The coarse-graining of amorphous plasticity from the atomistic to the mesoscopic scale is studied in the framework of a simple scalar elasto-plastic model. Building on recent results obtained on the atomistic scale, we discuss the interest of a disordered landscape-informed threshold disorder to reproduce the physics of amorphous plasticity. We develop a rejuvenation scenario that reproduces quasi-quantitatively the evolution of the mean local yield stress and the localization behavior. We emphasize the crucial role of two dimensionless parameters: the relative strength of the yield stress disorder with respect to the typical stress drops associated with a plastic rearrangement, and the age parameter characterizing the relative stability of the initial glass with respect to the rejuvenated glass that emerges upon shear deformation.
Le transfert de l’échelle atomique à l’échelle mesocopique est étudié pour la plasticité d’un matériau amorphe modèle. En nous s’appuyant sur des résultats récents obtenus à l’échelle atomistique, nous discutons de l’intérêt d’un désordre de seuils enrichi par la connaissance du paysage désordonné à l’échelle atomique pour reproduire la physique de la plasticité amorphe. Nous montrons que la prise en compte d’un scénario de rajeunissement nous permet de reproduire de manière quasi-quantitative l’évolution de la limite d’élasticité locale moyenne et le comportement de localisation. Nous soulignons le rôle crucial de deux paramètres sans dimension : la force relative du désordre de la limite d’élasticité par rapport aux chutes de contraintes typiques associées à un réarrangement plastique, et le paramètre d’âge caractérisant la stabilité relative du verre initial par rapport au verre rajeuni qui émerge lors de la déformation par cisaillement.
Revised:
Accepted:
Online First:
Published online:
Mots-clés : verre, plasticité, mésoscopique, amorphe, dynamique moléculaire, agraindissement
Botond Tyukodi 1; Armand Barbot 2; Reinaldo García-García 3; Matthias Lerbinger 2; Sylvain Patinet 2; Damien Vandembroucq 2

@article{CRPHYS_2023__24_S1_113_0, author = {Botond Tyukodi and Armand Barbot and Reinaldo Garc{\'\i}a-Garc{\'\i}a and Matthias Lerbinger and Sylvain Patinet and Damien Vandembroucq}, title = {Coarse-graining amorphous plasticity: impact of rejuvenation and disorder}, journal = {Comptes Rendus. Physique}, pages = {113--131}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S1}, year = {2023}, doi = {10.5802/crphys.156}, language = {en}, }
TY - JOUR AU - Botond Tyukodi AU - Armand Barbot AU - Reinaldo García-García AU - Matthias Lerbinger AU - Sylvain Patinet AU - Damien Vandembroucq TI - Coarse-graining amorphous plasticity: impact of rejuvenation and disorder JO - Comptes Rendus. Physique PY - 2023 SP - 113 EP - 131 VL - 24 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crphys.156 LA - en ID - CRPHYS_2023__24_S1_113_0 ER -
%0 Journal Article %A Botond Tyukodi %A Armand Barbot %A Reinaldo García-García %A Matthias Lerbinger %A Sylvain Patinet %A Damien Vandembroucq %T Coarse-graining amorphous plasticity: impact of rejuvenation and disorder %J Comptes Rendus. Physique %D 2023 %P 113-131 %V 24 %N S1 %I Académie des sciences, Paris %R 10.5802/crphys.156 %G en %F CRPHYS_2023__24_S1_113_0
Botond Tyukodi; Armand Barbot; Reinaldo García-García; Matthias Lerbinger; Sylvain Patinet; Damien Vandembroucq. Coarse-graining amorphous plasticity: impact of rejuvenation and disorder. Comptes Rendus. Physique, From everyday glass to disordered solids, Volume 24 (2023) no. S1, pp. 113-131. doi : 10.5802/crphys.156. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.156/
[1] Atomistic Simulations of Aging and Rejuveneation in Glasses, Phys. Rev. Lett., Volume 84 (2000), pp. 1471-1474 | DOI
[2] Energy landscape-driven non-equilibrium evolution of inherent structure in disordered material, Nat. Commun., Volume 8 (2017), 15417 | DOI
[3] Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep, Acta Mater., Volume 148 (2018), pp. 384-390 | DOI
[4] Rejuvenation and shear banding in model amorphous solids, Phys. Rev. E, Volume 101 (2020) no. 3, 033001 | DOI
[5] Plasticity-induced structural anisotropy of silica glass, Phys. Rev. Lett., Volume 102 (2009), 195501 | DOI
[6] Plasticity-induced anisotropy in amorphous solids: The Bauschinger effect, Phys. Rev. Lett., Volume 82 (2010), 026104 | DOI
[7] Origin of the Bauschinger Effect in Amorphous Solids, Phys. Rev. Lett., Volume 124 (2020), 205503 | DOI
[8] Encoding of Memory in Sheared Amorphous Solids, Phys. Rev. Lett., Volume 112 (2014) no. 2, 025702 | DOI
[9] Memory formation in matter, Rev. Mod. Phys., Volume 91 (2019) no. 3, 035002 | DOI | MR
[10] Mechanical behavior of amorphous alloys, Acta Mater., Volume 55 (2007), pp. 4067-4109 | DOI
[11] Modeling the mechanics of amorphous solids at different length and time scales, Model. Simul. Mat. Sci. Eng., Volume 19 (2011), 083001 | DOI
[12] Yield stress materials in soft condensed matter, Rev. Mod. Phys., Volume 89 (2017), 035005 | DOI
[13] Elasto-plastic behavior of amorphous materials: a brief review, C. R. Physique, Volume 22 (2021), pp. 117-133 | DOI
[14] Plastic deformation in metallic glasses, Acta Metall., Volume 27 (1979), pp. 47-58 | DOI
[15] Dynamics of viscoplastic deformation of amorphous solids, Phys. Rev. E, Volume 57 (1998), pp. 7192-7205 | DOI
[16] A stochastic model for continuum elasto-plastic behavior. I. Numerical approach and strain localization, Model. Simul. Mat. Sci. Eng., Volume 2 (1994), pp. 167-184 | DOI
[17] A stochastic model for continuum elasto-plastic behavior. II. a study of the glass transition and structural relaxation, Model. Simul. Mat. Sci. Eng., Volume 2 (1994), pp. 185-202 | DOI
[18] A stochastic model for continuum elasto-plastic behavior. III. Plasticity in ordered versus disordered solids, Model. Simul. Mat. Sci. Eng., Volume 2 (1994), pp. 203-222 | DOI
[19] Deformation and flow of amorphous solids: a review of mesoscale elastoplastic models, Rev. Mod. Phys., Volume 90 (2018), 045006 | DOI
[20] Econophysics: Still fringes after 30 years, Europhys. News, Volume 50 (2019), pp. 24-27 | DOI
[21] Roadmap on multiscale materials modeling, Model. Simul. Mat. Sci. Eng., Volume 28 (2020), 043001 | DOI
[22] Probing relevant ingredients in mean-field approaches for the athermal rheology of yield stress materials, Soft Matter, Volume 11 (2015), pp. 7639-7647 | DOI
[23] Mapping between atomistic simulations and Eshelby inclusions in the shear deformation of an amorphous silicon model, Phys. Rev. E, Volume 93 (2016), 053002 | DOI
[24] Connecting Local Yield Stresses with Plastic Activity in Amorphous Solids, Phys. Rev. Lett., Volume 117 (2016), 045501 | DOI
[25] Local yield stress statistics in model amorphous solids, Phys. Rev. E, Volume 97 (2018) no. 3, 033001 | DOI
[26] Predicting plasticity in disordered solids from structural indicators, Phys. Rev. Mater., Volume 4 (2020), 113609 | DOI
[27] Insights from the quantitative calibration of an elasto-plastic model from a Lennard-Jones atomic glass, C. R. Physique, Volume 22 (2021), pp. 135-162 | DOI
[28] Implementation and calibration of a mesoscale model for amorphous plasticity based on shear transformation dynamics, Int. J. Plast., Volume 145 (2022), 104079 | DOI
[29] Elastoplastic Approach Based on Microscopic Insights for the Steady State and Transient Dynamics of Sheared Disordered Solids, Phys. Rev. Lett., Volume 126 (2021), 138005 | DOI
[30] Shear Banding in a Contact Problem between Metallic Glasses, Metals, Volume 11 (2021), 257 | DOI
[31] History Dependent Plasticity of Glass: A Mapping between Atomistic and Elasto-Plastic Models, Acta Mater., Volume 241 (2022), 118405 | DOI
[32] Structuro-elasto-plasticity model for large deformation of disordered solids, Phys. Rev. Res., Volume 4 (2022), 043026 | DOI
[33] Efficient swap algorithms for molecular dynamics simulations of equilibrium supercooled liquids, J. Stat. Mech. Theory Exp., Volume 2019 (2019), 064004 | DOI | MR
[34] Subextensive scaling in the athermal quasistatic limit of amorphous matter in plastic shear flow, Phys. Rev. Lett., Volume 93 (2004), 016001 | DOI
[35] Amorphous systems in athermal, quasistatic shear, Phys. Rev. E, Volume 74 (2006), 016118 | DOI
[36] Local elasticity map and plasticity in a model Lennard-Jones glass, Phys. Rev. E, Volume 80 (2009), 026112 | DOI
[37] Mechanical noise dependent Aging and Shear-Banding behavior in a mesoscopic model of amorphous plasticity, Phys. Rev. B, Volume 84 (2011), 134210 | DOI
[38] Strain localization and anisotropic correlations in a mesoscopic model of amorphous plasticity, C. R. Mécanique, Volume 340 (2012), pp. 275-288 | DOI
[39] Diffusion in Mesoscopic Lattice Models of Amorphous Plasticity, Phys. Rev. Lett., Volume 121 (2018), 145501 | DOI
[40] The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proc. R. Soc. Lond., Ser. A, Volume 241 (1957) no. 1226, p. 376 | DOI | MR | Zbl
[41] From depinning transition to plastic yielding of amorphous media: A soft modes perspective, Phys. Rev. E, Volume 93 (2016), 063005 | DOI
[42] Shear Localization in a model glass, Phys. Rev. Lett., Volume 90 (2003), 095702 | DOI
[43] A study of the static yield stress in a binary Lennard-Jones glass, J. Chem. Phys., Volume 120 (2004), pp. 2788-2801 | DOI
[44] Quantitative Prediction of Effective Toughness at Random Heterogeneous Interfaces, Phys. Rev. Lett., Volume 110 (2013), 165507 | DOI
[45] An extremal model of amorphous plasticity, Phys. Rev. Lett., Volume 89 (2002), 195506 | DOI
[46] Universal features of amorphous plasticity, Nat. Commun., Volume 8 (2017), 15928 | DOI
[47] Distribution of Thermally Activated Plastic Events in a Flowing Glass, Phys. Rev. Lett., Volume 102 (2009), 235503 | DOI
[48] Mapping between atomistic simulations and Eshelby inclusions in the shear deformation of an amorphous silicon model, Phys. Rev. E, Volume 93 (2016), 053502 | DOI
[49] Different universality classes at the yielding transition of amorphous systems, Phys. Rev. E, Volume 96 (2017), 023006 | DOI
[50] Critical exponents of the yielding transition of amorphous solids, Phys. Rev. E, Volume 98 (2018), 013002 | DOI
Cited by Sources:
Comments - Policy