Amorphous materials are also distinguished from crystals by their thermal properties. The structural disorder seems to be responsible both for a significant increase in heat capacity compared to crystals of the same composition, but also for a significant decrease in thermal conductivity. The temperature dependence of thermal conductivity, unusual for common interpretations of solid-state physics, gave rise to a lot of debates. We review in this article different interpretations of thermal conductivity in amorphous materials. We show finally that the temperature dependence of thermal conductivity in dielectric materials can be understood by relating it to the disorder-dependent harmonic vibrational eigenmodes.
Les matériaux amorphes se distinguent aussi des cristaux par leurs propriétés thermiques. Le désordre structural semble être responsable à la fois d’une augmentation importante de la capacité calorifique par rapport aux cristaux de même composition, mais aussi d’une diminution importante de la conductivité thermique. La dépendance en température de la conductivité thermique, inhabituelle pour les interprétations usuelles de la physique du solide, a fait couler beaucoup d’encre. Nous passons en revue dans cet article différentes interprétations de la conductivité thermique dans les matériaux amorphes. Nous montrons que la dépendance en température dans les matériaux diélectriques peut aussi être comprise à l’aide de l’effet du désordre structural sur les modes propres de vibration.
Revised:
Accepted:
Online First:
Published online:
Mots-clés : matériaux amorphes, verres, atténuation acoustique, propriétés thermiques, comportement thermo-mécanique, plasticité
Anne Tanguy 1, 2

@article{CRPHYS_2023__24_S1_73_0, author = {Anne Tanguy}, title = {Vibrations and {Heat} {Transfer} in {Glasses:} {The} {Role} {Played} by {Disorder}}, journal = {Comptes Rendus. Physique}, pages = {73--97}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S1}, year = {2023}, doi = {10.5802/crphys.162}, language = {en}, }
Anne Tanguy. Vibrations and Heat Transfer in Glasses: The Role Played by Disorder. Comptes Rendus. Physique, From everyday glass to disordered solids, Volume 24 (2023) no. S1, pp. 73-97. doi : 10.5802/crphys.162. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.162/
[1] Potential for waste heat utilization of hotwater-cooled data centers: A case study, Energy Science and Engineering, Volume 8 (2020) no. 5, pp. 1793-1810 | DOI
[2] Introduction to Solid State Physics, John Wiley & Sons, 2004
[3] Challenges in Microscale Conductive and Radiative Heat Transfer, J. Heat Transfer, Volume 116 (1994) no. 4, pp. 799-807 | DOI
[4] Structural characterization of pressure-induced amorphous silicon, Phys. Rev. B, Volume 79 (2009) no. 15, 155209 | DOI
[5] Vibration Modes and Characteristic Lengthscales in Amorphous Materials, JOM, Volume 67 (2015) no. 8, pp. 1832-1839 | DOI
[6] Continuum limit of amorphous elastic bodies: A finite-size study of low-frequency harmonic vibrations, Phys. Rev. B, Volume 66 (2002), 174205
[7] Inhomogeneous elastic response of silica glass, Phys. Rev. Lett., Volume 97 (2006) no. 5, 055501 | DOI
[8] Boson peak and Ioffe–Regel criterion in amorphous siliconlike materials: The effect of bond directionality, Phys. Rev. E, Volume 93 (2016) no. 2, 023006 | DOI
[9] Structure if rings in vitreous , Phys. Rev. B, Volume 47 (1993) no. 6, pp. 3053-3062 | DOI
[10] Roles of local icosahedral chemical ordering in glass and quasicrystal formation in metallic glass formers, J. Phys. Cond. Matt., Volume 15 (2003), p. L491-L498 | DOI
[11] Power-law scaling and fractal nature of medium-range order in metallic glasses, Nature Mater., Volume 8 (2008), pp. 30-34 | DOI
[12] Elastic anomalies in glasses: Elastic string theory understanding of the cases of glycerol and silica, Phys. Rev. B, Volume 101 (2020), 174311 | DOI
[13] Origin of the boson peak in amorphous solids, Nat. Phys., Volume 18 (2022), pp. 669-677 | DOI
[14] Local Dynamics in Liquids and Glassy Materials, J. Phys. Soc. Japan, Volume 88 (2019) no. 8, 081001 | DOI
[15] Universal Breakdown of Elasticity at the Onset of Material Failure, Phys. Rev. Lett., Volume 93 (2004) no. 19, 195501 | DOI
[16] Plastic response of a 2D Lennard–Jones amorphous solid: Detailed analysis of the local rearrangements at very slow strain rate, European Physical Journal E, Volume 20 (2006), pp. 355-364 | DOI
[17] Mapping between atomistic simulations and Eshelby inclusions in the shear deformation of an amorphous silicon model, Phys. Rev. E, Volume 93 (2016) no. 5, 053002 | DOI
[18] Plastic Deformation in Metallic Glasses, Acta Metall., Volume 27 (1979), pp. 47-58 | DOI
[19] Dynamics of viscoplastic deformation in amorphous solids, Phys. Rev. E, Volume 57 (1998) no. 6, pp. 7192-7205 | DOI
[20] Molecular transport in liquids and glasses, J. Chem. Phys., Volume 31 (1959) no. 5, pp. 1164-1169 | DOI
[21] A Microscopic Mechanism for Steady State Inhomogeneous Flow in Metallic Glasses, Acta Metall., Volume 25 (1979), pp. 407-415 | DOI
[22] Role of local order in the small-scale plasticity of model amorphous materials, Phys. Rev. E, Volume 82 (2010) no. 6, 066116 | DOI
[23] Predicting plasticity in disordered solids from structural indicators, Phys. Rev. Mater., Volume 4 (2020) no. 11, 113609 | DOI
[24] Highlighting the impact of shear strain on the SiO2 glass structure: From experiments to atomistic simulations, J. Non Cryst. Solids, Volume 533 (2020), 119898 | DOI
[25] Detailed analysis of plastic shear in the Raman spectra of SiO glass, J. Non Cryst. Solids, Volume 428 (2015), pp. 6-19 | DOI
[26] The boson peak, Phys. Status Solidi B Basic Res., Volume 250 (2013) no. 5, pp. 937-943 | DOI
[27] Sound damping in glasses: Interplay between anharmonicities and elastic heterogeneities, Phys. Rev. B, Volume 101 (2020) no. 17, 174206 | DOI
[28] Low-energy quasilocalized excitations in structural glasses, J. Chem. Phys., Volume 155 (2021), 200901 | DOI
[29] Brillouin scattering of vitreous silica under high pressure, Annalen der Physik, Volume 4 (1995), pp. 91-98 | DOI
[30] Atomistic response of a model silica glass under shear and pressure, Eur. Phys. J. B, Volume 85 (2012), 304 | DOI
[31] Shear transformation distribution and activation in glasses at the atomic scale, Phys. Rev. E, Volume 95 (2017), 033005 | DOI
[32] Elasto-plastic behavior of amorphous materials: a brief review, Comptes-Rendus. Physique, Volume 22 (2021), pp. 117-133 | DOI
[33] Universality of the Nonphononic Vibrational Spectrum across Different Classes of Computer Glasses, Phys. Rev. Lett., Volume 125 (2020) no. 8, 085502 | DOI
[34] Local elasticity map and plasticity in a model Lennard–Jones glass, Phys. Rev. E, Volume 80 (2009) no. 2, 026112 | DOI
[35] Vibrational modes as a predictor for plasticity in a model glass, Europhysics Letters, Volume 90 (2010) no. 1, 16004
[36] Anharmonic properties of vibrational excitations in amorphous solids, Phys. Rev. Res., Volume 2 (2020) no. 1, 013215 | DOI
[37] 3 - Ultrasonic Properties of Glasses at Low Temperatures (Warren P. Mason; R. N. Thurston, eds.) (Physical Acoustics), Volume 12, Academic Press Inc., 1976, pp. 155-215 | DOI
[38] Energy Landscapes for Cooperative Processes: Nearly Ideal Glass Transitions, Liquid-Liquid Transitions and Folding Transitions, Phil. Trans. R. Soc. A, Volume 363 (2005) no. 1827, p. 415 | DOI
[39] Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems, J. Non Cryst. Solids, Volume 131-133 (1991), pp. 13-31 (Proceedings of the International Discussion Meeting on Relaxations in Complex Systems) | DOI
[40] A review of experiments testing the shoving model, J. Non Cryst. Solids, Volume 407 (2015), pp. 14-22 (7th IDMRCS: Relaxation in Complex Systems) | DOI
[41] Elastic Signature of Flow Events in Supercooled Liquids Under Shear, Phys. Rev. Lett., Volume 111 (2013) no. 6, 066001 | DOI
[42] Theoretical perspective on the glass transition and amorphous materials, Rev. Mod. Phys., Volume 83 (2011), pp. 587-645 | DOI
[43] An Overview on Short and Long Time Relaxations in Glass-forming Supercooled Liquids, J. Phys. Conf. Ser., Volume 759 (2016) no. 1, 012008 | DOI
[44] The crossover from propagating to strongly scattered acoustic modes of glasses observed in densified silica, J. Phys. Cond. Matt., Volume 15 (2003) no. 11, S1279 | DOI
[45] Acoustic excitations and elastic heterogeneities in disordered solids, Proc. Natl. Acad. Sci. USA, Volume 111 (2014) no. 33, pp. 11949-11954 | DOI
[46] Anomalous phonon scattering and elastic correlations in amorphous solids, Nature Mater., Volume 15 (2016) no. 11, pp. 1177-1181 | DOI
[47] Theory of harmonic dissipation in disordered solids, Phys. Rev. B, Volume 95 (2017) no. 5, 054203 | DOI
[48] A continuum model reproducing the multiple frequency crossovers in acoustic attenuation in glasses, J. Non Cryst. Solids, Volume 583 (2022), 121472 | DOI
[49] Microscopic analysis of sound attenuation in low-temperature amorphous solids reveals quantitative importance of non-affine effects, J. Chem. Phys., Volume 156 (2022), 144502 | DOI
[50] Anomalous low-temperature thermal properties of glasses and spin glasses, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, Volume 25 (1972) no. 1, pp. 1-9 | DOI
[51] Two-level states in glasses, Rep. Prog. Phys., Volume 50 (1987) no. 12, pp. 1657-1708 | DOI
[52] Anharmonic versus relaxational sound damping in glasses. II. Vitreous silica, Phys. Rev. B, Volume 72 (2005), 214205 | DOI
[53] Relation of vibrational excitations and thermal conductivity to elastic heterogeneities in disordered solids, Phys. Rev. B, Volume 94 (2016) no. 14, 144303 | DOI
[54] Thermal Conductivity and Specific Heat of Noncrystalline Solids, Phys. Rev. B, Volume 4 (1971) no. 6, pp. 2029-2041 | DOI
[55] Amorphous Materials: Thermal Conductivity, Encyclopedia of Materials: Science and Technology, Elsevier, 2001, pp. 232-237 | DOI
[56] Low-temperature thermal conductivity and acoustic attenuation in amorphous solids, Rev. Mod. Phys., Volume 74 (2002) no. 4, pp. 991-1013 | DOI
[57] Thermal conductivity of amorphous solids above the plateau, Phys. Rev. B, Volume 35 (1987) no. 8, pp. 4067-4073 | DOI
[58] Thermal conductivity of disordered harmonic solids, Phys. Rev. B, Volume 48 (1993), pp. 12581-12588 | DOI
[59] Heat transport in model jammed solids, Phys. Rev. E, Volume 81 (2010) no. 2, 021301 | DOI
[60] Phonons transport at the nanoscale, Ph. D. Thesis, Université Joseph-Fourier – Grenoble I (2009) (https://tel.archives-ouvertes.fr/tel-00461703)
[61] Heat conduction tuning by wave nature of phonons, Sci. adv., Volume 3 (2017) no. 8, e1700027 | DOI
[62] Propagative and diffusive regimes of acoustic damping in bulk amorphous material, Phys. Rev. E, Volume 98 (2018) no. 2, 023005 | DOI
[63] Energy-Flux Operator for a Lattice, Phys. Rev., Volume 132 (1963) no. 1, pp. 168-177 | DOI | MR | Zbl
[64] Direct calculation of modal contributions to thermal conductivity via Green-–Kubo modal analysis, New J. Phys., Volume 18 (2016) no. 1, 013028 | DOI
[65] Diffusons, locons and propagons: Character of atomic vibrations in amorphous Si, Philos. Mag., B, Volume 79 (1999) no. 11-12, pp. 1715-1731 | DOI
[66] Absence of Diffusion in Certain Random Lattices, Phys. Rev., Volume 109 (1958), pp. 1492-1505 | DOI
[67] Multifractal wavefunction at the localisation threshold, J. Phys. A. Math. Gen., Volume 19 (1986) no. 8, L429 | DOI
[68] Localization of ultrasound in a three-dimensional elastic network, Nat. Phys., Volume 4 (2008), pp. 945-948 | DOI
[69] Finite-time scaling at the Anderson transition for vibrations in solids, Phys. Rev. B, Volume 96 (2017), 174209 | DOI
[70] Wave Propagation and Scattering in Random Media, Academic Press Inc., 1978 | DOI
[71] Statistics of energy levels and eigenfunctions in disordered systems, Phys. Rep., Volume 326 (2000), pp. 259-382 | DOI | MR
[72] Anderson Transitions, Review of Modern Physics, Volume 80 (2008), pp. 1355-1417 | DOI
[73] Computer simulation of local order in condensed phases of silicon, Phys. Rev. B, Volume 31 (1985) no. 8, pp. 5262-5271 | DOI
[74] Thermophysical Properties of High temperature solid materials. Volume 4. Oxides and their solutions and mixtures. Part 2. Solutions and their mixtures of simple oxygen compounds, including glasses and ceramic glasses (1966) no. AD0649952 (Technical report)
[75] Correlation of temperature dependence of quasielastic-light-scattering intensity and -relaxation time, Phys. Rev. B, Volume 54 (1996) no. 1, pp. 222-227 | DOI
[76] Harmonic Vibrational Excitations in Disordered Solids and the “Boson Peak”, Phys. Rev. Lett., Volume 81 (1998) no. 1, pp. 136-139 | DOI
[77] Acoustic Attenuation in Glasses and its Relation with the Boson Peak, Phys. Rev. Lett., Volume 98 (2007) no. 2, 025501 | DOI
[78] Sound damping in glasses: interplay between anharmonicities and elastic heterogeneities (2019) (preprint, arXiv:1905.10235) | DOI
[79] Random Heterogeneous Materials, Springer, 2001
[80] Sodium effect on static mechanical behavior of MD-modeled sodium silicate glasses, J. Non Cryst. Solids, Volume 440 (2016), pp. 12-25 | DOI
[81] Effect of composition and pressure on the shear strength of sodium silicate glasses: An atomic scale simulation study, Phys. Rev. E, Volume 95 (2017), 043001 | DOI
[82] Modeling the mechanics of amorphous solids at different length scale and time scale, Model. Simul. Mat. Sci. Eng., Volume 19 (2011) no. 8, 083001 | DOI
[83] Thermal conductivity accumulation in amorphous silica and amorphous silicon, Phys. Rev. B, Volume 89 (2014) no. 14, 144303 | DOI
[84] Theory of the contribution to sliding friction from electronic excitations in the microbalance experiment, Phys. Rev. B, Volume 52 (1995) no. 7, pp. 5318-5322 | DOI
[85] Brownian motion and vibrational phase relaxation at surfaces: CO on Ni(111), Phys. Rev. B, Volume 32 (1985) no. 6, pp. 3586-3596 | DOI
[86] The fluctuation-dissipation theorem, Rep. Prog. Phys., Volume 29 (1966) no. 1, pp. 255-284 | DOI | Zbl
[87] Ondes élastiques dans les solides isotropes, Ph. D. Thesis, Sorbonne Université, France (Master Sciences pour l’Ingénieur)
[88] Towards understanding two-level-systems in amorphous solids: insights from quantum circuits, Rep. Prog. Phys., Volume 82 (2019) no. 12, 124501 | DOI
[89] Atomistic study of two-level systems in amorphous silica, Phys. Rev. B, Volume 97 (2018), 014201 | DOI
[90] How thermally activated deformation starts in metallic glass, Nat. Commun., Volume 5 (2014), p. 5083 | DOI
[91] et al. Finding defects in glasses through machine learning, Nat. Commun., Volume 14 (2023), 4229 | DOI
[92] et al. Microscopic observatio of two-level systems in a metallic glass model, J. Chem. Phys., Volume 158 (2023), 014501
[93] Elastic effects of structural relaxation in glasses at low temperatures, J. Non Cryst. Solids, Volume 20 (1976) no. 3, pp. 365-391 | DOI
[94] Equilibrium Thermodynamics and Its Statistical Foundations, Oxford University Press, 1981
[95] Modeling heat transport in crystals and glasses from a unified lattice-dynamical approach, Nat. Commun., Volume 10 (2019), 3853 | DOI
[96] Thermal conductivity of glasses: first-principles theory and applications, npj Comput. Mater., Volume 9 (2023), 106 | DOI
[97] Anomalous low-energy properties in amorphous solids and the interplay of electric and elastic interactions of tunneling two-level systems, Phys. Rev. B, Volume 103 (2021) no. 5, 054202 | DOI
[98] Interaction of soft modes and sound waves in glasses, Phys. Rev. B, Volume 46 (1992) no. 5, pp. 2798-2808 | DOI
[99] Enhancement and anticipation of the Ioffe–Regel crossover in amorphous/nanocrystalline composites, Nanoscale, Volume 11 (2019) no. 44, pp. 21502-21512 | DOI
[100] Ballistic Heat Transport in Nanocomposite: The Role of the Shape and Interconnection of Nanoinclusions, Nanomaterials, Volume 11 (2021) no. 8, 1982 | DOI
[101] Sound Attenuation at Terahertz Frequencies and the Boson Peak of Vitreous Silica, Phys. Rev. Lett., Volume 104 (2010) no. 19, 195501 | DOI
[102] Thermal acoustic excitations with atomic-scale wavelengths in amorphous silicon, Phys. Rev. Mater., Volume 3 (2019) no. 6, 065601 | DOI
[103] Thermal rectification in asymmetric two-phase nanowires, Phys. Rev. B, Volume 103 (2021) no. 1, 014202 | DOI
[104] Phonon Interference at the Atomic Scale (2022) (preprint, arXiv:2207.14064) | DOI
[105] Brief Historical Perspective in Thermal Management and the Shift Toward Management at the Nanoscale, Heat Transfer Engineering, Volume 40 (2019) no. 3-4, pp. 269-282 | DOI
Cited by Sources:
Comments - Policy