Comptes Rendus
Superfluid transition in quasi-two-dimensional disordered dipolar Fermi gases
Comptes Rendus. Physique, Online first (2023), pp. 1-11.

We investigate the effect of weak disorder on the superfluid properties of two-component quasi-two-dimensional dipolar Fermi gases. The dipole-dipole interaction amplitude is momentum dependent, which violates the Anderson theorem claiming that the weak disorder has practically no influence on the superfluid transition temperature in the weakly interacting regime. We find that for dipolar fermions the transition temperature in this regime can be strongly increased by the disorder like in the purely two-dimensional case. However, the effect becomes smaller with increasing the intercomponent fermion-fermion interaction, and in the strongly interacting regime the superfluid transition temperature in the weak disorder becomes very close to that in the absence of disorder.

Nous étudions l’effet d’un désordre faible sur les propriétés superfluides des gaz de fermions dipolaires quasi bidimensionnels à deux composantes. L’amplitude de l’interaction dipôle-dipôle dépend de la quantité de mouvement, ce qui viole le théorème d’Anderson selon lequel un désordre faible n’a pratiquement aucun effet sur la température de transition superfluide dans le régime d’interaction faible. Nous trouvons que, pour les fermions dipolaires, la température de transition dans ce régime peut être fortement augmentée par le désordre comme dans le cas purement bidimensionnel. Cependant, l’effet se réduit si l’interaction entre les deux composantes fermioniques augmente, et dans le régime d’interaction forte, la température de transition superfluide en présence d’un désordre faible devient très proche de celle en l’absence de désordre.

Online First:
DOI: 10.5802/crphys.158
Keywords: Fermion systems, Effects of disorder, Superfluid phase transition, BCS theory and its development, Ultracold gases
Mot clés : Systèmes de fermions, effets du désordre, transition de phase superfluide, théorie BCS et ses développements, gaz ultrafroids

Victoria Y. Pinchenkova 1, 2; Sergey I. Matveenko 3, 1; Vladimir I. Yudson 4, 1; Georgy V. Shlyapnikov 1, 2, 5, 6

1 Russian Quantum Center, Skolkovo, Moscow 143025, Russia
2 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
3 L. D. Landau Institute for Theoretical Physics, Chernogolovka, Moscow region 142432, Russia
4 Laboratory for Condensed Matter Physics, HSE University, Moscow 101000, Russia
5 Université Paris-Saclay, CNRS, LPTMS, 91405 Orsay, France
6 Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Victoria Y. Pinchenkova and Sergey I. Matveenko and Vladimir I. Yudson and Georgy V. Shlyapnikov},
     title = {Superfluid transition in quasi-two-dimensional disordered dipolar {Fermi} gases},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2023},
     doi = {10.5802/crphys.158},
     language = {en},
     note = {Online first},
AU  - Victoria Y. Pinchenkova
AU  - Sergey I. Matveenko
AU  - Vladimir I. Yudson
AU  - Georgy V. Shlyapnikov
TI  - Superfluid transition in quasi-two-dimensional disordered dipolar Fermi gases
JO  - Comptes Rendus. Physique
PY  - 2023
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.158
LA  - en
ID  - CRPHYS_2023__24_S3_A7_0
ER  - 
%0 Journal Article
%A Victoria Y. Pinchenkova
%A Sergey I. Matveenko
%A Vladimir I. Yudson
%A Georgy V. Shlyapnikov
%T Superfluid transition in quasi-two-dimensional disordered dipolar Fermi gases
%J Comptes Rendus. Physique
%D 2023
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.158
%G en
%F CRPHYS_2023__24_S3_A7_0
Victoria Y. Pinchenkova; Sergey I. Matveenko; Vladimir I. Yudson; Georgy V. Shlyapnikov. Superfluid transition in quasi-two-dimensional disordered dipolar Fermi gases. Comptes Rendus. Physique, Online first (2023), pp. 1-11. doi : 10.5802/crphys.158.

[1] I. Bloch; J. Dalibard; W. Zwerger Many-body physics with ultracold gases, Rev. Mod. Phys., Volume 80 (2008), pp. 885-964 | DOI

[2] S. Giorgini; L. P. Pitaevskii; S. Stringari Theory of ultracold atomic Fermi gases, Rev. Mod. Phys., Volume 80 (2008), pp. 1215-1274 | DOI

[3] L. Sanchez-Palencia; M. Lewenstein Disordered quantum gases under control, Nat. Phys., Volume 6 (2010) no. 2, pp. 87-95 | DOI

[4] L. Tarruell; L. Sanchez-Palencia Quantum simulation of the Hubbard model with ultracold fermions in optical lattices, C. R. Physique, Volume 19 (2018) no. 6, pp. 365-393 | DOI

[5] I. S. Burmistrov; I. V. Gornyi; A. D. Mirlin Multifractally-enhanced superconductivity in thin films, Ann. Phys., Volume 435 (2021), 168499 | DOI | MR | Zbl

[6] Philip W. Anderson Theory of dirty superconductors, J. Phys. Chem. Solids, Volume 11 (1959) no. 1-2, pp. 26-30 | DOI | Zbl

[7] A. A. Abrikosov; L. P. Gor’kov On the theory of superconducting alloys. I. The electrodynamics of alloys at absolute zero, Sov. Phys., JETP, Volume 8 (1959), pp. 1090-1098 [russian version published in J. Exptl. Theoret. Phys. (U.S.S.R.), 35 (1958), p. 1558-1571] | MR

[8] Y. N. Ovchinnikov Fluctuating shift in the transition temperature of thin superconducting films, Sov. Phys., JETP, Volume 37 (1973), pp. 366-368 [russian version published in Zh. Eksp. Teor. Fiz., textbf64, no 2 (1973), p. 719]

[9] S. Maekawa; H. Fukuyama Localization effects in two-dimensional superconductors, J. Phys. Soc. Japan, Volume 51 (1982) no. 5, pp. 1380-1385 | DOI

[10] H. Takagi; Y. Kuroda Anderson localization and superconducting transition temperature in two-dimensional systems, Solid State Commun., Volume 41 (1982) no. 9, pp. 643-648 | DOI

[11] P. A. Lee; T. V. Ramakrishnan Disordered electronic systems, Rev. Mod. Phys., Volume 57 (1985) no. 2, pp. 287-337 | DOI

[12] A. M. Finkel’stein Superconducting transition temperature in amorphous films, JETP Lett., Volume 45 (1987), pp. 37-40 [russian version published in Pis’ma Zh. Eksp. Teor. Fiz. 45 (1987), p. 46-49]

[13] A. M. Finkel’stein Suppression of superconductivity in homogeneously disordered systems, Physica B Condens. Matter, Volume 197 (1994) no. 1-4, pp. 636-648 | DOI

[14] Michael V. Sadovskii Superconductivity and localization, Phys. Rep., Volume 282 (1997) no. 5-6, pp. 225-348 | DOI | MR

[15] F Palestini; G. C. Strinati Systematic investigation of the effects of disorder at the lowest order throughout the BCS-BEC crossover, Phys. Rev. B, Volume 88 (2013), 174504 | DOI

[16] M. V. Feigel’man Fractal superconductivity near localization threshold, Ann. Phys., Volume 325 (2010) no. 7, pp. 1390-1478 | DOI | Zbl

[17] I. S. Burmistrov; I. V. Gornyi; A. D. Mirlin Enhancement of the critical temperature of superconductors by Anderson localization, Phys. Rev. Lett., Volume 108 (2012), 017002 | DOI

[18] S. I. Matveenko; V. I. Yudson; B. L. Altshuler et al. Superfluid transition in disordered dipolar Fermi gases, Phys. Rev. A, Volume 102 (2020), 053319 | DOI | MR

[19] P. A. Murthy; I. Boettcher; L. Bayha et al. Observation of the Berezinskii-Kosterlitz-Thouless phase transition in an ultracold Fermi gas, Phys. Rev. Lett., Volume 115 (2015), 010401 | DOI

[20] A. J. Leggett Cooper pairing in spin-polarized Fermi systems, J. Phys. Colloques, Volume 41 (1980), p. C7-19–C7-26 | DOI

[21] A. J. Leggett Diatomic molecules and cooper pairs, Modern Trends in the Theory of Condensed Matter (A. Pekalski; J. Przystawa, eds.) (Lecture Notes in Physics), Volume 115, Springer, 1980, pp. 13-27 | DOI

[22] K. Miyake Fermi liquid theory of dilute submonolayer 3 He on thin 4 He II film: Dimer bound state and cooper pairs, Prog. Theor. Phys., Volume 69 (1983) no. 6, pp. 1794-1797 | DOI

[23] A. Galea; H. Dawkins; S. Gandolfi et al. Diffusion Monte Carlo study of strongly interacting two-dimensional Fermi gases, Phys. Rev. A, Volume 93 (2016), 023602 | DOI

[24] L. Sobirey; H. Biss; N. Luick et al. Observing the Influence of Reduced Dimensionality on Fermionic Superfluids, Phys. Rev. Lett., Volume 129 (2022) no. 8, 083601 | DOI

[25] V. L. Berezinskii Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems, Sov. Phys., JETP, Volume 34 (1972), pp. 610-616 [russian version published in Zh. Eksp. Teor. Fiz., 61 (1971), p. 1144-1156]

[26] J. M. Kosterlitz; D. J. Thouless Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C, Solid State Phys., Volume 6 (1973), pp. 1181-1203 | DOI

[27] L. P. Gor’kov On the energy spectrum of superconductors, Sov. Phys., JETP, Volume 7 (1958), pp. 505-508 [russian version published in J. Exptl. Theoret. Phys. (U.S.S.R.), 34, no 3 (1958), p. 735] | Zbl

[28] L. D. Landau; E. M. Lifshitz Quantum Mechanics, Butterworth-Heinemann, Oxford, 1999

[29] David R. Nelson; J. M. Kosterlitz Universal jump in the superfluid density of two-dimensional superfluids, Phys. Rev. Lett., Volume 39 (1977) no. 19, pp. 1201-1205 | DOI

[30] P. Coleman Introduction to many-body physics, Cambridge University Press, 2015 | DOI | MR

[31] V. Makhalov; K. Martiyanov; A. Turlapov Ground-state pressure of quasi-2D Fermi and Bose gases, Phys. Rev. Lett., Volume 112 (2014), 045301 | DOI

[32] M. Lu; N. Q. Burdick; B. L. Lev Quantum degenerate dipolar Fermi gas, Phys. Rev. Lett., Volume 108 (2012), 215301 | DOI

[33] K. Aikawa; S. Baier; A. Frisch et al. Observation of Fermi surface deformation in a dipolar quantum gas, Science, Volume 345 (2014) no. 6203, pp. 1484-1487 | DOI

[34] S. Baier; D. Petter; J. H. Becher et al. Realization of a strongly interacting Fermi gas of dipolar atoms, Phys. Rev. Lett., Volume 121 (2018), 093602 | DOI

Cited by Sources:

Comments - Policy