Active Implantable Medical Devices (AIMD) are nowadays a part of everyday life, with for example more than one million pacemakers (PMs) implanted each year worldwide. Like every electronic devices they are sensitive to electromagnetic interferences but the consequences are potentially severe. A large number of publications deals with electromagnetic compatibility (EMC) with common equipment but only a few concern industrial sources. Furthermore, the field encountered at workplace is potentially higher. Taking these into account, a new test method to assess the EMC of AIMDs against occupational magnetic field sources was developed. It is based on an experimental approach using a specific test bench able to generate a controlled magnetic field in all space directions up to the high occupational exposure limits between 50 Hz and 3 kHz. To do this, three Helmholtz coil systems are combined on three orthogonal space directions. This specificity makes it possible to take into account the high variability of the operator’s position compared to the industrial source.
In this paper, the study focused on the impact of the magnetic field direction on the PM’s functioning with bipolar leads, as is the case for the vast majority of devices implanted nowadays. It appears that the magnetic field direction has an impact on the PM’s functioning and is consequently a relevant parameter for evaluating their EMC. These observations led us to the hypothesis that the lead in bipolar mode is more sensitive to electric field than magnetic field. This assumption remains to be confirmed by further studies.
Les dispositifs médicaux implantables actifs (DMIA) font aujourd’hui partie de la vie courante, en effet plus d’un million de pacemakers sont implantés chaque année dans le monde. Comme tous les appareils électroniques, ceux-ci sont susceptibles d’être perturbés par les champs électromagnétiques environnants. De telles interférences peuvent avoir des conséquences dramatiques sur la santé du porteur. Un grand nombre de publications traitent de la compatibilité électromagnétique (CEM) des DMIA avec des équipements de la vie courante. Cependant, peu d’études concernent les sources de champ industrielles. De plus, les limites d’exposition professionnelle étant supérieures à celles pour la population générale, l’exposition est potentiellement plus intense au poste de travail. Compte tenu de ces éléments, une nouvelle méthode d’essai pour évaluer la CEM des DMIA en milieu industriel a été mise au point. Elle repose sur l’utilisation d’un banc d’essai spécifique capable de générer un champ magnétique entre 50 Hz et 3 kHz dans toutes les directions de l’espace et jusqu’aux limites hautes concernant l’exposition professionnelle. Pour ce faire, trois systèmes de Helmholtz ont été combinés selon trois directions de l’espace orthogonales. Cette spécificité permet de considérer la grande variabilité du positionnement de l’opérateur vis-à-vis d’une source industrielle.
L’étude présentée dans cet article s’est portée sur l’impact de l’orientation du champ magnétique sur le fonctionnement des pacemakers munis de sondes bipolaires, comme c’est le cas de la quasi-totalité des dispositifs implantés de nos jours. Il apparaît que la direction du champ magnétique a un impact sur le fonctionnement des pacemakers et constitue ainsi un paramètre pertinent pour l’évaluation de la CEM. Ces observations nous ont conduit à formuler l’hypothèse selon laquelle la sonde en mode bipolaire serait plus sensible aux champs électriques qu’aux champs magnétiques. Cette hypothèse demande à être confirmée par d’autres études.
Revised:
Accepted:
Online First:
Mot clés : DMIA, Pacemaker, Exposition professionnelle, Champ magnétique, Bobines d’Helmholz, CEM
Lucien Hammen 1, 2, 3; Lionel Pichon 2, 3; Yann Le Bihan 2, 3; Mohamed Bensetti 2, 3; Gérard Fleury 1
@article{CRPHYS_2024__25_S1_A8_0, author = {Lucien Hammen and Lionel Pichon and Yann Le Bihan and Mohamed~ Bensetti and G\'erard Fleury}, title = {Electromagnetic compatibility of active cardiovascular implants to occupational magnetic field environments: impact of the field direction}, journal = {Comptes Rendus. Physique}, publisher = {Acad\'emie des sciences, Paris}, year = {2024}, doi = {10.5802/crphys.187}, language = {en}, note = {Online first}, }
TY - JOUR AU - Lucien Hammen AU - Lionel Pichon AU - Yann Le Bihan AU - Mohamed Bensetti AU - Gérard Fleury TI - Electromagnetic compatibility of active cardiovascular implants to occupational magnetic field environments: impact of the field direction JO - Comptes Rendus. Physique PY - 2024 PB - Académie des sciences, Paris N1 - Online first DO - 10.5802/crphys.187 LA - en ID - CRPHYS_2024__25_S1_A8_0 ER -
%0 Journal Article %A Lucien Hammen %A Lionel Pichon %A Yann Le Bihan %A Mohamed Bensetti %A Gérard Fleury %T Electromagnetic compatibility of active cardiovascular implants to occupational magnetic field environments: impact of the field direction %J Comptes Rendus. Physique %D 2024 %I Académie des sciences, Paris %Z Online first %R 10.5802/crphys.187 %G en %F CRPHYS_2024__25_S1_A8_0
Lucien Hammen; Lionel Pichon; Yann Le Bihan; Mohamed Bensetti; Gérard Fleury. Electromagnetic compatibility of active cardiovascular implants to occupational magnetic field environments: impact of the field direction. Comptes Rendus. Physique, Online first (2024), pp. 1-12. doi : 10.5802/crphys.187.
[1] The 11th world survey of cardiac pacing and implantable cardioverter-defibrillators: calendar year 2009-a world society of Arrhythmia’s project: 2009 SURVEY CARDIAC PACEMAKERS AND ICDS, Pacing Clin. Electrophysiol., Volume 34 (2011) no. 8, pp. 1013-1027 | DOI
[2] Current trends in the use of cardiac implantable electronic devices and interventional electrophysiological procedures in the European Society of Cardiology member countries: 2015 report from the European Heart Rhythm Association, Europace, Volume 17 (2015) no. suppl 4, p. iv1-iv72 | DOI
[3] et al. The effects of mobile phones on pacemaker function, Int. J. Cardiol., Volume 103 (2005) no. 1, pp. 51-58 | DOI
[4] Study of interference voltage of an implanted pacemaker by mobile terminals, IEEE Trans. Electromagn. Compat., Volume 58 (2016) no. 1, pp. 30-39 | DOI
[5] Do induction cooktops interfere with cardiac pacemakers?, EP Eur., Volume 8 (2006) no. 5, pp. 377-384 | DOI
[6] et al. Interference thresholds for active implantable cardiovascular devices in occupational low-frequency electric and magnetic fields: a numerical and in vitro study, Med. Eng. Phys., Volume 104 (2022), 103799 | DOI
[7] Workers with active implantable medical devices exposed to EMF: in vitro test for the risk assessment, Environments, Volume 6 (2019) no. 11, 119 | DOI
[8] Evaluation of the safety of users of active implantable medical devices (AIMD)in the working environment in terms of exposure to electromagnetic fields—practical approach to the requirements of European Directive 2013/35/EU, Int. J. Occup. Med. Environ. Health, Volume 31 (2018) no. 6, pp. 795-808 | DOI
[9] et al. Electromagnetic interference with cardiac pacemakers and implantable cardioverter-defibrillators from low-frequency electromagnetic fields in vivo, EP Eur., Volume 15 (2013) no. 3, pp. 388-394 | DOI
[10] Experimental study on malfunction of pacemakers due to exposure to different external magnetic fields, J. Interv. Card. Electrophysiol., Volume 34 (2012) no. 1, pp. 19-27 | DOI
[11] The European Parliament and the Council of the European Union, Directive 2013/35/EU of the European Parliament and of the Council of 26 June 2013 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields) (20th individual Directive within the meaning of Article 16(1 of Directive 89/391/EEC) and repealing Directive 2004/40/EC, Official Journal of the European Union L 179, 29.6.13, p. 1
[12] Recommendation of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz), 1999 (Publications Office of the European Union)
[13] Procedure for the assessment of the exposure to electromagnetic fields of workers bearing active implantable medical devices - Part 1 : general, February 2017 (AFNOR)
[14] Active implantable medical devices—Electromagnetic compatibility—EMC test protocols for implantable cardiac pacemakers, implantable cardioverter defibrillators and cardiac resynchronization devices, January 2019
[15] Active implantable medical devices Part 2-1: Particular requirements for active implantable medical devices intended to treat bradyarrhythmia (cardiac pacemakers), May 2004 (AFNOR)
[16] Testing the immunity of active implantable medical devices to CW magnetic fields up to 1 MHz by an immersion method, IEEE Trans. Biomed. Eng., Volume 54 (2007) no. 9, pp. 1679-1686 | DOI
[17] Testing immunity of active implantable medical devices to industrial magnetic field environments, International Symposium and Exhibition on Electromagnetic Compatibility - EMC Europe, Göteborg, Sweden, 2022
[18] Measurement of electrical conductivity of human blood at frequencies below 100 kHz with four-electrode probe method, 021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Rome, Italy, 2021, pp. 1-4
[19] Immunity tests of implantable cardiac pacemaker against CW and pulsed ELF fields: experimental and numerical results, IEEE Trans. Electromagn. Compat., Volume 48 (2006) no. 3, pp. 502-515 | DOI
Cited by Sources:
Comments - Policy