrophys., Volume 645 (2021), A58 | DOI

[96] Philippe Zarka; Laurent Denis; Michel Tagger et al. The low-frequency radio telescope NenuFAR, 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC), IEEE (2020), pp. 2-5

[97] Antoine Strugarek; E. Bolmont; Stéphane Mathis et al. The Fate of Close-in Planets: Tidal or Magnetic Migration?, Astrophys. J., Volume 847 (2017) no. 2, L16 | DOI

[98] Jean-Mathias Grießmeier Future Exoplanet Research: Radio Detection and Characterization, Handbook of Exoplanets (Hans J. Deeg; Juan Antonio Belmonte, eds.), Springer, 2018, pp. 3269-3283 | DOI

[99] Joachim Saur; Sascha Janser; Anne Schreiner; George Clark; Barry H. Mauk et al. Wave‐Particle Interaction of Alfvén Waves in Jupiter’s Magnetosphere: Auroral and Magnetospheric Particle Acceleration, J. Geophys. Res. Sp. Phys., Volume 123 (2018) no. 11, pp. 9560-9573 | DOI

[100] S. Daley-Yates; I. R. Stevens Hot Jupiter accretion: 3D MHD simulations of star-planet-wind interaction, Mon. Not. R. Astron. Soc., Volume 483 (2019) no. 2, pp. 2600-2614 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Evaporation, from exoplanets to exocomets

Alain Lecavelier des Etangs

C. R. Phys (2023)


Exoplanets: Foreword

Anne-Marie Lagrange; Daniel Rouan

C. R. Phys (2023)


CoRoT pictures transiting exoplanets

Claire Moutou; Magali Deleuil

C. R. Géos (2015)