Understanding how giant and terrestrial planets form and evolve, what is their internal structure and that of their atmosphere, represents one of the major challenges of modern astronomy, which is directly connected to the ultimate search for life at the horizon 2030–2050. However, several astrophysical (understanding of the formation and physics of giant and terrestrial exoplanets), biological (identification of the best biomarkers) and technological (technical innovations for the new generations of telescopes and instruments) obstacles must be overcome. From the astrophysical point of view, it is indeed crucial to understand the mechanisms of formation and evolution of giant planets, including planet and disk interactions, which will completely sculpt the planetary architectures and thus dominate the formation of terrestrial planets, especially in regions around the host star capable of supporting life. It is also important to develop dedicated instrumentation and techniques to study in their totality the population of giant and terrestrial planets, but also to reveal in the near future the first biological markers of life in the atmospheres of terrestrial planets. In that perspective, direct imaging from ground-based observatories or in space is playing a central role in concert with other observing techniques. In this paper, I will briefly review the genesis of this observing technique, the main instrumental innovation and challenges, stellar targets and surveys, to then present the main results obtained so far about the physics and the mechanisms of formation and evolution of young giant planets and planetary system architectures. I will then present the exciting perspectives offered by the upcoming generation of planet imagers about to come online, particularly on the future extremely large telescopes. On the timescale of a human Life, we may well be witnessing the first discovery of an exoplanet and the first detection of indices of life in the atmosphere of a nearby exo-Earth!
Comprendre comment les planètes géantes et terrestres se forment et évoluent, quelle est leur structure interne et celle de leur atmosphère, représente l’un des défis majeurs de l’astronomie moderne, qui est directement lié à la recherche ultime de la vie à l’horizon 2030–2050. Cependant, plusieurs obstacles astrophysiques (compréhension de la formation et de la physique des exoplanètes géantes et terrestres), biologiques (identification des meilleurs biomarqueurs) et technologiques (innovations techniques pour les nouvelles générations de télescopes et d’instruments) doivent être surmontés. Du point de vue astrophysique, il est en effet crucial de comprendre les mécanismes de formation et d’évolution des planètes géantes, y compris les interactions entre la planète et le disque, qui vont complètement sculpter les architectures planétaires et ainsi dominer la formation de planètes terrestres, notamment dans les régions autour de l’étoile hôte capables d’accueillir la vie. Il est également important de développer une instrumentation et des techniques dédiées pour étudier dans leur totalité la population de planètes géantes et terrestres, mais aussi de révéler dans un futur proche les premiers marqueurs biologiques de la vie dans les atmosphères des planètes terrestres. Dans cette perspective, l’imagerie directe depuis des observatoires au sol ou dans l’espace joue un rôle central, de concert avec d’autres techniques d’observation. Dans cet article, je rappellerai brièvement la genèse de cette technique d’observation, les principales innovations et défis instrumentaux, les cibles stellaires et les relevés, pour ensuite présenter les principaux résultats obtenus jusqu’à présent sur la physique et les mécanismes de formation et dévolution des jeunes planètes géantes et les architectures des systèmes planétaires. Je présenterai ensuite les perspectives passionnantes offertes par la prochaine génération d’imageurs de planètes sur le point d’être mis en ligne, notamment sur les futurs extrêmement grands télescopes. A l’échelle d’une vie humaine, nous pourrions bien assister à la première découverte d’une exoplanète et à la première détection d’indices de vie dans l’atmosphère d’une exo-Terre proche !
Accepted:
Online First:
Published online:
Mot clés : Exoplanètes, Systèmes planétaires, Atmosphère, Architecture, Imagerie directe, Spectroscopie
Gael Chauvin 1
@article{CRPHYS_2023__24_S2_129_0, author = {Gael Chauvin}, title = {Direct imaging of exoplanets: {Legacy} and prospects}, journal = {Comptes Rendus. Physique}, pages = {129--150}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S2}, year = {2023}, doi = {10.5802/crphys.139}, language = {en}, }
Gael Chauvin. Direct imaging of exoplanets: Legacy and prospects. Comptes Rendus. Physique, Volume 24 (2023) no. S2, pp. 129-150. doi : 10.5802/crphys.139. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.139/
[1] et al. Discovery of a cool brown dwarf, Nature, Volume 378 (1995), pp. 463-465 | DOI
[2] A planet on an inclined orbit as an explanation of the warp in the Beta Pictoris disc, Mon. Not. R. Astron. Soc., Volume 292 (1997), pp. 896-904 | DOI
[3] Astrometry of directly imaged exoplanets with optical interferometry, C. R. Phys., Volume 24 (2023) no. S2, pp. 115-128 | DOI
[4] et al. SPHERE: the exoplanet imager for the very large telescope, Astron. Astrophys., Volume 631 (2019), A155 | DOI
[5] et al. The Gemini planet imager: first light and commissioning, Adaptive Optics Systems IV (E. Marchetti; L. M. Close; J.-P. Vran, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 9148, SPIE, 2014, p. 91480J | DOI
[6] et al. PCS—a roadmap for exoearth imaging with the ELT, The Messenger, Volume 182 (2021), pp. 38-43 | DOI
[7] Imaging exoplanets with coronagraphic instruments, C. R. Phys., Volume 24 (2023) no. S2, pp. 69-113 | DOI
[8] TW Hya—A T Tauri star far from any dark cloud, Astron. Astrophys., Volume 121 (1983), pp. 217-225
[9] X-ray and molecular emission from the nearest region of recent star formation., Science, Volume 277 (1997), pp. 67-71 | DOI
[10] Young stars near the sun, Annu. Rev. Astron. Astrophys., Volume 42 (2004), pp. 685-721 | DOI
[11] Young nearby loose associations, Handbook of Star Forming Regions, Volume II (B. Reipurth, ed.), Volume 5, 2008, p. 757
[12] BANYAN. V. A systematic all-sky survey for new very late-type low-mass stars and brown dwarfs in nearby young moving groups, Astrophys. J., Volume 798 (2015), 73 | DOI
[13] et al. The SPHERE infrared survey for exoplanets (SHINE). III. The demographics of young giant exoplanets below 300 au with SPHERE, Astron. Astrophys., Volume 651 (2021), A72 | DOI
[14] et al. Orbital and atmospheric characterization of the planet within the gap of the PDS 70 transition disk, Astron. Astrophys., Volume 617 (2018), L2 | DOI
[15] et al. Two accreting protoplanets around the young star PDS 70, Nat. Astron., Volume 3 (2019), pp. 749-754 | DOI
[16] et al. A circumplanetary disk around PDS70c, Astrophys. J. Lett., Volume 916 (2021) no. 1, L2 | DOI
[17] et al. A SPHERE survey of self-shadowed planet-forming disks, Astron. Astrophys., Volume 658 (2022), A137 | DOI
[18] et al. Optical polarised phase function of the HR 4796A dust ring, Astron. Astrophys., Volume 626 (2019), A54 | DOI
[19] et al. VLT/SPHERE multiwavelength high-contrast imaging of the HD 115600 debris disk: new constraints on the dust geometry and the presence of young giant planets, Astron. J., Volume 157 (2019) no. 1, 39 | DOI
[20] et al. Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70, Astron. Astrophys., Volume 617 (2018), A44 | DOI
[21] Magnetospheric accretion as a source of H emission from protoplanets around PDS 70, Astrophys. J., Volume 885 (2019) no. 1, 94 | DOI
[22] et al. Highly structured disk around the planet host PDS 70 revealed by high-angular resolution observations with ALMA, Astron. Astrophys., Volume 625 (2019), A118 | DOI
[23] Observations of circumstellar disks in scattered light with SPHERE at the VLT, C. R. Phys., Volume 24 (2023) no. S2, pp. 151-169 | DOI
[24] et al. A giant planet candidate near a young brown dwarf. Direct VLT/NACO observations using IR wavefront sensing, Astron. Astrophys., Volume 425 (2004), p. L29-L32 | DOI
[25] et al. A companion to AB Pic at the planet/brown dwarf boundary, Astron. Astrophys., Volume 438 (2005) no. 3, p. L29-L32 | DOI
[26] Direct imaging and spectroscopy of a planetary-mass candidate companion to a young solar analog, Astrophys. J. Lett., Volume 689 (2008) no. 2, L153 | DOI
[27] et al. Direct imaging discovery of a “Super-Jupiter” around the late B-type star and, Astrophys. J. Lett., Volume 763 (2013) no. 2, L32 | DOI
[28] et al. Direct imaging of multiple planets orbiting the star HR 8799, Science, Volume 322 (2008) no. 5906, pp. 1348-1352 | DOI
[29] et al. A probable giant planet imaged in the Pictoris disk. VLT/NaCo deep L’-band imaging, Astron. Astrophys., Volume 493 (2009) no. 2, p. L21-L25 | DOI
[30] et al. A survey of young, nearby, and dusty stars conducted to understand the formation of wide-orbit giant planets. VLT/NaCo adaptive optics thermal and angular differential imaging, Astron. Astrophys., Volume 553 (2013), A60 | DOI
[31] et al. Direct imaging of a cold jovian exoplanet in orbit around the sun-like star GJ 504, Astrophys. J., Volume 774 (2013) no. 1, 11 | DOI
[32] et al. Discovery and spectroscopy of the young jovian planet 51 Eri b with the gemini planet imager, Science, Volume 350 (2015) no. 6256, pp. 64-67 | DOI
[33] et al. Discovery of a warm, dusty giant planet around HIP 65426, Astron. Astrophys., Volume 605 (2017), L9 | DOI
[34] et al. Two directly imaged, wide-orbit giant planets around the young, solar analog TYC 8998-760-1, Astrophys. J. Lett., Volume 898 (2020) no. 1, L16 | DOI
[35] et al. A wide-orbit giant planet in the high-mass b Centauri binary system, Nature, Volume 600 (2021) no. 7888, pp. 231-234 | DOI
[36] On the luminosity of young Jupiters, Astrophys. J., Volume 655 (2007) no. 1, pp. 541-549 | DOI
[37] et al. Accreting protoplanets: Spectral signatures and magnitude of gas and dust extinction at H, Astron. Astrophys., Volume 657 (2022), A38 | DOI
[38] Direct confirmation of the radial-velocity planet Pictoris c, Astron. Astrophys., Volume 642 (2020), L2 | DOI
[39] The first dynamical mass measurement in the HR 8799 system, Astrophys. J. Lett., Volume 915 (2021) no. 1, L16 | DOI
[40] Characterization and modelling of exoplanetary atmospheres, C. R. Phys., Volume 24 (2023) no. S2, pp. 171-181 | DOI
[41] et al. A library of near-infrared integral field spectra of young M-L dwarfs, Astron. Astrophys., Volume 562 (2014), A127 | DOI
[42] et al. Fundamental parameters and spectral energy distributions of young and field age objects with masses spanning the stellar to planetary regime, Astrophys. J., Volume 810 (2015) no. 2, 158 | DOI
[43] Molecule mapping of HR8799b using OSIRIS on Keck. Strong detection of water and carbon monoxide, but no methane, Astron. Astrophys., Volume 616 (2018), A146 | DOI
[44] Model atmospheres for massive gas giants with thick clouds: application to the hr 8799 planets and predictions for future detections, Astrophys. J., Volume 737 (2011) no. 1, 34 | DOI
[45] et al. Cloud atlas: high-contrast time-resolved observations of planetary-mass companions, Astron. J., Volume 157 (2019) no. 3, 128 | DOI
[46] et al. Separating extended disc features from the protoplanet in PDS 70 using VLT/SINFONI, Mon. Not. R. Astron. Soc., Volume 486 (2019) no. 4, pp. 5819-5837 | DOI
[47] Two decades of exoplanetary science with adaptive optics, Adaptive Optics Systems VI (L. M. Close; L. Schreiber; D. Schmidt, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 10703, SPIE, 2018, p. 1070305 | arXiv
[48] et al. Medium-resolution integral-field spectroscopy for high-contrast exoplanet imaging. Molecule maps of the Pictoris system with SINFONI, Astron. Astrophys., Volume 617 (2018), A144 | DOI
[49] Simultaneous detection of water, methane, and carbon monoxide in the atmosphere of exoplanet HR8799b, Astrophys. J., Volume 804 (2015) no. 1, 61 | DOI
[50] et al. Peering into the formation history of Pictoris b with VLTI/GRAVITY long-baseline interferometry, Astron. Astrophys., Volume 633 (2020), A110 | DOI
[51] et al. Retrieving scattering clouds and disequilibrium chemistry in the atmosphere of HR 8799e, Astron. Astrophys., Volume 640 (2020), A131 | DOI
[52] et al. Medium-resolution spectrum of the exoplanet HIP 65426 b, Astron. Astrophys., Volume 648 (2021), A59 | DOI
[53] et al. The CO-rich atmosphere of a young accreting super-Jupiter, Nature, Volume 595 (2021) no. 7867, pp. 370-372 | DOI
[54] et al. Interpreting the atmospheric composition of exoplanets: sensitivity to planet formation assumptions, 2022 (preprint) | arXiv
[55] et al. Spectral and atmospheric characterization of 51 Eridani b using VLT/SPHERE, Astron. Astrophys., Volume 603 (2017), A57 | DOI
[56] et al. Characterizing 51 Eri b from 1 to 5 m: A partly cloudy exoplanet, Astron. J., Volume 154 (2017) no. 1, 10 | DOI
[57] et al. Orbital characterization of the Pictoris b giant planet, Astron. Astrophys., Volume 542 (2012), A41 | DOI
[58] et al. Astrometric monitoring of the HR 8799 Planets: orbit constraints from self-consistent measurements, Astron. J., Volume 152 (2016) no. 2, 28 | DOI
[59] et al. Lessons learned from SPHERE for the astrometric strategy of the next generation of exoplanet imaging instruments, J. Astron. Telesc. Instrum. Syst., Volume 7 (2021), 035004 | DOI
[60] et al. Fast spin of the young extrasolar planet Pictoris b, Nature, Volume 509 (2014) no. 7498, pp. 63-65 | DOI
[61] Obliquity constraints on the planetary-mass companion HD 106906 b, Astron. J., Volume 162 (2021) no. 5, 217 | DOI
[62] et al. Detection and bulk properties of the HR 8799 planets with high-resolution spectroscopy, Astron. J., Volume 162 (2021) no. 4, 148 | DOI
[63] et al. Resolving the planetesimal belt of HR 8799 with ALMA, Mon. Not. R. Astron. Soc., Volume 460 (2016) no. 1, p. L10-L14 | DOI
[64] et al. Orbital and dynamical analysis of the system around HR 8799. New astrometric epochs from VLT/SPHERE and LBT/LUCI, Astron. Astrophys., Volume 666 (2022), A133 | DOI
[65] et al. The position of Pictoris b position relative to the debris disk, Astron. Astrophys., Volume 542 (2012), A40 | DOI
[66] et al. Exocomets size distribution in the ? Pictoris planetary system, Sci. Rep., Volume 12 (2022), 5855 | DOI
[67] et al. Investigating the young solar system analog HD 95086. A combined HARPS and SPHERE exploration, Astron. Astrophys., Volume 617 (2018), A76 | DOI
[68] et al. Reconnaissance of the HR 8799 exosolar system. II. Astrometry and orbital motion, Astrophys. J., Volume 803 (2015) no. 1, 31 | DOI
[69] et al. An ideal testbed for planet-disk interaction: two giant protoplanets in resonance shaping the PDS 70 protoplanetary disk, Astrophys. J. Lett., Volume 884 (2019) no. 2, L41 | DOI
[70] et al. Debris disks as signposts of terrestrial planet formation, Astron. Astrophys., Volume 530 (2011), A62 | DOI
[71] et al. Debris disks as signposts of terrestrial planet formation. II. Dependence of exoplanet architectures on giant planet and disk properties, Astron. Astrophys., Volume 541 (2012), A11 | DOI
[72] Population-level eccentricity distributions of imaged exoplanets and brown dwarf companions: dynamical evidence for distinct formation channels, Astron. J., Volume 159 (2020) no. 2, 63 | DOI
[73] et al. The gemini deep planet survey, Astrophys. J., Volume 670 (2007), pp. 1367-1390 | DOI
[74] Constraints on extrasolar planet populations from VLT NACO/SDI and MMT SDI and direct adaptive optics imaging surveys: giant planets are rare at large separations, Astrophys. J., Volume 674 (2008), pp. 466-481 | DOI
[75] et al. Deep imaging survey of young, nearby austral stars. VLT/NACO near-infrared Lyot-coronographic observations, Astron. Astrophys., Volume 509 (2010), A52 | DOI
[76] et al. MASSIVE: A Bayesian analysis of giant planet populations around low-mass stars, Astron. Astrophys., Volume 596 (2016), A83 | DOI
[77] Imaging extrasolar giant planets, Publ. Astron. Soc. Pac., Volume 128 (2016) no. 968, 102001 | DOI
[78] Hints for a turnover at the snow line in the giant planet occurrence rate, Astrophys. J., Volume 874 (2019) no. 1, 81 | DOI
[79] et al. The gemini planet imager exoplanet survey: giant planet and brown dwarf demographics from 10 to 100 au, Astron. J., Volume 158 (2019) no. 1, 13 | DOI
[80] A jupiter-mass companion to a solar-type star, Nature, Volume 378 (1995), pp. 355-359 | DOI
[81] et al. SPHERE+: Imaging young Jupiters down to the snowline, 2020 (preprint) | arXiv
[82] et al. GPI 2.0: upgrading the gemini planet imager, Ground-based and Airborne Instrumentation for Astronomy VIII (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 11447, SPIE, 2020, p. 114471S | DOI
[83] Stellar and substellar companions from Gaia EDR3. Proper-motion anomaly and resolved common proper-motion pairs, Astron. Astrophys., Volume 657 (2022), A7 | DOI
[84] et al. Direct emission spectroscopy of exoplanets with the medium resolution imaging spectrometer on board JWST MIRI. I. Molecular mapping and sensitivity to instrumental effects, Astron. Astrophys., Volume 658 (2022), A72 | DOI
[85] GMT overview, Ground-based and Airborne Telescopes III (L. M. Stepp; R. Gilmozzi; H. J. Hall, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 7733, SPIE, 2010, p. 77331Y | DOI
[86] The TMT instrumentation program, Ground-based and Airborne Instrumentation for Astronomy III (I. S. McLean; S. K. Ramsay; H. Takami, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 7735, SPIE, 2010, p. 773523 | DOI
[87] et al. E-ELT update of project and effect of change to 39m design, Ground-based and Airborne Telescopes IV (L. M. Stepp; R. Gilmozzi; H. J. Hall, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 8444, SPIE, 2012, p. 84441F | DOI
[88] et al. Design study and first performance simulation of the ELT/MICADO focal plane coronagraphs, 2018 (preprint) | arXiv
[89] et al. Direct imaging and spectroscopy of exoplanets with the ELT/HARMONI high-contrast module, Astron. Astrophys., Volume 652 (2021), A67 | DOI
[90] How to characterize habitable worlds and signs of life, Annu. Rev. Astron. Astrophys., Volume 55 (2017) no. 1, pp. 433-485 | DOI
Cited by Sources:
Comments - Policy