Comptes Rendus
Charge transport in carbon nanotubes based materials: a Kubo–Greenwood computational approach
[Transport de charge dans les matériaux à base de nanotubes de carbone : approche numérique]
Comptes Rendus. Physique, Carbon nanotube electronics, Volume 10 (2009) no. 4, pp. 283-296.

Dans cet article, nous présentons une étude numérique du transport quantique dans les nanotubes de carbone. Après une présentation de la technique numérique employée pour calculer les coefficients de transport, nous illustrons les propriétés du transport balistique, puis les effets dus au désordre statique et au désordre dynamique (vibrations du réseau). Les caractéristiques des échelles de transport (libre parcours moyen élastique, longueur de localisation) sont explicitées, ainsi que la dépendance en température de la résistance des nanotubes. Les résultats obtenus sont en très bon accord avec les données expérimentales.

In this contribution, we present a numerical study of quantum transport in carbon nanotubes based materials. After a brief presentation of the computational approach used to investigate the transport coefficient (Kubo method), the scaling properties of quantum conductance in ballistic regime as well as in the diffusive regimes are illustrated. The impact of elastic (impurities) and dynamical disorders (phonon vibrations) are analyzed separately, with the extraction of main transport length scales (mean free path and localization length), as well as the temperature dependence of the nanotube resistance. The results are found in very good agreement with both analytical results and experimental data, demonstrating the predictability efficiency of our computational strategy.

Publié le :
DOI : 10.1016/j.crhy.2009.04.003
Keywords: Charge transport, Static and dynamical disorders, Kubo–Greenwood conductance, Localization, Ballistic transport
Mots-clés : Transport de charges, Désordres statique et dynamique, Conductivité de Kubo–Greenwood, Localisation, Transport balistique

Hiroyuki Ishii 1 ; François Triozon 2 ; Nobuhiko Kobayashi 3 ; Kenji Hirose 4 ; Stephan Roche 5, 6

1 National Institute of Advanced Industrial Science and Technology, Tsukuba central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
2 Commissariat à l'Énergie Atomique, Leti-MINATEC, 17, rue des Martyrs, 38054 Grenoble cedex 9, France
3 Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
4 Nano Electronics Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501, Japan
5 Commissariat à l'Énergie Atomique, INAC/SP2M/L_sim, 17, rue des Martyrs, 38054 Grenoble cedex, France
6 Institute for Materials Science, TU Dresden, D-01062 Dresden, Germany
@article{CRPHYS_2009__10_4_283_0,
     author = {Hiroyuki Ishii and Fran\c{c}ois Triozon and Nobuhiko Kobayashi and Kenji Hirose and Stephan Roche},
     title = {Charge transport in carbon nanotubes based materials: a {Kubo{\textendash}Greenwood} computational approach},
     journal = {Comptes Rendus. Physique},
     pages = {283--296},
     publisher = {Elsevier},
     volume = {10},
     number = {4},
     year = {2009},
     doi = {10.1016/j.crhy.2009.04.003},
     language = {en},
}
TY  - JOUR
AU  - Hiroyuki Ishii
AU  - François Triozon
AU  - Nobuhiko Kobayashi
AU  - Kenji Hirose
AU  - Stephan Roche
TI  - Charge transport in carbon nanotubes based materials: a Kubo–Greenwood computational approach
JO  - Comptes Rendus. Physique
PY  - 2009
SP  - 283
EP  - 296
VL  - 10
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crhy.2009.04.003
LA  - en
ID  - CRPHYS_2009__10_4_283_0
ER  - 
%0 Journal Article
%A Hiroyuki Ishii
%A François Triozon
%A Nobuhiko Kobayashi
%A Kenji Hirose
%A Stephan Roche
%T Charge transport in carbon nanotubes based materials: a Kubo–Greenwood computational approach
%J Comptes Rendus. Physique
%D 2009
%P 283-296
%V 10
%N 4
%I Elsevier
%R 10.1016/j.crhy.2009.04.003
%G en
%F CRPHYS_2009__10_4_283_0
Hiroyuki Ishii; François Triozon; Nobuhiko Kobayashi; Kenji Hirose; Stephan Roche. Charge transport in carbon nanotubes based materials: a Kubo–Greenwood computational approach. Comptes Rendus. Physique, Carbon nanotube electronics, Volume 10 (2009) no. 4, pp. 283-296. doi : 10.1016/j.crhy.2009.04.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.04.003/

[1] S. Iijima Nature, 354 (1991), p. 56

[2] R. Saito; G. Dresselhaus; M. Dresselhaus Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998

[3] S. Roche Ann. Chim. Sci. Mat., 25 (2000), p. 529

[4] J.C. Charlier; X. Blase; S. Roche Rev. Mod. Phys., 79 (2007), p. 677

[5] C.T. White; T.N. Todorov; P.L. McEuen et al. Phys. Rev. Lett., 393 (1998), p. 240

[6] S. Roche; G. Dresselhaus; M.S. Dresselhaus; R. Saito Phys. Rev. B, 62 (2000), p. 16092

[7] T. Ando; T. Nakanishi; R. Saito J. Phys. Soc. Jpn., 67 (1998), pp. 2857-2862

[8] A. Javey; J. Guo; M. Paulsson; Q. Wiang; D. Mann; M. Lundstrom; H. Dai Phys. Rev. Lett., 92 (2004), p. 106804

[9] J. Appenzeller; M. Radosavljevic; J. Knoch; Ph. Avouris; V. Derycke; R. Martel; J. Appenzeller; Ph. Avouris Nano Lett., 92 (2004), p. 048301

[10] A. Javey; J. Guo; Q. Wian; M. Lundstrom; H. Dai Nature (London), 424 (2003), p. 654

[11] C.L. Kane; E.J. Mele; J.E. Fischer; R. Lee; P. Petit; A. Thess; R.E. Smalley; S. Tans; C. Dekker Europhys. Lett., 41 (1998), p. 683

[12] J. Jiang; R. Saito; A. Grüneis; S.G. Chou; Ge.G. Samsonidze; A. Jorio; G. Dresselhaus; M.S. Dresselhaus Phys. Rev. B, 71 (2005), p. 045417

[13] T. Hertel; G. Moos; S. Reich; M. Dworzak; A. Hoffmann; C. Thomsen; M.S. Strano; M. Máchon; S. Reich; H. Telg; J. Maultzsch; P. Ordejón; C. Thomsen Phys. Rev. B, 84 (2002), p. 5002

[14] V. Perebeinos; J. Tersoff; Ph. Avouris Phys. Rev. Lett., 94 (2005), p. 086802

[15] V. Perebeinos; J. Tersoff; Ph. Avouris Phys. Rev. Lett., 94 (2005), p. 027402

[16] R.B. Capaz; C.D. Spataru; P. Tangney; M.L. Cohen; S.G. Louie Phys. Rev. Lett., 94 (2005), p. 036801

[17] X. Blase; Ch. Adessi; D. Connétable; D. Connétable; G.M. Riganese; J.C. Charlier; X. Blase Phys. Rev. Lett., 93 (2004), p. 237004

[18] S. Sapmaz; P. Jarillo-Herrero; Ya.M. Blanter; C. Dekker; H.S.J. van der Zant Phys. Rev. Lett., 96 (2006), p. 026801

[19] H. Suzuura; T. Ando; R.A. Jishi; M.S. Dresselhaus; G. Dresselhaus; L.M. Woods; G.D. Mahan; G. Pennington; N. Goldsman Phys. Rev. B, 65 (2002), p. 235412-11389

[20] Z. Yao; C.L. Kane; C. Dekker Phys. Rev. Lett., 84 (2000), p. 2941

[21] J.-Y. Park; S. Rosenblatt; Y. Yaish; V. Sazonova; H. Ustunel; S. Braig; T.A. Arias; P. Brouwer; P.L. McEuen Nano Lett., 4 (2004), p. 517

[22] E. Pop; D. Mann; J. Cao; Q. Wang; K. Goodson; H. Dai Phys. Rev. Lett., 95 (2005), p. 155505

[23] M. Lazzeri; S. Piscanec; F. Mauri; A.C. Ferrari; J. Robertson; M. Lazzeri; S. Piscanec; F. Mauri; A.C. Ferrari; J. Robertson Phys. Rev. B, 95 (2005), p. 236802

[24] M. Georghe; R. Gutierrez; N. Ranjan; A. Pecchia; A. Di Carlo; G. Cuniberti Europhys. Lett., 71 (2005), p. 438

[25] S. Roche; J. Jiang; F. Triozon; R. Saito Phys. Rev. Lett., 95 (2005), p. 076803

[26] H. Ishii; N. Kobayashi; K. Hirose Phys. Rev. B, 76 (2007), p. 205432

[27] H. Ishii; N. Kobayashi; K. Hirose Appl. Phys. Express, 1 (2008), p. 123002

[28] A. Svizhenko; M.P. Anantram Phys. Rev. B, 72 (2005), p. 085430

[29] M.A. Kuroda; A. Cangellaris; J.P. Leburton Phys. Rev. Lett., 95 (2005), p. 266803

[30] L.E.F. Foa Torres; S. Roche; L.E.F. Foa Torres; S. Roche; L.E.F. Foa Torres; S. Roche Phys. Rev. B, 97 (2006), p. 076804

[31] L.E.F. Foa Torres; R. Avriller; S. Roche Phys. Rev. B, 78 (2008), p. 035412

[32] D. Mayou; D. Mayou; S.N. Khanna; S. Roche; D. Mayou; F. Triozon; J. Vidal; R. Mosseri; D. Mayou Phys. Rev. B, 6 (1988), p. 549

[33] S. Roche Phys. Rev. B, 59 (1999), p. 2284

[34] S. Roche; R. Saito; F. Triozon; S. Roche; A. Rubio; D. Mayou; S. Latil; S. Roche; D. Mayou; J.C. Charlier; S. Latil; F. Triozon; S. Roche; Ch. Adessi; S. Roche; X. Blase; R. Avriller; S. Latil; F. Triozon; X. Blase; S. Roche Phys. Rev. B, NATO Science Series II: Mathematics, Physics and Chemistry, 87 (2001), p. 246803-165

[35] S. Roche; J. Jiang; F. Triozon; R. Saito Phys. Rev. B, 72 (2005), p. 113410

[36] T. Markussen; R. Rurali; M. Brandbyge; A.-P. Jauho Phys. Rev. B, 74 (2006), p. 245313

[37] A. Lherbier; M. Persson; Y.M. Niquet; F. Triozon; S. Roche Phys. Rev. B, 77 (2008), p. 085301

[38] A. Lherbier; B. Biel; Y.-M. Niquet; S. Roche; A. Lherbier; X. Blase; F. Triozon; Y.-M. Niquet; S. Roche Phys. Rev. Lett., 100 (2008), p. 036803

[39] R. Haydock Solid State Physics, vol. 35 (H. Ehrenreich; F. Seitz; D. Turnbull, eds.), Academic Press, New York, 1980, p. 215

[40] Recursion Method and its Applications (D.G. Petitfor; D.L. Weaire; V.S. Viswanath; G. Müller, eds.), Springer Series in Solid States Sciences, The Recursion Method: Application to Many-Body Dynamics, Lectures Notes in Physics, vol. 58, Springer Verlag, Berlin, 1985

[41] T. Hoshi; T. Fujiwara; T. Hoshi; T. Fujiwara J. Phys.: Condens. Matter, 72 (2003), pp. 2429-10802

[42] C. Lanczos J. Res. Nat. Bur. Stand., 45 (1950), p. 255

[43] D.J. Lohrmann et al. Phys. Rev. B, 40 (1989), p. 8404

[44] S.K. Bose; K. Winer; O.K. Andersen; S.K. Bose; et al.; S.K. Bose et al. Phys. Rev. B, 37 (1988), p. 6262

[45] R. Kubo; D. Fisher; P.A. Lee Phys. Rev. B, 12 (1957), p. 570

[46] H. Ishii; N. Kobayashi; K. Hirose Appl. Surf. Sci., 254 (2008), p. 7600

[47] B. Stojetz; C. Miko; L. Forro; Ch. Strünk Phys. Rev. Lett., 94 (2005), p. 186802

[48] H. Watanabe; T. Kawarabayashi; Y. Ono; T. Ohtsuki; T. Nakanishi; T. Ohtsuki; T. Kawarabayashi J. Phys. Soc. Jpn., 72 (2003), p. 645

[49] D. Porezag; Th. Frauenheim; Th. Köhler Phys. Rev. B, 51 (1995), p. 12947

[50] S. Roche; J. Jiang; L.E.F. Foa-Torres; R. Saito J. Phys. Condens. Matter, 19 (2007), p. 183203

[51] W.A. Harrison Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond, Dover Publications, 1989

[52] W.C. Swope; H.C. Andersen; P.H. Berens; K.R. Wilson J. Chem. Phys., 76 (1982), p. 637

[53] D.W. Brenner Phys. Rev. B, 42 (1990), p. 9458

[54] J. Shiomi; S. Maruyama Phys. Rev. B, 73 (2006), p. 205420

[55] H. Ishii; N. Kobayashi; K. Hirose J. Vac. Sci. Technol. B, 27 (2009), p. 882

[56] O. Dubay; G. Kresse; H. Kuzmany; O. Dubay; G. Kresse; H. Kuzmany Phys. Rev. B, 88 (2002), p. 235506

[57] S. Wang; M. Grifoni; S. Wang; M. Grifoni; S. Roche Phys. Rev. B, 95 (2005), p. 266802 (RC)

  • Zheyong Fan; Yang Xiao; Yanzhou Wang; Penghua Ying; Shunda Chen; Haikuan Dong Combining linear-scaling quantum transport and machine-learning molecular dynamics to study thermal and electronic transports in complex materials, Journal of Physics: Condensed Matter, Volume 36 (2024) no. 24, p. 245901 | DOI:10.1088/1361-648x/ad31c2
  • Hiroyuki Ishii; Nobuhiko Kobayashi; Kenji Hirose Order-N calculations for thermoelectric power factor based on linear response theory, Journal of Physics: Condensed Matter, Volume 36 (2024) no. 33, p. 335903 | DOI:10.1088/1361-648x/ad4a15
  • Zheyong Fan; José H. Garcia; Aron W. Cummings; Jose Eduardo Barrios-Vargas; Michel Panhans; Ari Harju; Frank Ortmann; Stephan Roche Linear scaling quantum transport methodologies, Physics Reports, Volume 903 (2021), p. 1 | DOI:10.1016/j.physrep.2020.12.001
  • A Carvalho; P E Trevisanutto; S Taioli; A H Castro Neto Computational methods for 2D materials modelling, Reports on Progress in Physics, Volume 84 (2021) no. 10, p. 106501 | DOI:10.1088/1361-6633/ac2356
  • Luis E. F. Foa Torres; Stephan Roche; Jean-Christophe Charlier Introduction to Graphene-Based Nanomaterials, 2020 | DOI:10.1017/9781108664462
  • Sai Manoj Gali; Anton Pershin; Aurélien Lherbier; Jean-Christophe Charlier; David Beljonne Electronic and Transport Properties in Defective MoS2: Impact of Sulfur Vacancies, The Journal of Physical Chemistry C, Volume 124 (2020) no. 28, p. 15076 | DOI:10.1021/acs.jpcc.0c04203
  • Dinh Van Tuan; Stephan Roche Anomalous ballistic transport in disordered bilayer graphene: A Dirac semimetal induced by dimer vacancies, Physical Review B, Volume 93 (2016) no. 4 | DOI:10.1103/physrevb.93.041403
  • Jesper Goor Pedersen; Aron W. Cummings; Stephan Roche Anisotropic behavior of quantum transport in graphene superlattices: Coexistence of ballistic conduction with Anderson insulating regime, Physical Review B, Volume 89 (2014) no. 16 | DOI:10.1103/physrevb.89.165401
  • Alessandro Cresti; Thibaud Louvet; Frank Ortmann; Dinh Van Tuan; Paweł Lenarczyk; Georg Huhs; Stephan Roche Impact of Vacancies on Diffusive and Pseudodiffusive Electronic Transport in Graphene, Crystals, Volume 3 (2013) no. 2, p. 289 | DOI:10.3390/cryst3020289
  • Aurélien Lherbier; Stephan Roche; Oscar A. Restrepo; Yann-Michel Niquet; Arnaud Delcorte; Jean-Christophe Charlier Highly defective graphene: A key prototype of two-dimensional Anderson insulators, Nano Research, Volume 6 (2013) no. 5, p. 326 | DOI:10.1007/s12274-013-0309-7
  • A.R. Botello-Méndez; A. Lherbier; J.-C. Charlier Modeling electronic properties and quantum transport in doped and defective graphene, Solid State Communications, Volume 175-176 (2013), p. 90 | DOI:10.1016/j.ssc.2013.08.029
  • Aurélien Lherbier; Simon M.-M. Dubois; Xavier Declerck; Yann-Michel Niquet; Stephan Roche; Jean-Christophe Charlier Transport properties of graphene containing structural defects, Physical Review B, Volume 86 (2012) no. 7 | DOI:10.1103/physrevb.86.075402
  • Stephan Roche; Nicolas Leconte; Frank Ortmann; Aurélien Lherbier; David Soriano; Jean-Christophe Charlier Quantum transport in disordered graphene: A theoretical perspective, Solid State Communications, Volume 152 (2012) no. 15, p. 1404 | DOI:10.1016/j.ssc.2012.04.030
  • Nicolas Leconte; David Soriano; Stephan Roche; Pablo Ordejon; Jean-Christophe Charlier; J. J. Palacios Magnetism-Dependent Transport Phenomena in Hydrogenated Graphene: From Spin-Splitting to Localization Effects, ACS Nano, Volume 5 (2011) no. 5, p. 3987 | DOI:10.1021/nn200558d
  • Frank Ortmann; Stephan Roche Polaron transport in organic crystals: Temperature tuning of disorder effects, Physical Review B, Volume 84 (2011) no. 18 | DOI:10.1103/physrevb.84.180302
  • N. Leconte; A. Lherbier; F. Varchon; P. Ordejon; S. Roche; J.-C. Charlier Quantum transport in chemically modified two-dimensional graphene: From minimal conductivity to Anderson localization, Physical Review B, Volume 84 (2011) no. 23 | DOI:10.1103/physrevb.84.235420
  • Aurélien Lherbier; Simon M.-M. Dubois; Xavier Declerck; Stephan Roche; Yann-Michel Niquet; Jean-Christophe Charlier Two-Dimensional Graphene with Structural Defects: Elastic Mean Free Path, Minimum Conductivity, and Anderson Transition, Physical Review Letters, Volume 106 (2011) no. 4 | DOI:10.1103/physrevlett.106.046803
  • David Soriano; Nicolas Leconte; Pablo Ordejón; Jean-Christophe Charlier; Juan-Jose Palacios; Stephan Roche Magnetoresistance and Magnetic Ordering Fingerprints in Hydrogenated Graphene, Physical Review Letters, Volume 107 (2011) no. 1 | DOI:10.1103/physrevlett.107.016602
  • Nicolas Leconte; Joël Moser; Pablo Ordejón; Haihua Tao; Aurélien Lherbier; Adrian Bachtold; Francesc Alsina; Clivia M. Sotomayor Torres; Jean-Christophe Charlier; Stephan Roche Damaging Graphene with Ozone Treatment: A Chemically Tunable Metal−Insulator Transition, ACS Nano, Volume 4 (2010) no. 7, p. 4033 | DOI:10.1021/nn100537z
  • Hiroyuki Ishii; Nobuhiko Kobayashi; Kenji Hirose Edge-Phonon Scattering Effects on Electron Transport of Graphene Nanoribbons, Applied Physics Express, Volume 3 (2010) no. 9, p. 095102 | DOI:10.1143/apex.3.095102
  • Hiroyuki Ishii; Nobuhiko Kobayashi; Kenji Hirose Order-Nelectron transport calculations from ballistic to diffusive regimes by a time-dependent wave-packet diffusion method: Application to transport properties of carbon nanotubes, Physical Review B, Volume 82 (2010) no. 8 | DOI:10.1103/physrevb.82.085435
  • Hiroyuki Ishii; Stephan Roche; Nobuhiko Kobayashi; Kenji Hirose Inelastic Transport in Vibrating Disordered Carbon Nanotubes: Scattering Times and Temperature-Dependent Decoherence Effects, Physical Review Letters, Volume 104 (2010) no. 11 | DOI:10.1103/physrevlett.104.116801

Cité par 22 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: