Comptes Rendus
Superradiant phononic emission from the analog spin ergoregion in a two-component Bose–Einstein condensate
Comptes Rendus. Physique, Online first (2023), pp. 1-21.

We make use of an analog gravity perspective to obtain a physical understanding of hydrodynamic instabilities stemming from the presence of quantized vortices in two-component atomic condensates and of their relation to ergoregion instabilities of rotating massive objects in gravitation. In addition to the localized instabilities related to vortex splitting, configurations displaying dynamically unstable modes that extend well outside the vortex core are found. In this case, the superradiant scattering process involves phonon emission into the much wider ergoregion of spin modes, so the physics most closely resembles the one of rotating massive objects. Our results confirm the potential of two-component condensates as analog models of rotating space-times in different regimes of gravitational interest.

Nous utilisons un point de vue de gravité analogique pour accéder à une compréhension physique des instabilités hydrodynamiques résultant de la présence de tourbillons quantiques dans des condensats atomiques à deux composantes et de leur relation avec les instabilités d’ergorégion d’objets massifs en rotation. En plus des instabilités localisées liées à la scission des tourbillons, on trouve des configurations présentant des modes dynamiquement instables qui s’étendent bien au-delà du coeur du tourbillon. Le processus de diffusion superradiante met alors en jeu l’émission de phonons dans une région beaucoup plus étendue, celle de l’ergorégion des modes de spin, et c’est dans ce cas que la physique ressemble le plus à celle des objets massifs en rotation. Nos résultats confirment le potentiel qu’ont les condensats à deux composantes à servir de modèles analogues d’espaces-temps en rotation dans différents régimes intéressants du point de vue de la gravitation.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/crphys.145
Keywords: Analog gravity, superradiance, ergoregion instability, vortices, two component Bose–Einstein condensates
Mot clés : Gravité analogique, superradiance, instabilité de l’ergorégion, tourbillons, condensats de Bose–Einstein à deux composantes

Anna Berti 1; Luca Giacomelli 1, 2; Iacopo Carusotto 1

1 Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica, Università di Trento, I-38123 Trento, Italy
2 Université Paris Cité, CNRS, Matériaux et Phénomènes Quantiques, F-75013 Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2023__24_S3_A8_0,
     author = {Anna Berti and Luca Giacomelli and Iacopo Carusotto},
     title = {Superradiant phononic emission from the analog spin ergoregion in a two-component {Bose{\textendash}Einstein} condensate},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2023},
     doi = {10.5802/crphys.145},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Anna Berti
AU  - Luca Giacomelli
AU  - Iacopo Carusotto
TI  - Superradiant phononic emission from the analog spin ergoregion in a two-component Bose–Einstein condensate
JO  - Comptes Rendus. Physique
PY  - 2023
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.145
LA  - en
ID  - CRPHYS_2023__24_S3_A8_0
ER  - 
%0 Journal Article
%A Anna Berti
%A Luca Giacomelli
%A Iacopo Carusotto
%T Superradiant phononic emission from the analog spin ergoregion in a two-component Bose–Einstein condensate
%J Comptes Rendus. Physique
%D 2023
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.145
%G en
%F CRPHYS_2023__24_S3_A8_0
Anna Berti; Luca Giacomelli; Iacopo Carusotto. Superradiant phononic emission from the analog spin ergoregion in a two-component Bose–Einstein condensate. Comptes Rendus. Physique, Online first (2023), pp. 1-21. doi : 10.5802/crphys.145.

[1] Carlos Barceló; Stefano Liberati; Matt Visser Analogue gravity, Living Rev. Relativ., Volume 14 (2011) no. 1, pp. 1-159 | DOI | Zbl

[2] William G. Unruh Experimental black-hole evaporation?, Phys. Rev. Lett., Volume 46 (1981) no. 21, pp. 1351-1353 | DOI

[3] Germain Rousseaux; Christian Mathis; Philippe Maïssa; Thomas G. Philbin; Ulf Leonhardt Observation of negative-frequency waves in a water tank: a classical analogue to the Hawking effect?, New J. Phys., Volume 10 (2008) no. 5, 053015 | DOI

[4] Oren Lahav; Amir Itah; Alex Blumkin; Carmit Gordon; Shahar Rinott; Alona Zayats; Jeff Steinhauer Realization of a sonic black hole analog in a Bose–Einstein condensate, Phys. Rev. Lett., Volume 105 (2010) no. 24, 240401 | DOI

[5] Hai Son Nguyen; Dario Gerace; Iacopo Carusotto; Daniele Sanvitto; Elisabeth Galopin; A Lemaître; Isabelle Sagnes; Jacqueline Bloch; Alberto Amo Acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons, Phys. Rev. Lett., Volume 114 (2015) no. 3, 036402 | DOI

[6] Thomas G. Philbin; Chris Kuklewicz; Scott Robertson; Stephen Hill; Friedrich Konig; Ulf Leonhardt Fiber-optical analog of the event horizon, Science, Volume 319 (2008) no. 5868, pp. 1367-1370 | DOI

[7] David Vocke; Calum Maitland; Angus Prain; Kali E. Wilson; Fabio Biancalana; Ewan M. Wright; Francesco Marino; Daniele Faccio Rotating black hole geometries in a two-dimensional photon superfluid, Optica, Volume 5 (2018) no. 9, pp. 1099-1103 | DOI

[8] Francesco Belgiorno; Sergio L Cacciatori; Matteo Clerici; Vittorio Gorini; Giovanni Ortenzi; Luca Rizzi; Elizabeth Rubino; Vera Giulia Sala; Daniele Faccio Hawking radiation from ultrashort laser pulse filaments, Phys. Rev. Lett., Volume 105 (2010) no. 20, 203901 | DOI

[9] Silke Weinfurtner; Edmund W. Tedford; Matthew C. J. Penrice; William G. Unruh; Gregory A. Lawrence Measurement of stimulated Hawking emission in an analogue system, Phys. Rev. Lett., Volume 106 (2011) no. 2, 021302 | DOI

[10] L.-P. Euvé; F. Michel; R. Parentani; T. G. Philbin; G. Rousseaux Observation of noise correlated by the Hawking effect in a water tank, Phys. Rev. Lett., Volume 117 (2016) no. 12, 121301 | DOI

[11] Jeff Steinhauer Observation of quantum Hawking radiation and its entanglement in an analogue black hole, Nat. Phys., Volume 12 (2016) no. 10, pp. 959-965 | DOI

[12] Juan Ramón Muñoz de Nova; Katrine Golubkov; Victor I Kolobov; Jeff Steinhauer Observation of thermal Hawking radiation and its temperature in an analogue black hole, Nature, Volume 569 (2019) no. 7758, pp. 688-691 | DOI

[13] Jonathan Drori; Yuval Rosenberg; David Bermudez; Yaron Silberberg; Ulf Leonhardt Observation of stimulated Hawking radiation in an optical analogue, Phys. Rev. Lett., Volume 122 (2019) no. 1, 010404 | DOI

[14] Christopher M Wilson; Göran Johansson; Arsalan Pourkabirian; Michael Simoen; J. Robert Johansson; Tim Duty; Franco Nori; Per Delsing Observation of the dynamical Casimir effect in a superconducting circuit, Nature, Volume 479 (2011) no. 7373, pp. 376-379 | DOI

[15] J.-C. Jaskula; Guthrie B. Partridge; Marie Bonneau; Raphaël Lopes; Josselin Ruaudel; Denis Boiron; Christoph I. Westbrook Acoustic analog to the dynamical Casimir effect in a Bose–Einstein condensate, Phys. Rev. Lett., Volume 109 (2012) no. 22, 220401 | DOI

[16] Stephen Eckel; Avinash Kumar; Theodore Jacobson; Ian B. Spielman; Gretchen K. Campbell A rapidly expanding Bose-Einstein condensate: an expanding universe in the lab, Phys. Rev. X, Volume 8 (2018) no. 2, 021021 | DOI

[17] Chen-Lung Hung; Victor Gurarie; Cheng Chin From cosmology to cold atoms: observation of Sakharov oscillations in a quenched atomic superfluid, Science, Volume 341 (2013) no. 6151, pp. 1213-1215 | DOI

[18] Matthias Wittemer; Frederick Hakelberg; Philip Kiefer; Jan-Philipp Schröder; Christian Fey; Ralf Schützhold; Ulrich Warring; Tobias Schaetz Phonon pair creation by inflating quantum fluctuations in an ion trap, Phys. Rev. Lett., Volume 123 (2019) no. 18, 180502 | DOI

[19] Jeff Steinhauer; Murad Abuzarli; Tangui Aladjidi; Tom Bienaimé; Clara Piekarski; Wei Liu; Elisabeth Giacobino; Alberto Bramati; Quentin Glorieux Analogue cosmological particle creation in an ultracold quantum fluid of light, Nat. Commun., Volume 13 (2022) no. 1, pp. 1-7 | DOI

[20] Celia Viermann; Marius Sparn; Nikolas Liebster; Maurus Hans; Elinor Kath; Álvaro Parra-López; Mireia Tolosa-Simeón; Natalia Sánchez-Kuntz; Tobias Haas; Helmut Strobel; Stefan Floerchinger; Markus K. Oberthaler Quantum field simulator for dynamics in curved spacetime, Nature, Volume 611 (2022), pp. 260-264 | DOI

[21] Theo Torres; Sam Patrick; Antonin Coutant; Mauricio Richartz; Edmund W. Tedford; Silke Weinfurtner Rotational superradiant scattering in a vortex flow, Nat. Phys., Volume 13 (2017) no. 9, pp. 833-836 | DOI

[22] D. D. Solnyshkov; C. Leblanc; S. V. Koniakhin; O. Bleu; G. Malpuech Quantum analogue of a Kerr black hole and the Penrose effect in a Bose–Einstein condensate, Phys. Rev. B, Volume 99 (2019) no. 21, 214511 | DOI

[23] Marion Cromb; Graham M. Gibson; Ermes Toninelli; Miles J. Padgett; Ewan M. Wright; Daniele Faccio Amplification of waves from a rotating body, Nat. Phys., Volume 16 (2020) no. 10, pp. 1069-1073 | DOI

[24] Maria Chiara Braidotti; Radivoje Prizia; Calum Maitland; Francesco Marino; Angus Prain; Ilya Starshynov; Niclas Westerberg; Ewan M. Wright; Daniele Faccio Measurement of penrose superradiance in a photon superfluid, Phys. Rev. Lett., Volume 128 (2022) no. 1, 013901 | DOI

[25] Richard Brito; Vitor Cardoso; Paolo Pani Superradiance, Springer, 2020 | DOI

[26] N. S. B. F. Comins; Bernard F. Schutz On the ergoregion instability, Proc. R. Soc. Lond., Ser. A, Volume 364 (1978) no. 1717, pp. 211-226 | DOI | MR

[27] John L. Friedman Ergosphere instability, Commun. Math. Phys., Volume 63 (1978) no. 3, pp. 243-255 | DOI | MR | Zbl

[28] Georgios Moschidis A proof of Friedman’s ergosphere instability for scalar waves, Commun. Math. Phys., Volume 358 (2018) no. 2, pp. 437-520 | DOI | MR | Zbl

[29] Vitor Cardoso; Óscar J. C. Dias; José P. S. Lemos; Shijun Yoshida Black-hole bomb and superradiant instabilities, Phys. Rev. D, Volume 70 (2004) no. 4, 044039 | DOI | MR

[30] Leandro A. Oliveira; Luis J. Garay; Luís C. B. Crispino Ergoregion instability of a rotating quantum system, Phys. Rev. D, Volume 97 (2018) no. 12, 124063 | DOI

[31] Luca Giacomelli; Iacopo Carusotto Understanding superradiant phenomena with synthetic vector potentials in atomic Bose–Einstein condensates, Phys. Rev. A, Volume 103 (2021) no. 4, 043309 | DOI | MR

[32] Alexander L. Fetter; Anatoly A. Svidzinsky Vortices in a trapped dilute Bose–Einstein condensate, J. Phys. Cond. Matt., Volume 13 (2001) no. 12, R135 | DOI | Zbl

[33] Alexander L. Fetter Rotating trapped Bose–Einstein condensates, Rev. Mod. Phys., Volume 81 (2009) no. 2, pp. 647-691 | DOI

[34] P.O. Fedichev; G. V. Shlyapnikov Dissipative dynamics of a vortex state in a trapped Bose-condensed gas, Phys. Rev. A, Volume 60 (1999) no. 3, p. R1779-R1782 | DOI

[35] D. S. Rokhsar Vortex stability and persistent currents in trapped Bose gases, Phys. Rev. Lett., Volume 79 (1997) no. 12, p. 2164 | DOI

[36] Luca Giacomelli; Iacopo Carusotto Ergoregion instabilities in rotating two-dimensional Bose–Einstein condensates: Perspectives on the stability of quantized vortices, Phys. Rev. Res., Volume 2 (2020) no. 3, 033139 | DOI

[37] Uwe R. Fischer; Ralf Schützhold Quantum simulation of cosmic inflation in two-component Bose–Einstein condensates, Phys. Rev. A, Volume 70 (2004) no. 6, 063615 | DOI

[38] Matt Visser; Silke Weinfurtner Massive Klein–Gordon equation from a Bose–Einstein-condensation-based analogue spacetime, Phys. Rev. D, Volume 72 (2005) no. 4, 044020 | DOI

[39] Stefano Liberati; Matt Visser; Silke Weinfurtner Analogue quantum gravity phenomenology from a two-component Bose–Einstein condensate, Class. Quant. Grav., Volume 23 (2006) no. 9, 3129 | DOI | MR | Zbl

[40] Salvatore Butera; Patrik Öhberg; Iacopo Carusotto Black-hole lasing in coherently coupled two-component atomic condensates, Phys. Rev. A, Volume 96 (2017) no. 1, 013611 | DOI

[41] Riccardo Cominotti; Anna Berti; Arturo Farolfi; Alessandro Zenesini; Giacomo Lamporesi; Iacopo Carusotto; Alessio Recati; G. Ferrari Observation of Massless and Massive Collective Excitations with Faraday Patterns in a Two-Component Superfluid, Phys. Rev. Lett., Volume 128 (2022) no. 21, 210401 | DOI

[42] Stefano Finazzi; Iacopo Carusotto Entangled phonons in atomic Bose–Einstein condensates, Phys. Rev. A, Volume 90 (2014) no. 3, 033607 | DOI

[43] Pekko Kuopanportti; Soumik Bandyopadhyay; Arko Roy; D. Angom Splitting of singly and doubly quantized composite vortices in two-component Bose–Einstein condensates, Phys. Rev. A, Volume 100 (2019) no. 3, 033615 | DOI

[44] F. Manni; K. G. Lagoudakis; T. C. Liew; Régis André; V. Savona; B. Deveaud Dissociation dynamics of singly charged vortices into half-quantum vortex pairs, Nat. Commun., Volume 3 (2012) no. 1, pp. 1-7 | DOI

[45] Sang Won Seo; Seji Kang; Woo Jin Kwon; Yong-il Shin Half-quantum vortices in an antiferromagnetic spinor Bose–Einstein condensate, Phys. Rev. Lett., Volume 115 (2015) no. 1, 015301 | DOI

[46] Lev P. Pitaevskii; Sandro Stringari Bose–Einstein Condensation and Superfluidity, International Series of Monographs on Physics, 164, Oxford University Press, 2016 | DOI

[47] Marta Abad; Alessio Recati A study of coherently coupled two-component Bose–Einstein condensates, Eur. Phys. J. D, Volume 67 (2013) no. 7, pp. 1-11 | Zbl

[48] Yvan Castin Bose-Einstein condensates in atomic gases: simple theoretical results, Coherent atomic matter waves, Springer, 2001, pp. 1-136 | DOI

[49] Leandro A. Oliveira; Vitor Cardoso; Luís C. B. Crispino Ergoregion instability: The hydrodynamic vortex, Phys. Rev. D, Volume 89 (2014) no. 12, 124008 | DOI

[50] Zhen Zhong; Vitor Cardoso; Elisa Maggio Instability of ultracompact horizonless spacetimes, Phys. Rev. D, Volume 107 (2023) no. 4, 044035 | DOI | MR

[51] Xavier Antoine; Antoine Levitt; Qinglin Tang Efficient spectral computation of the stationary states of rotating Bose–Einstein condensates by preconditioned nonlinear conjugate gradient methods, J. Comput. Phys., Volume 343 (2017), pp. 92-109 | DOI | MR | Zbl

[52] Sam Patrick; August Geelmuyden; Sebastian Erne; Carlo F. Barenghi; Silke Weinfurtner Origin and evolution of the multiply quantized vortex instability, Phys. Rev. Res., Volume 4 (2022) no. 4, 043104 | DOI

[53] J. R. M. de Nova; Stefano Finazzi; Iacopo Carusotto Time-dependent study of a black-hole laser in a flowing atomic condensate, Phys. Rev. A, Volume 94 (2016) no. 4, 043616 | DOI

[54] Pablo Bosch; Stephen R. Green; Luis Lehner Nonlinear Evolution and Final Fate of Charged Anti–de Sitter Black Hole Superradiant Instability, Phys. Rev. Lett., Volume 116 (2016), 141102 | DOI

[55] Nicolas Sanchis-Gual; Juan Carlos Degollado; Pedro J. Montero; José A. Font; Carlos Herdeiro Explosion and Final State of an Unstable Reissner-Nordström Black Hole, Phys. Rev. Lett., Volume 116 (2016) no. 14, 141101 | DOI

[56] William E. East; Frans Pretorius Superradiant Instability and Backreaction of Massive Vector Fields around Kerr Black Holes, Phys. Rev. Lett., Volume 119 (2017) no. 4, 041101 | DOI

[57] Taishi Ikeda; Richard Brito; Vitor Cardoso Blasts of Light from Axions, Phys. Rev. Lett., Volume 122 (2019) no. 8, 081101 | DOI

[58] K. W. Madison; F. Chevy; W. Wohlleben; J. Dalibard Vortex Formation in a Stirred Bose-Einstein Condensate, Phys. Rev. Lett., Volume 84 (2000) no. 5, pp. 806-809 | DOI

[59] Iacopo Carusotto; Cristiano Ciuti Quantum fluids of light, Rev. Mod. Phys., Volume 85 (2013), pp. 299-366 | DOI

[60] Iacopo Carusotto; Serena Fagnocchi; Alessio Recati; Roberto Balbinot; Alessandro Fabbri Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates, New J. Phys., Volume 10 (2008) no. 10, 103001 | DOI

[61] A. Recati; N. Pavloff; Iacopo Carusotto Bogoliubov theory of acoustic Hawking radiation in Bose–Einstein condensates, Phys. Rev. A, Volume 80 (2009) no. 4, 043603 | DOI

Cited by Sources:

Comments - Policy