[Ingénierie d’opérateur de Floquet pour la stabilisation stroboscopique d’état quantique]
Le contrôle optimal est un outil précieux pour la simulation quantique, qui permet la préparation, la manipulation et la mesure optimisée d’états quantiques. Par la variation optimale d’un paramètre de contrôle dépendant du temps, des états cibles peuvent être préparés pour initialiser ou façonner des dynamiques quantiques spécifiques. Dans ce travail, nous nous concentrons sur le façonnage d’une évolution unitaire menant à la stabilisation stroboscopique d’états quantiques d’un condensat de Bose–Einstein dans un réseau optique. Nous montrons comment une telle évolution peut être dérivée de contrôles préparant l’état, pour des états avec des symétries d’espace et de temps, puis nous nous consacrons à l’optimisation directe d’un opérateur de Floquet stabilisant un état cible. Les optimisations de contrôle numériques mettent en évidence l’existence d’une vitesse quantique limite pour ce processus de stabilisation, et nos résultats expérimentaux montrent la stabilisation efficace d’une large gamme d’états quantiques dans le réseau.
Optimal control is a valuable tool for quantum simulation, allowing for the optimized preparation, manipulation, and measurement of quantum states. Through the optimization of a time-dependent control parameter, target states can be prepared to initialize or engineer specific quantum dynamics. In this work, we focus on the tailoring of a unitary evolution leading to the stroboscopic stabilization of quantum states of a Bose–Einstein condensate in an optical lattice. We show how, for states with space and time symmetries, such an evolution can be derived from the initial state-preparation controls; while for a general target state we make use of quantum optimal control to directly generate a stabilizing Floquet operator. Numerical optimizations highlight the existence of a quantum speed limit for this stabilization process, and our experimental results demonstrate the efficient stabilization of a broad range of quantum states in the lattice.
Révisé le :
Accepté le :
Première publication :
Publié le :
Mot clés : Contrôle optimal quantique, Atomes ultrafroids dans un réseau optique, Condensats de Bose–Einstein, Stabilisation stroboscopique
Floriane Arrouas 1 ; Nicolas Ombredane 1 ; Lucas Gabardos 1 ; Etienne Dionis 2 ; Nathan Dupont 1 ; Juliette Billy 1 ; Bruno Peaudecerf 1 ; Dominique Sugny 2 ; David Guéry-Odelin 1
@article{CRPHYS_2023__24_S3_173_0, author = {Floriane Arrouas and Nicolas Ombredane and Lucas Gabardos and Etienne Dionis and Nathan Dupont and Juliette Billy and Bruno Peaudecerf and Dominique Sugny and David Gu\'ery-Odelin}, title = {Floquet operator engineering for quantum state stroboscopic stabilization}, journal = {Comptes Rendus. Physique}, pages = {173--185}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S3}, year = {2023}, doi = {10.5802/crphys.167}, language = {en}, }
TY - JOUR AU - Floriane Arrouas AU - Nicolas Ombredane AU - Lucas Gabardos AU - Etienne Dionis AU - Nathan Dupont AU - Juliette Billy AU - Bruno Peaudecerf AU - Dominique Sugny AU - David Guéry-Odelin TI - Floquet operator engineering for quantum state stroboscopic stabilization JO - Comptes Rendus. Physique PY - 2023 SP - 173 EP - 185 VL - 24 IS - S3 PB - Académie des sciences, Paris DO - 10.5802/crphys.167 LA - en ID - CRPHYS_2023__24_S3_173_0 ER -
%0 Journal Article %A Floriane Arrouas %A Nicolas Ombredane %A Lucas Gabardos %A Etienne Dionis %A Nathan Dupont %A Juliette Billy %A Bruno Peaudecerf %A Dominique Sugny %A David Guéry-Odelin %T Floquet operator engineering for quantum state stroboscopic stabilization %J Comptes Rendus. Physique %D 2023 %P 173-185 %V 24 %N S3 %I Académie des sciences, Paris %R 10.5802/crphys.167 %G en %F CRPHYS_2023__24_S3_173_0
Floriane Arrouas; Nicolas Ombredane; Lucas Gabardos; Etienne Dionis; Nathan Dupont; Juliette Billy; Bruno Peaudecerf; Dominique Sugny; David Guéry-Odelin. Floquet operator engineering for quantum state stroboscopic stabilization. Comptes Rendus. Physique, Volume 24 (2023) no. S3, pp. 173-185. doi : 10.5802/crphys.167. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.167/
[1] Goals and opportunities in quantum simulation, Nature Phys., Volume 8 (2012) no. 4, pp. 264-266 | DOI
[2] Colloquium: Artificial gauge potentials for neutral atoms, Rev. Mod. Phys., Volume 83 (2011) no. 4, pp. 1523-1543 | DOI
[3] Periodically Driven Quantum Systems: Effective Hamiltonians and Engineered Gauge Fields, Phys. Rev. X, Volume 4 (2014) no. 3, 031027 | DOI
[4] Multichromatic Floquet engineering of quantum dissipation (2023) (preprint, arXiv:2306.01676) | DOI
[5] Topological quantum matter in synthetic dimensions, Nat. Rev. Phys., Volume 1 (2019) no. 5, pp. 349-357 | DOI
[6] Colloquium: Atomic quantum gases in periodically driven optical lattices, Rev. Mod. Phys., Volume 89 (2017) no. 1, 011004 | DOI | MR
[7] Quantum State Control of a Bose–Einstein Condensate in an Optical Lattice, PRX Quantum, Volume 2 (2021) no. 4, 040303 | DOI
[8] Phase-space distributions of Bose–Einstein condensates in an optical lattice: optimal shaping and reconstruction, New J. Phys., Volume 25 (2023), 013012 | DOI | Zbl
[9] Introduction to the Pontryagin Maximum Principle for Quantum Optimal Control, PRX Quantum, Volume 2 (2021) no. 3, 030203 | DOI
[10] Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe, EPJ Quantum Technol., Volume 9 (2022) no. 1, 19 | DOI
[11] Optimal control of Raman pulse sequences for atom interferometry, J. Phys. B. At. Mol. Opt. Phys., Volume 53 (2020) no. 8, 085006 | DOI
[12] Interferometry with non-classical motional states of a Bose–Einstein condensate, Nat. Commun., Volume 5 (2014) no. 1, 4009 | DOI
[13] Experimental Demonstration of Shaken-Lattice Interferometry, Phys. Rev. Lett., Volume 120 (2018) no. 26, 263201 | DOI
[14] A Machine-Designed Optical Lattice Atom Interferometer (2023) (preprint, arXiv:2305.17603) | DOI
[15] Shortcut loading a Bose–Einstein condensate into an optical lattice, New J. Phys., Volume 20 (2018) no. 5, 055005 | DOI
[16] Optimal control of complex atomic quantum systems, Sci. Rep., Volume 6 (2016) no. 1, 34187 | DOI
[17] Floquet engineering the band structure of materials with optimal control theory, Phys. Rev. Res., Volume 4 (2022) no. 3, 033213 | DOI
[18] Floquet engineering with quantum optimal control theory, New J. Phys., Volume 25 (2023) no. 4, 043023 | DOI | MR
[19] Experimental Realization of Optimal Time-Reversal on an Atom Chip for Quantum Undo Operations, Adv. Quantum Technol., Volume 5 (2022) no. 12, 2200057 | DOI
[20] Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control, J. Phys. A. Math. Theor., Volume 50 (2017), 453001 | DOI | MR | Zbl
[21] Optimal Control at the Quantum Speed Limit, Phys. Rev. Lett., Volume 103 (2009), 240501 | DOI
[22] Direct Tunneling Delay Time Measurement in an Optical Lattice, Phys. Rev. Lett., Volume 117 (2016) no. 1, 010401 | DOI
[23] Robust calibration of an optical-lattice depth based on a phase shift, Phys. Rev. A, Volume 97 (2018) no. 4, 043617 | DOI
[24] Second order gradient ascent pulse engineering, J. Magn. Reson., Volume 212 (2011) no. 2, pp. 412-417 | DOI
[25] Iterative algorithm for reconstruction of entangled states, Phys. Rev. A, Volume 63 (2001) no. 4, 040303 | DOI | MR | Zbl
[26] Iterative maximum-likelihood reconstruction in quantum homodyne tomography, J. opt., B Quantum semiclass. opt., Volume 6 (2004) no. 6, p. S556-S559 | DOI
[27] Demonstration of Quantum Brachistochrones between Distant States of an Atom, Phys. Rev. X, Volume 11 (2021), 011035 | DOI
[28] A regular Hamiltonian halting ratchet for matter wave transport, Phys. Rev. Lett., Volume 131 (2023), 133401 | DOI
[29] Optimal control of Bose–Einstein condensates in three dimensions, New J. Phys., Volume 17 (2015), 113027 | DOI
Cité par Sources :
Commentaires - Politique