Glasses and crystals from the same chemical system mostly share the same interatomic bond strength. Nevertheless, they differ by the arrangement of bonds in space, which gives birth to different atomic packing efficiencies. We show in this review that as far as the elastic moduli and hardness are concerned, the atomic packing density predominates over the bond strength. The shear modulus of crystalline phases is usually much larger than the one of glasses with the same stoichiometric composition, thanks to a more efficient packing of atoms in the former. In contrast, the increase in hardness is quite limited, likely because of the additional contribution of dislocation activity to the deformation processes beneath the indenter in the case of crystals (shear plasticity). We also show that the occurrence of chemical heterogeneities (weak channels) at the mesoscopic scale in glasses, which is often associated with the lack of long range atomic ordering, promotes easy fracture paths and is responsible for the low toughness and fracture surface energy.
Les verres et les cristaux issus du même système chimique partagent généralement la même force de liaison interatomique. Néanmoins, ils diffèrent par l’arrangement des liaisons dans l’espace, ce qui donne lieu à des efficacités d’empaquetage atomique différentes. Nous montrons dans cette étude qu’en ce qui concerne les modules élastiques et la dureté, la densité d’empilement atomique prédomine sur la force de liaison. Le module de cisaillement des phases cristallines est généralement beaucoup plus élevé que celui des verres ayant la même composition stœchiométrique, grâce à un empilement plus efficace des atomes dans les premières. En revanche, l’augmentation de la dureté est assez limitée, probablement en raison de la contribution supplémentaire de l’activité des dislocations aux processus de déformation sous l’indenteur dans le cas des cristaux (plasticité de cisaillement). Nous montrons également que l’apparition d’hétérogénéités chimiques (canaux faibles) à l’échelle mésoscopique dans les verres, qui est souvent associée à l’absence d’ordonnancement atomique à longue portée, favorise les chemins de rupture facile et est responsable de la faible ténacité et de la faible énergie de surface de rupture.
Revised:
Accepted:
Online First:
Published online:
Mots-clés : verre, propriétés mécaniques, élasticité, dureté, résistance à la rupture
Tanguy Rouxel 1, 2

@article{CRPHYS_2023__24_S1_99_0, author = {Tanguy Rouxel}, title = {Some strange things about the mechanical properties of glass}, journal = {Comptes Rendus. Physique}, pages = {99--112}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S1}, year = {2023}, doi = {10.5802/crphys.126}, language = {en}, }
Tanguy Rouxel. Some strange things about the mechanical properties of glass. Comptes Rendus. Physique, From everyday glass to disordered solids, Volume 24 (2023) no. S1, pp. 99-112. doi : 10.5802/crphys.126. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.126/
[1] Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. Ser., Volume 45 (1954) no. 367, pp. 823-843 | DOI
[2] The Hardness of Metals, Clarendon Press, Oxford, 1951
[3] Direct calculation of Young’s modulus of glass, J. Non-Cryst. Sol., Volume 12 (1973), pp. 35-45 | DOI
[4] Elastic properties and short-to-medium range order in glasses, J. Am. Ceram. Soc., Volume 90 (2007) no. 10, pp. 3019-3039 | DOI
[5] Handbook of Chemistry and Physics (D. R. Lide, ed.), Taylor & Francis, 2005–2006
[6] Elastic properties and atomic bonding character in metallic glasses, J. Appl. Phys., Volume 118 (2015), 044901 | DOI
[7] et al. Cohesion in Metals—Transition Metal Alloys (F. R. de Boer; D. G. Pettifor, eds.), Elsevier Science, 1989
[8] Poisson’s ratio and modern materials, Nat. Mater., Volume 10 (2011), pp. 823-837 | DOI
[9] Plasticity, crack initiation and defect resistance in alkali-borosilicate glasses: from normal to anomalous behavior, J. Non-Cryst. Sol., Volume 417–418 (2015), pp. 15-27 | DOI
[10] Micromechanical properties of (Na, Zn)-sulfophosphate glasses, J. Non-Cryst. Sol., Volume 358 (2012), pp. 1032-1037 | DOI
[11] Poisson’s ratio and the densification of glass under high pressure, Phys. Rev. Lett., Volume 100 (2008), 225501 | DOI
[12] Indentation of glasses, Prog. Mat. Sci., Volume 121 (2021), 100834 | DOI
[13] The indentation load/size effect and the measurement of the hardness of vitreous silica, J. Non-Cryst. Sol., Volume 146 (1992), pp. 197-212 | DOI
[14] Cracking and the indentation size effect for Knoop hardness of glasses, J. Am. Ceram. Soc., Volume 86 (2003), pp. 441-448 | DOI
[15] Composition dependence of indentation deformation and indentation cracking in glass, Acta Mater., Volume 61 (2013), pp. 5949-5965 | DOI
[16] Plasticity, crack initiation and defect resistance in alkali-borosilicate glasses: from normal to anomalous behavior, J. Non-Cryst. Sol., Volume 417–418 (2015), pp. 15-27 | DOI
[17] Hardness of polycrystalline SiO coesite, J. Am. Ceram. Soc., Volume 102 (2019), pp. 2251-2256 | DOI
[18] Hardness, toughness, and modulus of some common metamorphic minerals, Am. Mineral., Volume 92 (2007), pp. 281-288 | DOI
[19] Bulk metallic glasses, Mater. Sci. Eng., Volume R44 (2004), pp. 45-89 | DOI
[20] Indentation deformation mechanism in glass: densification versus shear flow, J. Appl. Phys., Volume 107 (2010), 094903 | DOI
[21] Role of densification in deformation of glasses under point loading, J. Am. Ceram. Soc., Volume 51 (1968), pp. 545-547 | DOI
[22] Densification and flow phenomena of glass in indentation experiments, J. Non-Cryst. Sol., Volume 5 (1970), pp. 103-115 | DOI
[23] Raman microspectroscopic characterization of amorphous silica plastic behavior, J. Am. Ceram. Soc., Volume 89 (2006), pp. 596-601 | DOI
[24] Mécanique et physique de l’indentation du verre, Ph. D. Thesis, University of Rennes 1, France (2007)
[25] Quantitative evaluation of indentation-induced densification in glass, J. Mater. Res., Volume 20 (2005), pp. 3404-3412 | DOI
[26] High-pressure densification of glass and the effects of shear, Nature, Volume 197 (1963), pp. 480-481 | DOI
[27] Constitutive law for the densification of fused silica, with applications in polishing and microgrinding, J. Am. Ceram. Soc., Volume 79 (1996), pp. 1441-1452 | DOI
[28] Mechanical modelling of indentation-induced densification in amorphous silica, Acta Mater., Volume 56 (2008), pp. 3222-3228 | DOI
[29] Effect of a coordination change on the strength of amorphous SiO, Science, Volume 241 (1988) no. 4869, pp. 1072-1074 | DOI
[30] Plastic flow and fracture of glass, Proc. R. Soc. Lond. A, Volume 282 (1964) no. 1388, pp. 33-43
[31] The strength of fused silica, Proc. R. Soc. Lond. A, Volume 297 (1967), pp. 534-557
[32] Brittle to ductile transition in densified silica glass, Sci. Rep., Volume 4 (2014), 5035
[33] Plastic deformation and residual stresses in amorphous silica pillars under uniaxial loading, Acta Mater., Volume 60 (2012) no. 15, pp. 5555-5566 | DOI
[34] Fracture surface energy of glass, J. Am. Ceram. Soc., Volume 52 (1969) no. 2, pp. 99-105 | DOI
[35] Fracture toughness, fracture energy and slow crack growth of glass as investigated by the Single-Edge Precracked Beam (SEPB) and Chevron-Notched Beam (CNB) methods, Acta Mater., Volume 146 (2018), pp. 1-11 | DOI
[36] Fracture surface energy and toughness of inorganic glasses, Scr. Mater., Volume 137 (2017), pp. 109-113 | DOI
[37] Elastic properties and fracture toughness of SiOC-based glass-ceramic nanocomposites, J. Am. Ceram. Soc., Volume 103 (2020), pp. 491-499 | DOI
[38] Fracture of glass in vacuum, J. Am. Ceram. Soc., Volume 57 (1974) no. 8, pp. 336-341 | DOI
[39] Interaction between deformation and crack initiation under Vickers indentation in NaO–TiO–SiO glasses, Front. Mater., Volume 4 (2017), 6 | DOI
[40] Comparative study of micro-indentation and Chevron notch fracture toughness measurements of silicate and phosphate glasses, J. Non-Cryst. Sol., Volume 349 (2004), pp. 180-184 | DOI
[41] Effect of densification on crack initiation under Vickers indentation test, J. Non-Cryst. Sol., Volume 356 (2010), pp. 1768-1773 | DOI
[42] Fracture toughness measurement of glass and ceramic materials using Chevron-notched specimens, J. Am. Ceram. Soc., Volume 71 (1988), p. C-310–C-313
[43] Fracture characteristics of SiC particle reinforced oxynitride glass using chevron-notch three-point bend specimens, Int. J. Fract., Volume 91 (1999), pp. 83-101 | DOI
Cited by Sources:
Comments - Policy