Comptes Rendus
Charge transport in carbon nanotubes based materials: a Kubo–Greenwood computational approach
[Transport de charge dans les matériaux à base de nanotubes de carbone : approche numérique]
Comptes Rendus. Physique, Volume 10 (2009) no. 4, pp. 283-296.

Dans cet article, nous présentons une étude numérique du transport quantique dans les nanotubes de carbone. Après une présentation de la technique numérique employée pour calculer les coefficients de transport, nous illustrons les propriétés du transport balistique, puis les effets dus au désordre statique et au désordre dynamique (vibrations du réseau). Les caractéristiques des échelles de transport (libre parcours moyen élastique, longueur de localisation) sont explicitées, ainsi que la dépendance en température de la résistance des nanotubes. Les résultats obtenus sont en très bon accord avec les données expérimentales.

In this contribution, we present a numerical study of quantum transport in carbon nanotubes based materials. After a brief presentation of the computational approach used to investigate the transport coefficient (Kubo method), the scaling properties of quantum conductance in ballistic regime as well as in the diffusive regimes are illustrated. The impact of elastic (impurities) and dynamical disorders (phonon vibrations) are analyzed separately, with the extraction of main transport length scales (mean free path and localization length), as well as the temperature dependence of the nanotube resistance. The results are found in very good agreement with both analytical results and experimental data, demonstrating the predictability efficiency of our computational strategy.

Publié le :
DOI : 10.1016/j.crhy.2009.04.003
Keywords: Charge transport, Static and dynamical disorders, Kubo–Greenwood conductance, Localization, Ballistic transport
Mot clés : Transport de charges, Désordres statique et dynamique, Conductivité de Kubo–Greenwood, Localisation, Transport balistique
Hiroyuki Ishii 1 ; François Triozon 2 ; Nobuhiko Kobayashi 3 ; Kenji Hirose 4 ; Stephan Roche 5, 6

1 National Institute of Advanced Industrial Science and Technology, Tsukuba central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
2 Commissariat à l'Énergie Atomique, Leti-MINATEC, 17, rue des Martyrs, 38054 Grenoble cedex 9, France
3 Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
4 Nano Electronics Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501, Japan
5 Commissariat à l'Énergie Atomique, INAC/SP2M/L_sim, 17, rue des Martyrs, 38054 Grenoble cedex, France
6 Institute for Materials Science, TU Dresden, D-01062 Dresden, Germany
@article{CRPHYS_2009__10_4_283_0,
     author = {Hiroyuki Ishii and Fran\c{c}ois Triozon and Nobuhiko Kobayashi and Kenji Hirose and Stephan Roche},
     title = {Charge transport in carbon nanotubes based materials: a {Kubo{\textendash}Greenwood} computational approach},
     journal = {Comptes Rendus. Physique},
     pages = {283--296},
     publisher = {Elsevier},
     volume = {10},
     number = {4},
     year = {2009},
     doi = {10.1016/j.crhy.2009.04.003},
     language = {en},
}
TY  - JOUR
AU  - Hiroyuki Ishii
AU  - François Triozon
AU  - Nobuhiko Kobayashi
AU  - Kenji Hirose
AU  - Stephan Roche
TI  - Charge transport in carbon nanotubes based materials: a Kubo–Greenwood computational approach
JO  - Comptes Rendus. Physique
PY  - 2009
SP  - 283
EP  - 296
VL  - 10
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crhy.2009.04.003
LA  - en
ID  - CRPHYS_2009__10_4_283_0
ER  - 
%0 Journal Article
%A Hiroyuki Ishii
%A François Triozon
%A Nobuhiko Kobayashi
%A Kenji Hirose
%A Stephan Roche
%T Charge transport in carbon nanotubes based materials: a Kubo–Greenwood computational approach
%J Comptes Rendus. Physique
%D 2009
%P 283-296
%V 10
%N 4
%I Elsevier
%R 10.1016/j.crhy.2009.04.003
%G en
%F CRPHYS_2009__10_4_283_0
Hiroyuki Ishii; François Triozon; Nobuhiko Kobayashi; Kenji Hirose; Stephan Roche. Charge transport in carbon nanotubes based materials: a Kubo–Greenwood computational approach. Comptes Rendus. Physique, Volume 10 (2009) no. 4, pp. 283-296. doi : 10.1016/j.crhy.2009.04.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.04.003/

[1] S. Iijima Nature, 354 (1991), p. 56

[2] R. Saito; G. Dresselhaus; M. Dresselhaus Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998

[3] S. Roche Ann. Chim. Sci. Mat., 25 (2000), p. 529

[4] J.C. Charlier; X. Blase; S. Roche Rev. Mod. Phys., 79 (2007), p. 677

[5] C.T. White; T.N. Todorov; P.L. McEuen et al. Phys. Rev. Lett., 393 (1998), p. 240

[6] S. Roche; G. Dresselhaus; M.S. Dresselhaus; R. Saito Phys. Rev. B, 62 (2000), p. 16092

[7] T. Ando; T. Nakanishi; R. Saito J. Phys. Soc. Jpn., 67 (1998), pp. 2857-2862

[8] A. Javey; J. Guo; M. Paulsson; Q. Wiang; D. Mann; M. Lundstrom; H. Dai Phys. Rev. Lett., 92 (2004), p. 106804

[9] J. Appenzeller; M. Radosavljevic; J. Knoch; Ph. Avouris; V. Derycke; R. Martel; J. Appenzeller; Ph. Avouris Nano Lett., 92 (2004), p. 048301

[10] A. Javey; J. Guo; Q. Wian; M. Lundstrom; H. Dai Nature (London), 424 (2003), p. 654

[11] C.L. Kane; E.J. Mele; J.E. Fischer; R. Lee; P. Petit; A. Thess; R.E. Smalley; S. Tans; C. Dekker Europhys. Lett., 41 (1998), p. 683

[12] J. Jiang; R. Saito; A. Grüneis; S.G. Chou; Ge.G. Samsonidze; A. Jorio; G. Dresselhaus; M.S. Dresselhaus Phys. Rev. B, 71 (2005), p. 045417

[13] T. Hertel; G. Moos; S. Reich; M. Dworzak; A. Hoffmann; C. Thomsen; M.S. Strano; M. Máchon; S. Reich; H. Telg; J. Maultzsch; P. Ordejón; C. Thomsen Phys. Rev. B, 84 (2002), p. 5002

[14] V. Perebeinos; J. Tersoff; Ph. Avouris Phys. Rev. Lett., 94 (2005), p. 086802

[15] V. Perebeinos; J. Tersoff; Ph. Avouris Phys. Rev. Lett., 94 (2005), p. 027402

[16] R.B. Capaz; C.D. Spataru; P. Tangney; M.L. Cohen; S.G. Louie Phys. Rev. Lett., 94 (2005), p. 036801

[17] X. Blase; Ch. Adessi; D. Connétable; D. Connétable; G.M. Riganese; J.C. Charlier; X. Blase Phys. Rev. Lett., 93 (2004), p. 237004

[18] S. Sapmaz; P. Jarillo-Herrero; Ya.M. Blanter; C. Dekker; H.S.J. van der Zant Phys. Rev. Lett., 96 (2006), p. 026801

[19] H. Suzuura; T. Ando; R.A. Jishi; M.S. Dresselhaus; G. Dresselhaus; L.M. Woods; G.D. Mahan; G. Pennington; N. Goldsman Phys. Rev. B, 65 (2002), p. 235412-11389

[20] Z. Yao; C.L. Kane; C. Dekker Phys. Rev. Lett., 84 (2000), p. 2941

[21] J.-Y. Park; S. Rosenblatt; Y. Yaish; V. Sazonova; H. Ustunel; S. Braig; T.A. Arias; P. Brouwer; P.L. McEuen Nano Lett., 4 (2004), p. 517

[22] E. Pop; D. Mann; J. Cao; Q. Wang; K. Goodson; H. Dai Phys. Rev. Lett., 95 (2005), p. 155505

[23] M. Lazzeri; S. Piscanec; F. Mauri; A.C. Ferrari; J. Robertson; M. Lazzeri; S. Piscanec; F. Mauri; A.C. Ferrari; J. Robertson Phys. Rev. B, 95 (2005), p. 236802

[24] M. Georghe; R. Gutierrez; N. Ranjan; A. Pecchia; A. Di Carlo; G. Cuniberti Europhys. Lett., 71 (2005), p. 438

[25] S. Roche; J. Jiang; F. Triozon; R. Saito Phys. Rev. Lett., 95 (2005), p. 076803

[26] H. Ishii; N. Kobayashi; K. Hirose Phys. Rev. B, 76 (2007), p. 205432

[27] H. Ishii; N. Kobayashi; K. Hirose Appl. Phys. Express, 1 (2008), p. 123002

[28] A. Svizhenko; M.P. Anantram Phys. Rev. B, 72 (2005), p. 085430

[29] M.A. Kuroda; A. Cangellaris; J.P. Leburton Phys. Rev. Lett., 95 (2005), p. 266803

[30] L.E.F. Foa Torres; S. Roche; L.E.F. Foa Torres; S. Roche; L.E.F. Foa Torres; S. Roche Phys. Rev. B, 97 (2006), p. 076804

[31] L.E.F. Foa Torres; R. Avriller; S. Roche Phys. Rev. B, 78 (2008), p. 035412

[32] D. Mayou; D. Mayou; S.N. Khanna; S. Roche; D. Mayou; F. Triozon; J. Vidal; R. Mosseri; D. Mayou Phys. Rev. B, 6 (1988), p. 549

[33] S. Roche Phys. Rev. B, 59 (1999), p. 2284

[34] S. Roche; R. Saito; F. Triozon; S. Roche; A. Rubio; D. Mayou; S. Latil; S. Roche; D. Mayou; J.C. Charlier; S. Latil; F. Triozon; S. Roche; Ch. Adessi; S. Roche; X. Blase; R. Avriller; S. Latil; F. Triozon; X. Blase; S. Roche Phys. Rev. B, NATO Science Series II: Mathematics, Physics and Chemistry, 87 (2001), p. 246803-165

[35] S. Roche; J. Jiang; F. Triozon; R. Saito Phys. Rev. B, 72 (2005), p. 113410

[36] T. Markussen; R. Rurali; M. Brandbyge; A.-P. Jauho Phys. Rev. B, 74 (2006), p. 245313

[37] A. Lherbier; M. Persson; Y.M. Niquet; F. Triozon; S. Roche Phys. Rev. B, 77 (2008), p. 085301

[38] A. Lherbier; B. Biel; Y.-M. Niquet; S. Roche; A. Lherbier; X. Blase; F. Triozon; Y.-M. Niquet; S. Roche Phys. Rev. Lett., 100 (2008), p. 036803

[39] R. Haydock Solid State Physics, vol. 35 (H. Ehrenreich; F. Seitz; D. Turnbull, eds.), Academic Press, New York, 1980, p. 215

[40] Recursion Method and its Applications (D.G. Petitfor; D.L. Weaire; V.S. Viswanath; G. Müller, eds.), Springer Series in Solid States Sciences, The Recursion Method: Application to Many-Body Dynamics, Lectures Notes in Physics, vol. 58, Springer Verlag, Berlin, 1985

[41] T. Hoshi; T. Fujiwara; T. Hoshi; T. Fujiwara J. Phys.: Condens. Matter, 72 (2003), pp. 2429-10802

[42] C. Lanczos J. Res. Nat. Bur. Stand., 45 (1950), p. 255

[43] D.J. Lohrmann et al. Phys. Rev. B, 40 (1989), p. 8404

[44] S.K. Bose; K. Winer; O.K. Andersen; S.K. Bose; et al.; S.K. Bose et al. Phys. Rev. B, 37 (1988), p. 6262

[45] R. Kubo; D. Fisher; P.A. Lee Phys. Rev. B, 12 (1957), p. 570

[46] H. Ishii; N. Kobayashi; K. Hirose Appl. Surf. Sci., 254 (2008), p. 7600

[47] B. Stojetz; C. Miko; L. Forro; Ch. Strünk Phys. Rev. Lett., 94 (2005), p. 186802

[48] H. Watanabe; T. Kawarabayashi; Y. Ono; T. Ohtsuki; T. Nakanishi; T. Ohtsuki; T. Kawarabayashi J. Phys. Soc. Jpn., 72 (2003), p. 645

[49] D. Porezag; Th. Frauenheim; Th. Köhler Phys. Rev. B, 51 (1995), p. 12947

[50] S. Roche; J. Jiang; L.E.F. Foa-Torres; R. Saito J. Phys. Condens. Matter, 19 (2007), p. 183203

[51] W.A. Harrison Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond, Dover Publications, 1989

[52] W.C. Swope; H.C. Andersen; P.H. Berens; K.R. Wilson J. Chem. Phys., 76 (1982), p. 637

[53] D.W. Brenner Phys. Rev. B, 42 (1990), p. 9458

[54] J. Shiomi; S. Maruyama Phys. Rev. B, 73 (2006), p. 205420

[55] H. Ishii; N. Kobayashi; K. Hirose J. Vac. Sci. Technol. B, 27 (2009), p. 882

[56] O. Dubay; G. Kresse; H. Kuzmany; O. Dubay; G. Kresse; H. Kuzmany Phys. Rev. B, 88 (2002), p. 235506

[57] S. Wang; M. Grifoni; S. Wang; M. Grifoni; S. Roche Phys. Rev. B, 95 (2005), p. 266802 (RC)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Multiscale simulation of carbon nanotube devices

C. Adessi; R. Avriller; X. Blase; ...

C. R. Phys (2009)


Exploring the electronic band structure of individual carbon nanotubes under 60 T

Sébastien Nanot; Walter Escoffier; Benjamin Lassagne; ...

C. R. Phys (2009)


Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance

Hugues Cazin d'Honincthun; Sylvie Galdin-Retailleau; Arnaud Bournel; ...

C. R. Phys (2008)