[Transport de charge dans les matériaux à base de nanotubes de carbone : approche numérique]
Dans cet article, nous présentons une étude numérique du transport quantique dans les nanotubes de carbone. Après une présentation de la technique numérique employée pour calculer les coefficients de transport, nous illustrons les propriétés du transport balistique, puis les effets dus au désordre statique et au désordre dynamique (vibrations du réseau). Les caractéristiques des échelles de transport (libre parcours moyen élastique, longueur de localisation) sont explicitées, ainsi que la dépendance en température de la résistance des nanotubes. Les résultats obtenus sont en très bon accord avec les données expérimentales.
In this contribution, we present a numerical study of quantum transport in carbon nanotubes based materials. After a brief presentation of the computational approach used to investigate the transport coefficient (Kubo method), the scaling properties of quantum conductance in ballistic regime as well as in the diffusive regimes are illustrated. The impact of elastic (impurities) and dynamical disorders (phonon vibrations) are analyzed separately, with the extraction of main transport length scales (mean free path and localization length), as well as the temperature dependence of the nanotube resistance. The results are found in very good agreement with both analytical results and experimental data, demonstrating the predictability efficiency of our computational strategy.
Mots-clés : Transport de charges, Désordres statique et dynamique, Conductivité de Kubo–Greenwood, Localisation, Transport balistique
Hiroyuki Ishii 1 ; François Triozon 2 ; Nobuhiko Kobayashi 3 ; Kenji Hirose 4 ; Stephan Roche 5, 6
@article{CRPHYS_2009__10_4_283_0, author = {Hiroyuki Ishii and Fran\c{c}ois Triozon and Nobuhiko Kobayashi and Kenji Hirose and Stephan Roche}, title = {Charge transport in carbon nanotubes based materials: a {Kubo{\textendash}Greenwood} computational approach}, journal = {Comptes Rendus. Physique}, pages = {283--296}, publisher = {Elsevier}, volume = {10}, number = {4}, year = {2009}, doi = {10.1016/j.crhy.2009.04.003}, language = {en}, }
TY - JOUR AU - Hiroyuki Ishii AU - François Triozon AU - Nobuhiko Kobayashi AU - Kenji Hirose AU - Stephan Roche TI - Charge transport in carbon nanotubes based materials: a Kubo–Greenwood computational approach JO - Comptes Rendus. Physique PY - 2009 SP - 283 EP - 296 VL - 10 IS - 4 PB - Elsevier DO - 10.1016/j.crhy.2009.04.003 LA - en ID - CRPHYS_2009__10_4_283_0 ER -
%0 Journal Article %A Hiroyuki Ishii %A François Triozon %A Nobuhiko Kobayashi %A Kenji Hirose %A Stephan Roche %T Charge transport in carbon nanotubes based materials: a Kubo–Greenwood computational approach %J Comptes Rendus. Physique %D 2009 %P 283-296 %V 10 %N 4 %I Elsevier %R 10.1016/j.crhy.2009.04.003 %G en %F CRPHYS_2009__10_4_283_0
Hiroyuki Ishii; François Triozon; Nobuhiko Kobayashi; Kenji Hirose; Stephan Roche. Charge transport in carbon nanotubes based materials: a Kubo–Greenwood computational approach. Comptes Rendus. Physique, Carbon nanotube electronics, Volume 10 (2009) no. 4, pp. 283-296. doi : 10.1016/j.crhy.2009.04.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.04.003/
[1] Nature, 354 (1991), p. 56
[2] Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998
[3] Ann. Chim. Sci. Mat., 25 (2000), p. 529
[4] Rev. Mod. Phys., 79 (2007), p. 677
[5] et al. Phys. Rev. Lett., 393 (1998), p. 240
[6] Phys. Rev. B, 62 (2000), p. 16092
[7] J. Phys. Soc. Jpn., 67 (1998), pp. 2857-2862
[8] Phys. Rev. Lett., 92 (2004), p. 106804
[9] Nano Lett., 92 (2004), p. 048301
[10] Nature (London), 424 (2003), p. 654
[11] Europhys. Lett., 41 (1998), p. 683
[12] Phys. Rev. B, 71 (2005), p. 045417
[13] Phys. Rev. B, 84 (2002), p. 5002
[14] Phys. Rev. Lett., 94 (2005), p. 086802
[15] Phys. Rev. Lett., 94 (2005), p. 027402
[16] Phys. Rev. Lett., 94 (2005), p. 036801
[17] Phys. Rev. Lett., 93 (2004), p. 237004
[18] Phys. Rev. Lett., 96 (2006), p. 026801
[19] Phys. Rev. B, 65 (2002), p. 235412-11389
[20] Phys. Rev. Lett., 84 (2000), p. 2941
[21] Nano Lett., 4 (2004), p. 517
[22] Phys. Rev. Lett., 95 (2005), p. 155505
[23] Phys. Rev. B, 95 (2005), p. 236802
[24] Europhys. Lett., 71 (2005), p. 438
[25] Phys. Rev. Lett., 95 (2005), p. 076803
[26] Phys. Rev. B, 76 (2007), p. 205432
[27] Appl. Phys. Express, 1 (2008), p. 123002
[28] Phys. Rev. B, 72 (2005), p. 085430
[29] Phys. Rev. Lett., 95 (2005), p. 266803
[30] Phys. Rev. B, 97 (2006), p. 076804
[31] Phys. Rev. B, 78 (2008), p. 035412
[32] Phys. Rev. B, 6 (1988), p. 549
[33] Phys. Rev. B, 59 (1999), p. 2284
[34] Phys. Rev. B, NATO Science Series II: Mathematics, Physics and Chemistry, 87 (2001), p. 246803-165
[35] Phys. Rev. B, 72 (2005), p. 113410
[36] Phys. Rev. B, 74 (2006), p. 245313
[37] Phys. Rev. B, 77 (2008), p. 085301
[38] Phys. Rev. Lett., 100 (2008), p. 036803
[39] Solid State Physics, vol. 35 (H. Ehrenreich; F. Seitz; D. Turnbull, eds.), Academic Press, New York, 1980, p. 215
[40] Recursion Method and its Applications (D.G. Petitfor; D.L. Weaire; V.S. Viswanath; G. Müller, eds.), Springer Series in Solid States Sciences, The Recursion Method: Application to Many-Body Dynamics, Lectures Notes in Physics, vol. 58, Springer Verlag, Berlin, 1985
[41] J. Phys.: Condens. Matter, 72 (2003), pp. 2429-10802
[42] J. Res. Nat. Bur. Stand., 45 (1950), p. 255
[43] et al. Phys. Rev. B, 40 (1989), p. 8404
[44] et al. Phys. Rev. B, 37 (1988), p. 6262
[45] Phys. Rev. B, 12 (1957), p. 570
[46] Appl. Surf. Sci., 254 (2008), p. 7600
[47] Phys. Rev. Lett., 94 (2005), p. 186802
[48] J. Phys. Soc. Jpn., 72 (2003), p. 645
[49] Phys. Rev. B, 51 (1995), p. 12947
[50] J. Phys. Condens. Matter, 19 (2007), p. 183203
[51] Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond, Dover Publications, 1989
[52] J. Chem. Phys., 76 (1982), p. 637
[53] Phys. Rev. B, 42 (1990), p. 9458
[54] Phys. Rev. B, 73 (2006), p. 205420
[55] J. Vac. Sci. Technol. B, 27 (2009), p. 882
[56] Phys. Rev. B, 88 (2002), p. 235506
[57] Phys. Rev. B, 95 (2005), p. 266802 (RC)
- Combining linear-scaling quantum transport and machine-learning molecular dynamics to study thermal and electronic transports in complex materials, Journal of Physics: Condensed Matter, Volume 36 (2024) no. 24, p. 245901 | DOI:10.1088/1361-648x/ad31c2
- Order-N calculations for thermoelectric power factor based on linear response theory, Journal of Physics: Condensed Matter, Volume 36 (2024) no. 33, p. 335903 | DOI:10.1088/1361-648x/ad4a15
- Linear scaling quantum transport methodologies, Physics Reports, Volume 903 (2021), p. 1 | DOI:10.1016/j.physrep.2020.12.001
- Computational methods for 2D materials modelling, Reports on Progress in Physics, Volume 84 (2021) no. 10, p. 106501 | DOI:10.1088/1361-6633/ac2356
- Introduction to Graphene-Based Nanomaterials, 2020 | DOI:10.1017/9781108664462
- Electronic and Transport Properties in Defective MoS2: Impact of Sulfur Vacancies, The Journal of Physical Chemistry C, Volume 124 (2020) no. 28, p. 15076 | DOI:10.1021/acs.jpcc.0c04203
- Anomalous ballistic transport in disordered bilayer graphene: A Dirac semimetal induced by dimer vacancies, Physical Review B, Volume 93 (2016) no. 4 | DOI:10.1103/physrevb.93.041403
- Anisotropic behavior of quantum transport in graphene superlattices: Coexistence of ballistic conduction with Anderson insulating regime, Physical Review B, Volume 89 (2014) no. 16 | DOI:10.1103/physrevb.89.165401
- Impact of Vacancies on Diffusive and Pseudodiffusive Electronic Transport in Graphene, Crystals, Volume 3 (2013) no. 2, p. 289 | DOI:10.3390/cryst3020289
- Highly defective graphene: A key prototype of two-dimensional Anderson insulators, Nano Research, Volume 6 (2013) no. 5, p. 326 | DOI:10.1007/s12274-013-0309-7
- Modeling electronic properties and quantum transport in doped and defective graphene, Solid State Communications, Volume 175-176 (2013), p. 90 | DOI:10.1016/j.ssc.2013.08.029
- Transport properties of graphene containing structural defects, Physical Review B, Volume 86 (2012) no. 7 | DOI:10.1103/physrevb.86.075402
- Quantum transport in disordered graphene: A theoretical perspective, Solid State Communications, Volume 152 (2012) no. 15, p. 1404 | DOI:10.1016/j.ssc.2012.04.030
- Magnetism-Dependent Transport Phenomena in Hydrogenated Graphene: From Spin-Splitting to Localization Effects, ACS Nano, Volume 5 (2011) no. 5, p. 3987 | DOI:10.1021/nn200558d
- Polaron transport in organic crystals: Temperature tuning of disorder effects, Physical Review B, Volume 84 (2011) no. 18 | DOI:10.1103/physrevb.84.180302
- Quantum transport in chemically modified two-dimensional graphene: From minimal conductivity to Anderson localization, Physical Review B, Volume 84 (2011) no. 23 | DOI:10.1103/physrevb.84.235420
- Two-Dimensional Graphene with Structural Defects: Elastic Mean Free Path, Minimum Conductivity, and Anderson Transition, Physical Review Letters, Volume 106 (2011) no. 4 | DOI:10.1103/physrevlett.106.046803
- Magnetoresistance and Magnetic Ordering Fingerprints in Hydrogenated Graphene, Physical Review Letters, Volume 107 (2011) no. 1 | DOI:10.1103/physrevlett.107.016602
- Damaging Graphene with Ozone Treatment: A Chemically Tunable Metal−Insulator Transition, ACS Nano, Volume 4 (2010) no. 7, p. 4033 | DOI:10.1021/nn100537z
- Edge-Phonon Scattering Effects on Electron Transport of Graphene Nanoribbons, Applied Physics Express, Volume 3 (2010) no. 9, p. 095102 | DOI:10.1143/apex.3.095102
- Order-Nelectron transport calculations from ballistic to diffusive regimes by a time-dependent wave-packet diffusion method: Application to transport properties of carbon nanotubes, Physical Review B, Volume 82 (2010) no. 8 | DOI:10.1103/physrevb.82.085435
- Inelastic Transport in Vibrating Disordered Carbon Nanotubes: Scattering Times and Temperature-Dependent Decoherence Effects, Physical Review Letters, Volume 104 (2010) no. 11 | DOI:10.1103/physrevlett.104.116801
Cité par 22 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier