Comptes Rendus
Dynamics of spatial phase coherence in a dissipative Bose–Hubbard atomic system
Comptes Rendus. Physique, Volume 24 (2023) no. S3, pp. 263-284.

We investigate the loss of spatial coherence of one-dimensional bosonic gases in optical lattices illuminated by a near-resonant excitation laser. Because the atoms recoil in a random direction after each spontaneous emission, the atomic momentum distribution progressively broadens. Equivalently, the spatial correlation function (the Fourier-conjugate quantity of the momentum distribution) progressively narrows down as more photons are scattered. Here we measure the correlation function of the matter field for fixed distances corresponding to nearest-neighbor (n-n) and next-nearest-neighbor (n-n-n) sites of the optical lattice as a function of time, hereafter called n-n and n-n-n correlators. For strongly interacting lattice gases, we find that the n-n correlator C 1 decays as a power-law at long times, C 1 1/t α , in stark contrast with the exponential decay expected for independent particles. The power-law decay reflects a non-trivial dissipative many-body dynamics, where interactions change drastically the interplay between fluorescence destroying spatial coherence, and coherent tunnelling between neighboring sites restoring spatial coherence at short distances. The observed decay exponent α0.54(6) is in good agreement with the prediction α=1/2 from a dissipative Bose–Hubbard model accounting for the fluorescence-induced decoherence. Furthermore, we find that the n-n correlator C 1 controls the n-n-n correlator C 2 through the relation C 2 C 1 2 , also in accordance with the dissipative Bose–Hubbard model.

Nous étudions la disparition de la cohérence spatiale quand un gaz quantique d’atomes bosoniques est illuminé par un laser quasi-résonant. La distribution en impulsion du gaz s’élargit à cause de la diffusion en impulsion due au caractère aléatoire de l’émission spontanée. De manière équivalente, la fonction de corrélation spatiale qui permet de caractériser la cohérence en phase (et qui n’est rien d’autre que la transformée de Fourier de la distribution en impulsion) devient de plus en plus étroite. Dans ce travail, nous mesurons cette fonction de corrélation pour un gaz unidimensionnel dans un réseau optique et pour des distances correspondant à des sites plus proches voisins (ppv) et second plus proches voisins (sppv). Pour des gaz en interaction, nous observons que la fonction de corrélation ppv C 1 décroît comme une loi de puissance, C 1 1/t α , beaucoup plus lente que la décroissance exponentielle attendue pour des atomes indépendants. Cette loi algébrique reflète une dynamique à N corps sous-jacente où les interactions modifient complètement la compétition entre effet tunnel ppv (qui tend à préserver ou restaurer la cohérence spatiale) et émission spontanée (qui détruit cette cohérence). Nous mesurons un exposant de décroissance algébrique α0.54(6), en bon accord avec la prédiction α=1/2 déduite d’un modèle de Bose–Hubbard avec une partie dissipative décrivant la décoherence induite par les photons de fluorescence. Enfin, nous observons que le corrélateur ppv C 1 contrôle le corrélateur sppv C 2 à travers la relation C 2 C 1 2 , également prédite par le modèle de Bose–Hubbard dissipatif.

Received:
Revised:
Accepted:
Online First:
Published online:
DOI: 10.5802/crphys.166
Keywords: ultracold atoms, quantum gases, optical lattices, decoherence
Mot clés : atomes ultrafroids, gaz quantiques, réseaux optiques, décohérence

Rémy Vatré 1; Raphaël Bouganne 1; Manel Bosch Aguilera 1; Alexis Ghermaoui 1; Jérôme Beugnon 1; Raphael Lopes 1; Fabrice Gerbier 1

1 Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2023__24_S3_263_0,
     author = {R\'emy Vatr\'e and Rapha\"el Bouganne and Manel Bosch Aguilera and Alexis Ghermaoui and J\'er\^ome Beugnon and Raphael Lopes and Fabrice Gerbier},
     title = {Dynamics of spatial phase coherence in a dissipative {Bose{\textendash}Hubbard} atomic system},
     journal = {Comptes Rendus. Physique},
     pages = {263--284},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {24},
     number = {S3},
     year = {2023},
     doi = {10.5802/crphys.166},
     language = {en},
}
TY  - JOUR
AU  - Rémy Vatré
AU  - Raphaël Bouganne
AU  - Manel Bosch Aguilera
AU  - Alexis Ghermaoui
AU  - Jérôme Beugnon
AU  - Raphael Lopes
AU  - Fabrice Gerbier
TI  - Dynamics of spatial phase coherence in a dissipative Bose–Hubbard atomic system
JO  - Comptes Rendus. Physique
PY  - 2023
SP  - 263
EP  - 284
VL  - 24
IS  - S3
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.166
LA  - en
ID  - CRPHYS_2023__24_S3_263_0
ER  - 
%0 Journal Article
%A Rémy Vatré
%A Raphaël Bouganne
%A Manel Bosch Aguilera
%A Alexis Ghermaoui
%A Jérôme Beugnon
%A Raphael Lopes
%A Fabrice Gerbier
%T Dynamics of spatial phase coherence in a dissipative Bose–Hubbard atomic system
%J Comptes Rendus. Physique
%D 2023
%P 263-284
%V 24
%N S3
%I Académie des sciences, Paris
%R 10.5802/crphys.166
%G en
%F CRPHYS_2023__24_S3_263_0
Rémy Vatré; Raphaël Bouganne; Manel Bosch Aguilera; Alexis Ghermaoui; Jérôme Beugnon; Raphael Lopes; Fabrice Gerbier. Dynamics of spatial phase coherence in a dissipative Bose–Hubbard atomic system. Comptes Rendus. Physique, Volume 24 (2023) no. S3, pp. 263-284. doi : 10.5802/crphys.166. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.166/

[1] L. I. Schiff Quantum Mechanics, McGraw-Hill, 1968

[2] C. Cohen-Tannoudji; C. Robilliard Wave functions, relative phase and interference for atomic Bose–-Einstein condensates, C. R. Phys., Volume 2 (2001) no. 3, pp. 445-477 | DOI

[3] M. R. Andrews; C. G. Townsend; H.-J. Miesner; D. S. Durfee; D. M. Kurn; W. Ketterle Observation of interference between two Bose condensates, Science, Volume 275 (1997) no. 5300, pp. 637-641 | DOI

[4] E. W. Hagley; L. Deng; M. Kozuma; M. Trippenbach; Y. B. Band; M. Edwards; M. Doery; P. S. Julienne; K. Helmerson; S. L. Rolston; W. D. Phillips Measurement of the Coherence of a Bose-Einstein Condensate, Phys. Rev. Lett., Volume 83 (1999) no. 16, pp. 3112-3115 | DOI

[5] J. Stenger; S. Inouye; A. P. Chikkatur; D. M. Stamper-Kurn; D. E. Pritchard; W. Ketterle Bragg Spectroscopy of a Bose–Einstein Condensate, Phys. Rev. Lett., Volume 82 (1999) no. 23, pp. 4569-4573 | DOI

[6] I. Bloch; T. W. Hänsch; T. Esslinger Measurement of the spatial coherence of a trapped Bose gas at the phase transition, Nature, Volume 403 (2000) no. 6766, pp. 166-170 | DOI

[7] L. Pitaevskii; S. Stringari Bose–Einstein condensation, International Series of Monographs on Physics, 164, Oxford University Press, 2003

[8] I. Bloch; J. Dalibard; W. Zwerger Many-body physics with ultracold gases, Rev. Mod. Phys., Volume 80 (2008) no. 3, pp. 885-964 | DOI

[9] M. Ozawa Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement, Phys. Rev. A, Volume 67 (2003) no. 4, 042105 | DOI

[10] A. P. Lund; H. M. Wiseman Measuring measurement–disturbance relationships with weak values, New J. Phys., Volume 12 (2010) no. 9, 093011 | DOI

[11] L. A. Rozema; A. Darabi; D. H. Mahler; A. Hayat; Y. Soudagar; A. M. Steinberg Violation of Heisenberg’s Measurement-Disturbance Relationship by Weak Measurements, Phys. Rev. Lett., Volume 109 (2012) no. 10, 100404 | DOI

[12] P. Busch; P. Lahti; Re. F. Werner Proof of Heisenberg’s Error-Disturbance Relation, Phys. Rev. Lett., Volume 111 (2013) no. 16, 160405 | DOI

[13] P. Marte; R. Dum; R. Taïeb; P. Zoller Resonance fluorescence from quantized one-dimensional molasses, Phys. Rev. A, Volume 47 (1993) no. 2, pp. 1378-1390 | DOI

[14] M. J. Gagen; H. M. Wiseman; G. J. Milburn Continuous position measurements and the quantum Zeno effect, Phys. Rev. A, Volume 48 (1993) no. 1, pp. 132-142 | DOI

[15] J. I. Cirac; A. Schenzle; P. Zoller Inhibition of Quantum Tunneling of an Atom due to the Continuous Observation of Light Scattering, Eur. Phys. Lett., Volume 27 (1994) no. 2, pp. 123-128 | DOI

[16] T. Pfau; S. Spälter; Ch. Kurtsiefer; C. R. Ekstrom; J. Mlynek Loss of Spatial Coherence by a Single Spontaneous Emission, Phys. Rev. Lett., Volume 73 (1994) no. 9, pp. 1223-1226 | DOI

[17] M. Holland; S. Marksteiner; P. Marte; P. Zoller Measurement induced localization from spontaneous decay, Phys. Rev. Lett., Volume 76 (1996) no. 20, pp. 3683-3686 | DOI

[18] D. J. Wineland; W. M. Itano Laser cooling of atoms, Phys. Rev. A, Volume 20 (1979) no. 4, pp. 1521-1540 | DOI

[19] J. P. Gordon; A. Ashkin Motion of atoms in a radiation trap, Phys. Rev. A, Volume 21 (1980) no. 5, pp. 1606-1617 | DOI

[20] R. Bouganne; M. Bosch Aguilera; A. Ghermaoui; J. Beugnon; F. Gerbier Anomalous decay of coherence in a dissipative many-body system, Nat. Phys., Volume 16 (2020) no. 1, pp. 21-25 | DOI

[21] D. Poletti; J.-S. Bernier; A. Georges; C. Kollath Interaction-induced impeding of decoherence and anomalous diffusion, Phys. Rev. Lett., Volume 109 (2012) no. 4, 045302 | DOI

[22] D. Poletti; P. Barmettler; A. Georges; C. Kollath Emergence of glasslike dynamics for dissipative and strongly interacting bosons, Phys. Rev. Lett., Volume 111 (2013) no. 19, 195301 | DOI

[23] A. Dareau; M. Scholl; Q. Beaufils; D. Döring; J. Beugnon; F. Gerbier Doppler spectroscopy of an ytterbium Bose–Einstein condensate on the clock transition, Phys. Rev. A, Volume 91 (2015) no. 2, 023626 | DOI

[24] R. Bouganne; M. Bosch Aguilera; A. Dareau; E. Soave; J. Beugnon; F. Gerbier Clock spectroscopy of interacting bosons in deep optical lattices, New J. Phys., Volume 19 (2017) no. 11, 113006 | DOI

[25] B. Paredes; A. Widera; V. Murg; O. Mandel; S. Fölling; I. Cirac; G. V. Shlyapnikov; T. W. Hänsch; I. Bloch Tonks–Girardeau gas of ultracold atoms in an optical lattice, Nature, Volume 429 (2004), pp. 277-281 | DOI

[26] T. Stöferle; H. Moritz; C. Schori; M. Köhl; T. Esslinger Transition form a strongly interacting 1D superfluid to a Mott insulator, Phys. Rev. Lett., Volume 92 (2004), 130403 | DOI

[27] R. Grimm; M. Weidemüller; Y. B. Ovchinnikov Optical dipole traps for neutral atoms (Benjamin Bederson; Herbert Walther, eds.) (Advances In Atomic, Molecular, and Optical Physics), Volume 42 (2000), pp. 95-170 | DOI

[28] F. Gerbier; Y. Castin Heating rates for an atom in a far-detuned optical lattice, Phys. Rev. A, Volume 82 (2010) no. 1, 013615 | DOI

[29] H. Pichler; A. J. Daley; P. Zoller Nonequilibrium dynamics of bosonic atoms in optical lattices: Decoherence of many-body states due to spontaneous emission, Phys. Rev. A, Volume 82 (2010) no. 6, 063605 | DOI

[30] C. Cohen-Tannoudji; G. Grynberg; J. Dupont-Roc Atom Photon Interactions, Atomic and Molecular Physics, John Wiley & Sons, 1992

[31] W. Zwerger Mott–Hubbard transition of cold atoms in an optical lattice, J. opt., B Quantum semiclass. opt., Volume 5 (2003), p. S9-S16 | DOI

[32] M. Greiner; I. Bloch; O. Mandel; T. W. Hänsch; T. Esslinger Exploring Phase Coherence in a 2D Lattice of Bose–Einstein Condensates, Phys. Rev. Lett., Volume 87 (2001) no. 16, 160405 | DOI

[33] P. Pedri; L. Pitaevskii; S. Stringari; C. Fort; S. Burger; F. S. Cataliotti; P. Maddaloni; F. Minardi; M. Inguscio Expansion of a coherent array of Bose–Einstein condensates, Phys. Rev. Lett., Volume 87 (2001) no. 22, 220401 | DOI

[34] M. A. Cazalilla; R. Citro; T. Giamarchi; E. Orignac; M. Rigol One dimensional bosons: From condensed matter systems to ultracold gases, Rev. Mod. Phys., Volume 83 (2011) no. 4, pp. 1405-1466 | DOI

[35] Y. Yanay; E. J. Mueller Heating from continuous number density measurements in optical lattices, Phys. Rev. A, Volume 90 (2014) no. 2, 023611 | DOI

[36] Y. S. Patil; S. Chakram; M. Vengalattore Measurement-induced localization of an ultracold lattice gas, Phys. Rev. Lett., Volume 115 (2015) no. 14, 140402 | DOI

[37] L. Pan; X. Chen; Y. Chen; H. Zhai Non-Hermitian linear response theory, Nat. Phys., Volume 16 (2020) no. 7, pp. 767-771 | DOI

[38] J. Dalibard; C. Cohen-Tannoudji Atomic motion in laser light: connection between semiclassical and quantum descriptions, J. Phys. B. At. Mol. Opt. Phys., Volume 18 (1985) no. 8, pp. 1661-1683 | DOI | MR

[39] Y. Castin; J. Dalibard Quantization of Atomic Motion in Optical Molasses, Eur. Phys. Lett., Volume 14 (1991) no. 8, pp. 761-766 | DOI

[40] J. I. Cirac; R. Blatt; P. Zoller; W. D. Phillips Laser cooling of trapped ions in a standing wave, Phys. Rev. A, Volume 46 (1992) no. 5, pp. 2668-2681 | DOI

[41] R. H. Lehmberg Radiation from an N-Atom System. I. General Formalism, Phys. Rev. A, Volume 2 (1970) no. 3, pp. 883-888 | DOI

[42] R. H. Lehmberg Radiation from an N-Atom System. II. Spontaneous Emission from a Pair of Atoms, Phys. Rev. A, Volume 2 (1970) no. 3, pp. 889-896 | DOI

[43] K. Ellinger; J. Cooper; P. Zoller Light-pressure force in N-atom systems, Phys. Rev. A, Volume 49 (1994) no. 5, pp. 3909-3933 | DOI

[44] O. Morice; Y. Castin; J. Dalibard Refractive index of a dilute Bose gas, Phys. Rev. A, Volume 51 (1995) no. 5, pp. 3896-3901 | DOI

[45] T. Lahaye; C. Menotti; L. Santos; M. Lewenstein; T. Pfau The physics of dipolar bosonic quantum gases, Rep. Prog. Phys., Volume 72 (2009) no. 12, 126401 | DOI

Cited by Sources:

Comments - Policy