The simulation of lightning propagation is a complex problem studied for years. Here we propose to use the information from the electric potential created from a real cloud structure to study the propagation. The electric potential and field are calculated using a realistic thundercloud structure: the typical three layers cloud structure is constructed using a real cloud photograph. The different altitudes and separations of each layer are calculated from the luminosity of the picture and the space charge values are taken from data in the literature. A model of stepped leader propagation is proposed. It consists in finding by steps the path which maximises the potential difference taking into account the cloud and leader space charge. After each step, the electric potential is recalculated, and a new iteration gives a new direction. This framework permits us to analyse diverse cloud configurations. Only positive leaders from the base layer can reach the ground if the three layers are complete. Only negative lightning reaches the ground when the bottom positive layer is reduced (typical of the middle of a storm). Finally, when the two bottom layers are reduced in size (typical of the storm’s end), positive lightning from the upper positive layer can make its way into the cloud toward the ground. These simulated observations agree with the hypotheses made previously by Nag and Rakov.
La simulation de la propagation de la foudre est un problème complexe étudié depuis plusieurs années. Nous proposons ici d’utiliser les informations du potentiel électrique créé à partir d’une structure de nuage afin d’étudier la propagation. Le potentiel électrique et le champ sont calculés en utilisant une structure de nuage d’orage réaliste : la structure de nuage typique à trois couches est construite à partir d’une photographie de nuage réel. Le modèle de propagation consiste à trouver par étapes le chemin qui maximise la différence de potentiel en tenant compte de la charge spatiale du nuage et du leader. Ce cadre nous permet d’analyser diverses configurations de nuages qui sont présentées dans cet article.
Revised:
Accepted:
Online First:
Mot clés : foudre, décharge électrique, simulation, modélisation, propagation de la foudre, champ électrique, nuage
Philippe Dessante 1, 2
@article{CRPHYS_2024__25_S1_A6_0, author = {Philippe Dessante}, title = {3D {Computation} of {Lightning} {Leader} {Stepped} {Propagation} {Inside} a {Realistic} {Cloud}}, journal = {Comptes Rendus. Physique}, publisher = {Acad\'emie des sciences, Paris}, year = {2024}, doi = {10.5802/crphys.189}, language = {en}, note = {Online first}, }
Philippe Dessante. 3D Computation of Lightning Leader Stepped Propagation Inside a Realistic Cloud. Comptes Rendus. Physique, Online first (2024), pp. 1-22. doi : 10.5802/crphys.189.
[1] Modeling the Stepping Process of Negative Lightning Stepped Leaders, Atmosphere, Volume 8 (2017) no. 12, 245 | DOI
[2] The Lightning Flash (V. Cooray, ed.), Energy Engineering Series, Institution of Engineering and Technology, London, 2003 | DOI
[3] Modeling the development of the stepped leader of a lightning discharge, Tech. Phys., Volume 44 (1999) no. 4, pp. 394-398 | DOI
[4] Fractal-based lightning model for investigation of lightning direct strokes to the communication towers, Electr. Eng., Volume 104 (2022) no. 4, pp. 2543-2551 | DOI
[5] A Fractal-Based Approach to Lightning Protection of Historical Buildings and Monuments: The Parthenon Case Study, IEEE Ind. Appl. Mag., Volume 28 (2022) no. 4, pp. 20-28 | DOI
[6] Research on long air gap discharges at Les Renardières, Electra, Volume 23 (1972), pp. 53-157
[7] Research on long air gap discharges at les Renardières–1973 results, Electra, Volume 35 (1974), pp. 49-156
[8] Observations and modeling of lightning leaders, C. R. Phys., Volume 3 (2002) no. 10, pp. 1375-1392 | DOI
[9] A Physical Model of Branching in Upward Leaders, AerospaceLab, Volume 5 (2012), AL05-07
[10] Some inferences on the role of lower positive charge region in facilitating different types of lightning, Geophys. Res. Lett., Volume 36 (2009) no. 5 | DOI
[11] Positive lightning: An overview, new observations, and inferences, J. Geophys. Res. Atmos., Volume 117 (2012) no. D8, D08109 | DOI
[12] Modeling of Lightning Stepped Leader Characteristics, IEEE Trans. Dielectr. Electr. Insul. (2024) | DOI
[13] Numerical Simulation of Stepping and Branching Processes in Negative Lightning Leaders, J. Geophys. Res. Atmos., Volume 125 (2020) no. 7, e2019JD031360 | DOI
[14] On the development of a lightning leader model for tortuous or branched channels – Part II: Model results, J. Electrost., Volume 66 (2008) no. 9, pp. 489-495 | DOI
[15] Positive Discharges in Long Air Gaps at Les Renardières–1975 Results and Conclusions, Electra, Volume 53 (1977), pp. 31-132
[16] An improved 3-D self-consistent stochastic stepped leader model, 2011 7th Asia-Pacific International Conference on Lightning (2011), pp. 699-705 | DOI
[17] A 3-D Self-Organized Leader Propagation Model and Its Engineering Approximation for Lightning Protection Analysis, IEEE Trans. Power Deliv., Volume 28 (2013) no. 4, pp. 2342-2355 | DOI
[18] Numerical Simulation on the Effects of the Horizontal Charge Distribution on Lightning Types and Behaviors, J. Geophys. Res. Atmos., Volume 126 (2021) no. 18, e2020JD034375 | DOI
Cited by Sources:
Comments - Policy