Comptes Rendus
Properties of waveguides filled with anisotropic metamaterials
Comptes Rendus. Physique, Volume 21 (2020) no. 7-8, pp. 677-711.

Metamaterials are artificially structured composite materials that show unusual properties not usually available in natural materials. In general, metamaterial structures and properties are anisotropic. A waveguide filled with an anisotropic metamaterial shows unique properties not achievable in conventional waveguides, such as propagation of backward waves and modes below the cut-off frequencies of the conventional fundamental mode, zero group velocity etc. The waveguide filler material can be anisotropic with the tensorial permittivity and permeability components having positive or negative values, and combinations thereof, giving rise to a rich variety of phenomena. Further, modes in a cylindrical waveguide filled with a hyperbolic metamaterial are described by unusual Bessel modes of complex orders. In many situations, the wave propagating region is isotropic, and it is enclosed by anisotropic metamaterials with different thicknesses and contrarily the propagating region is might be anisotropic that is enclosed by isotropic in some other situations. Various metamaterial waveguide geometries like a pair of parallel plates, waveguides with rectangular or cylindrical cross-section filled with anisotropic metamaterials as well as hollow-core waveguides with metamaterial claddings or linings have been demonstrated experimentally. The anisotropy can be uniaxial or biaxial depending on the orientation of structure. Here we review the advances in the theory and applications of waveguides filled with subwavelength structured metamaterials with anisotropic or even hyperbolic properties across the electromagnetic spectrum. By examining the field behaviour in such waveguides, connection is made to the extraordinary transmission of light through arrays of subwavelength sized apertures in a metallic screen. Potential applications range from enhanced MRI imaging and electromagnetic shielding at radio frequencies to intriguing imaging applications and efficient coupling of the emitted radiation from small sources into waveguides at optical frequencies.

Les métamatériaux sont des matériaux composites structurés de manière artificielle qui possèdent des propriétés que l’on ne trouve pas à l’état naturel. En général, les propriétés structurelles des métamatériaux sont anisotropes. Un guide d’ondes constitué d’un métamatériau possède des propriétés uniques inatteignables dans des guides d’ondes conventionnels, telles que la propagation d’onde rétrogrades et des modes sous les fréquences de coupure du mode fondamental d’un guide d’ondes conventionnel, une vitesse de groupe nulle etc. Le matériau constituant le guide d’ondes peut être anisotrope avec les éléments (ou des combinaisons d’éléments) des tenseurs de permittivité et perméabilité qui prennent des valeurs positives ou négatives, ce qui donne lieu à une riche variété de phénomènes. Par ailleurs, les modes d’un guide d’ondes cylindrique constitué d’un métamatériau hyperbolique sont décrits par des fonctions de Bessel inhabituelles présentant des ordres complexes. Dans de nombreuses situations, la région siège de la propagation d’ondes est isotrope, et est entourée de métamatériaux anisotropes avec différentes épaisseurs et inversement. Diverses géométries de guides d’ondes en métamatériaux tels que des paires de plaques parallèles, des guides rectangulaires et cylindriques constitués de milieux anisotropes, ainsi que des guides d’ondes à cœur creux avec une gaine en métamatériaux ou des linings ont été démontrés expérimentalement. L’anisotropie peut être uniaxe ou biaxe en fonction de l’orientation de la structure. Nous faisons un état de l’art sur les avancées dans la théorie et les applications des guides d’ondes constitués de métamatériaux avec une structuration sub-longueur d’onde dont les propriétés sont anisotropes ou même hyperboliques sur le spectre électromagnétique. En examinant le comportement du champ dans ce type de guides d’ondes, un lien est établi avec la théorie de la transmission extraordinaire de la lumière à travers des réseaux de trous sub-longueur d’onde dans un écran métallique. Les applications potentielles vont de l’imagerie médicale à résonance magnétique améliorée au bouclier électromagnétique aux fréquences radio en passant par des applications étonnantes en imagerie et au couplage efficace des émissions de petites sources avec des guides d’ondes aux fréquences optiques.

Online First:
Published online:
DOI: 10.5802/crphys.19
Keywords: Metamaterials, Structured waveguides, Anisotropic materials, Hyperbolic dispersion, Split ring resonator, Thin wire media
Mot clés : Métamatériaux, Guides d’ondes structurés, Matériaux anisotropes, Dispersion hyperbolique, Résonateur à anneau fendu, Matériaux en fils métalliques minces

Abhinav Bhardwaj 1; Dheeraj Pratap 2; Mitchell Semple 3; Ashwin K. Iyer 3; Arun M. Jayannavar 4; S. Anantha Ramakrishna 5, 6

1 Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
2 Biomedical Instrumentation Division, CSIR — Central Scientific Instruments Organisation, Sector-30C, Chandigarh 160030, India
3 Department of Electrical and Computer Engineering, University of Alberta Edmonton, Alberta T6G2V4, Canada
4 Institute of Physics, Sachivalaya marg, Bhubaneswar, 751005, India
5 CSIR — Central Scientific Instruments Organisation, Sector-30C, Chandigarh 160030, India
6 Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2020__21_7-8_677_0,
     author = {Abhinav Bhardwaj and Dheeraj Pratap and Mitchell Semple and Ashwin K. Iyer and Arun M. Jayannavar and S. Anantha Ramakrishna},
     title = {Properties of waveguides filled with anisotropic metamaterials},
     journal = {Comptes Rendus. Physique},
     pages = {677--711},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {21},
     number = {7-8},
     year = {2020},
     doi = {10.5802/crphys.19},
     language = {en},
}
TY  - JOUR
AU  - Abhinav Bhardwaj
AU  - Dheeraj Pratap
AU  - Mitchell Semple
AU  - Ashwin K. Iyer
AU  - Arun M. Jayannavar
AU  - S. Anantha Ramakrishna
TI  - Properties of waveguides filled with anisotropic metamaterials
JO  - Comptes Rendus. Physique
PY  - 2020
SP  - 677
EP  - 711
VL  - 21
IS  - 7-8
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.19
LA  - en
ID  - CRPHYS_2020__21_7-8_677_0
ER  - 
%0 Journal Article
%A Abhinav Bhardwaj
%A Dheeraj Pratap
%A Mitchell Semple
%A Ashwin K. Iyer
%A Arun M. Jayannavar
%A S. Anantha Ramakrishna
%T Properties of waveguides filled with anisotropic metamaterials
%J Comptes Rendus. Physique
%D 2020
%P 677-711
%V 21
%N 7-8
%I Académie des sciences, Paris
%R 10.5802/crphys.19
%G en
%F CRPHYS_2020__21_7-8_677_0
Abhinav Bhardwaj; Dheeraj Pratap; Mitchell Semple; Ashwin K. Iyer; Arun M. Jayannavar; S. Anantha Ramakrishna. Properties of waveguides filled with anisotropic metamaterials. Comptes Rendus. Physique, Volume 21 (2020) no. 7-8, pp. 677-711. doi : 10.5802/crphys.19. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.19/

[1] J. B. Pendry; A. Holden; W. Stewart; I. Youngs Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett., Volume 76 (1996) no. 25, 4773

[2] J. B. Pendry; A. J. Holden; D. J. Robbins; W. Stewart Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech., Volume 47 (1999) no. 11, pp. 2075-2084

[3] V. G. Veselago The electrodynamics of substances with simultaneously negative values of ϵ and μ, Phys.-Usp., Volume 10 (1968) no. 4, pp. 509-514

[4] D. R. Smith; W. J. Padilla; D. Vier; S. C. Nemat-Nasser; S. Schultz Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett., Volume 84 (2000) no. 18, 4184

[5] J. B. Pendry Negative refraction makes a perfect lens, Phys. Rev. Lett., Volume 85 (2000) no. 18, 3966

[6] N. M. Litchinitser; A. I. Maimistov; I. R. Gabitov; R. Z. Sagdeev; V. M. Shalaev Metamaterials: electromagnetic enhancement at zero-index transition, Opt. Lett., Volume 33 (2008) no. 20, pp. 2350-2352

[7] S. Zhang; W. Fan; N. Panoiu; K. Malloy; R. Osgood; S. Brueck Experimental demonstration of near-infrared negative-index metamaterials, Phys. Rev. Lett., Volume 95 (2005) no. 13, 137404

[8] D. Smith; D. Vier; T. Koschny; C. Soukoulis Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E, Volume 71 (2005) no. 3, 036617

[9] D. Smith; D. Schurig Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors, Phys. Rev. Lett., Volume 90 (2003) no. 7, 077405

[10] Z. Jacob; L. V. Alekseyev; E. Narimanov Optical hyperlens: far-field imaging beyond the diffraction limit, Opt. Express, Volume 14 (2006) no. 18, pp. 8247-8256

[11] H. N. Krishnamoorthy; Z. Jacob; E. Narimanov; I. Kretzschmar; V. M. Menon Topological transitions in metamaterials, Science, Volume 336 (2012) no. 6078, pp. 205-209

[12] Q. Zhang; T. Jiang; Y. Feng Slow-light propagation in a cylindrical dielectric waveguide with metamaterial cladding, J. Phys. D: Appl. Phys., Volume 44 (2011) no. 47, 475103

[13] D. Pratap; S. A. Ramakrishna; J. G. Pollock; A. K. Iyer Anisotropic metamaterial optical fibers, Opt. Express, Volume 23 (2015) no. 7, 9074

[14] S. Atakaramians; A. Argyros; S. C. Fleming; B. T. Kuhlmey Hollow-core waveguides with uniaxial metamaterial cladding: modal equations and guidance conditions, J. Opt. Soc. Am. B, Volume 29 (2012) no. 9, pp. 2462-2477

[15] A. Alù; N. Engheta Guided modes in a waveguide filled with a pair of single-negative (sng), double-negative (dng), and/or double-positive (dps) layers, IEEE Trans. Microw. Theory Tech., Volume 52 (2004) no. 1, pp. 199-210

[16] A. Bhardwaj; K. V. Srivastava; S. A. Ramakrishna Enhanced coupling of light from subwavelength sources into a hyperbolic metamaterial fiber, J. Lightwave Technol., Volume 37 (2019) no. 13, pp. 3064-3072

[17] J. G. Pollock; A. K. Iyer Below-cutoff propagation in metamaterial-lined circular waveguides, IEEE Trans. Microw. Theory Tech., Volume 61 (2013) no. 9, pp. 3169-3178

[18] I. V. Shadrivov; A. A. Sukhorukov; Y. S. Kivshar Guided modes in negative-refractive-index waveguides, Phys. Rev. E, Volume 67 (2003) no. 5, 057602

[19] A. Bhardwaj; K. V. Srivastava; S. A. Ramakrishna Propagation of wave in a cylindrical waveguide filled with hyperbolic negative index medium, Microw. Opt. Technol. Lett., Volume 62 (2020) no. 11, pp. 3385-3390

[20] K. Porsezian; V. C. Kuriakose Optical Solitons: Theoretical and Experimental Challenges, Vol. 613, Springer Science & Business Media, Heidelberg, Germany, 2003

[21] P. Russell Photonic crystal fibers, Science, Volume 299 (2003) no. 5605, pp. 358-362

[22] N. Singh; A. Tuniz; R. Lwin; S. Atakaramians; A. Argyros; S. C. Fleming; B. T. Kuhlmey Fiber-drawn double split ring resonators in the terahertz range, Opt. Mater. Express, Volume 2 (2012) no. 9, pp. 1254-1259

[23] M. G. Silveirinha; C. A. Fernandes Nonresonant structured material with extreme effective parameters, Phys. Rev. B, Volume 78 (2008) no. 3, 033108

[24] C. R. Simovski; P. A. Belov; A. V. Atrashchenko; Y. S. Kivshar Wire metamaterials: physics and applications, Adv. Mater., Volume 24 (2012) no. 31, pp. 4229-4248

[25] M. Kadic; S. Guenneau; S. Enoch; S. A. Ramakrishna Plasmonic space folding: focusing surface plasmons via negative refraction in complementary media, ACS Nano, Volume 5 (2011) no. 9, pp. 6819-6825

[26] S. A. Ramakrishna; T. M. Grzegorczyk Physics and Applications of Negative Refractive Index Materials, CRC Press, Bellingham, Washington, USA, 2008

[27] J. B. Pendry; A. Holden; D. Robbins; W. Stewart Low frequency plasmons in thin-wire structures, J. Phys.: Condens. Matter, Volume 10 (1998) no. 22, 4785

[28] D. J. Bergman The dielectric constant of a composite material—a problem in classical physics, Phys. Rep., Volume 43 (1978) no. 9, pp. 377-407

[29] T. G. Mackay; A. Lakhtakia Bruggeman formalism versus, J. Nanophoton., Volume 6 (2012) no. 1, 069501

[30] S. Guenneau; F. Zolla; A. Nicolet Homogenization of 3d finite photonic crystals with heterogeneous permittivity and permeability, Waves Random Complex Media, Volume 17 (2007) no. 4, pp. 653-697

[31] A. Castanié; J.-F. Mercier; S. Félix; A. Maurel Generalized method for retrieving effective parameters of anisotropic metamaterials, Opt. Express, Volume 22 (2014) no. 24, pp. 29937-29953

[32] W. S. Weiglhofer; A. Lakhtakia On electromagnetic waves in biaxial bianisotropic media, Electromagnetics, Volume 19 (1999) no. 4, pp. 351-362

[33] X. Chen; B.-I. Wu; J. A. Kong; T. M. Grzegorczyk Retrieval of the effective constitutive parameters of bianisotropic metamaterials, Phys. Rev. E, Volume 71 (2005) no. 4, 046610

[34] C. E. Kriegler; M. S. Rill; S. Linden; M. Wegener Bianisotropic photonic metamaterials, IEEE J. Sel. Top. Quantum Electron., Volume 16 (2009) no. 2, pp. 367-375

[35] T. G. Mackay; A. Lakhtakia Electromagnetic Anisotropy and Bianisotropy: A Field Guide, World Scientific, Singapore, 2010

[36] B. Gralak; M. Lequime; M. Zerrad; C. Amra Phase retrieval of reflection and transmission coefficients from Kramers–Kronig relations, J. Opt. Soc. Am. A, Volume 32 (2015) no. 3 (ts), pp. 456-462

[37] Y. Liu; S. Guenneau; B. Gralak Causality and passivity properties of effective parameters of electromagnetic multilayered structures, Phys. Rev. B, Volume 88 (2013), 165104

[38] A. Serdiukov; I. Semchenko; S. Tertyakov; A. Sihvola Electromagnetics of Bi-anisotropic Materials-Theory and Application, Vol. 11, Gordon and Breach Science Publishers, Norwich, UK, 2001

[39] G. Sauer; G. Brehm; S. Schneider; K. Nielsch; R. Wehrspohn; J. Choi; H. Hofmeister; U. Gösele Highly ordered monocrystalline silver nanowire arrays, J. Appl. Phys., Volume 91 (2002) no. 5, pp. 3243-3247

[40] R. Kumar; F. A. Inam; A. Ly; C. Bradac; S. A. Ramakrishna Silver columnar thin-film-based half-wavelength antennas for bright directional emission from nanodiamond nitrogen-vacancy centers, Phys. Rev. Appl., Volume 11 (2019) no. 3, 034002

[41] A. Poddubny; I. Iorsh; P. Belov; Y. Kivshar Hyperbolic metamaterials, Nat. Photon., Volume 7 (2013) no. 12, 948

[42] L. Ferrari; C. Wu; D. Lepage; X. Zhang; Z. Liu Hyperbolic metamaterials and their applications, Prog. Quantum Electron., Volume 40 (2015), pp. 1-40

[43] G. V. Eleftheriades; A. K. Iyer; P. C. Kremer Planar negative refractive index media using periodically LC loaded transmission lines, IEEE Trans. Microw. Theory Tech., Volume 50 (2002) no. 12, pp. 2702-2712

[44] C. Caloz; T. Itoh Novel microwave devices and structures based on the transmission line approach of meta-materials, IEEE MTT-S International Microwave Symposium Digest, 2003, Volume 1, IEEE, 2003, pp. 195-198

[45] A. Lai; C. Caloz; T. Itoh Transmission line based metamaterials and their microwave applications, Microw. Mag., Volume 5 (2004) no. 3, pp. 34-50

[46] I. Nefedov; S. Tretyakov Waveguide containing a backward-wave slab, Radio Sci., Volume 38 (2003) no. 6, p. 9-1

[47] A. Alù; N. Engheta Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency, IEEE Trans. Antennas Propag., Volume 51 (2003) no. 10, pp. 2558-2571

[48] Y. Satomura; M. Matsuhara; N. Kumagai Analysis of electromagnetic-wave modes in anisotropic slab waveguide, IEEE Trans. Microw. Theory Tech., Volume 22 (1974) no. 2, pp. 86-92

[49] I. V. Lindell; S. Ilvonen Waves in a slab of uniaxial bw medium, J. Electromagn. Waves Appl., Volume 16 (2002) no. 3, pp. 303-318

[50] B.-I. Wu; T. M. Grzegorczyk; Y. Zhang; J. A. Kong Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability, J. Appl. Phys., Volume 93 (2003) no. 11, pp. 9386-9388

[51] Y. Xu A study of waveguides filled with anisotropic metamaterials, Microw. Opt. Technol. Lett., Volume 41 (2004) no. 5, pp. 426-431

[52] S. Hrabar; J. Bartolic; Z. Sipus Waveguide miniaturization using uniaxial negative permeability metamaterial, IEEE Trans. Antennas Propag., Volume 53 (2005) no. 1, pp. 110-119

[53] R. Marques; J. Martel; F. Mesa; F. Medina Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides, Phys. Rev. Lett., Volume 89 (2002) no. 18, 183901

[54] R. Yang; Y. Xie; X. Yang; R. Wang; B. Chen Fundamental modal properties of srr metamaterials and metamaterial based waveguiding structures, Opt. Express, Volume 17 (2009) no. 8, pp. 6101-6117

[55] F.-Y. Meng; J.-H. Fu; G.-H. Yang; Q. Wu; L.-W. Li Backward and forward waves in a uniaxial anisotropic metamaterial waveguide, 2008 International Conference on Microwave and Millimeter Wave Technology, Volume 1, IEEE, 2008, pp. 54-57

[56] H. Zhu; X. Yin; L. Chen; Z. Zhu; X. Li Manipulating light polarizations with a hyperbolic metamaterial waveguide, Opt. Lett., Volume 40 (2015) no. 20, pp. 4595-4598

[57] D. J. Roth; A. V. Krasavin; A. Wade; W. Dickson; A. Murphy; S. Kéna-Cohen; R. Pollard; G. A. Wurtz; D. Richards; S. A. Maier Spontaneous emission inside a hyperbolic metamaterial waveguide, ACS Photon., Volume 4 (2017) no. 10, pp. 2513-2521

[58] H. Ruan; Y. Shuang; L. Li; T. Cui Extraordinary optical transmission through a rectangular hole filled with extreme uniaxial metamaterials, Opt. Lett., Volume 42 (2017) no. 12, pp. 2386-2389

[59] J. G. Pollock; A. K. Iyer; D. Pratap; S. A. Ramakrishna A class of circular waveguiding structures containing cylindrically anisotropic metamaterials: Applications from radio frequency/microwave to optical frequencies, J. Appl. Phys., Volume 119 (2016) no. 8, 083103

[60] T. Dunster Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter, SIAM J. Math. Anal., Volume 21 (1990) no. 4, pp. 995-1018

[61] C. Chapman The asymptotic theory of dispersion relations containing Bessel functions of imaginary order, Proc. R. Soc. A, Volume 468 (2012) no. 2148, pp. 4008-4023

[62] A. Tuniz; B. Kuhlmey; R. Lwin; A. Wang; J. Anthony; R. Leonhardt; S. Fleming Drawn metamaterials with plasmonic response at terahertz frequencies, Appl. Phys. Lett., Volume 96 (2010) no. 19, 191101

[63] A. Tuniz; R. Lwin; A. Argyros; S. C. Fleming; B. T. Kuhlmey Fabricating metamaterials using the fiber drawing method, J. Vis. Exp., Volume 68 (2012), e4299

[64] A. Tuniz; K. J. Kaltenecker; B. M. Fischer; M. Walther; S. C. Fleming; A. Argyros; B. T. Kuhlmey Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances, Nat. Commun., Volume 4 (2013), 2706

[65] M. Yan; N. A. Mortensen Hollow-core infrared fiber incorporating metal-wire metamaterial, Opt. Express, Volume 17 (2009) no. 17, pp. 14851-14864

[66] D. Pratap; A. Bhardwaj; S. A. Ramakrishna Inhomogeneously filled, cylindrically anisotropic metamaterial optical fiber, J. Nanophoton., Volume 12 (2018) no. 3, 033002

[67] D. Pratap; S. A. Ramakrishna Nanoporous alumina microtubes for metamaterial and plasmonic applications, preprint, arXiv:1903.10296 (2018)

[68] W. Cai; V. Shalaev Optical Metamaterials: Fundamentals and Applications, Springer, New York, 2009

[69] M. J. Weber Handbook of Optical Materials, CRC Press, Washington, D.C., 2003

[70] C.-C. Lai; C.-Y. Lo; J.-Z. Huang; C.-C. F. Chiang; D. H. Nguyen; Y.-P. Chen; C.-D. Liao Architecting a nonlinear hybrid crystal–glass metamaterial fiber for all-optical photonic integration, J. Mater. Chem. C, Volume 6 (2018) no. 7, pp. 1659-1669

[71] C.-C. Lai; C.-Y. Lo; T.-H. Hsieh; W.-S. Tsai; D. H. Nguyen; Y.-R. Ma Ligand-driven and full-color-tunable fiber source: toward next-generation clinic fiber-endoscope tomography with cellular resolution, ACS Omega, Volume 1 (2016) no. 4, pp. 552-565

[72] C.-C. Lai; C.-Y. Lo; D. H. Nguyen; J.-Z. Huang; W.-S. Tsai; Y.-R. Ma Atomically smooth hybrid crystalline-core glass-clad fibers for low-loss broadband wave guiding, Opt. Express, Volume 24 (2016) no. 18, pp. 20089-20106

[73] A. Bhardwaj; K. V. Srivastava; S. A. Ramakrishna Hyperbolic metamaterial near-field coupler, 2019 IEEE Asia-Pacific Microwave Conference (APMC), IEEE, 2019, pp. 1736-1738

[74] J. G. Pollock; A. K. Iyer Miniaturized circular-waveguide probe antennas using metamaterial liners, IEEE Trans. Antennas Propag., Volume 63 (2014) no. 1, pp. 428-433

[75] J. G. Pollock; A. K. Iyer Effective-medium properties of cylindrical transmission-line metamaterials, IEEE Antennas Wirel. Propag. Lett., Volume 10 (2011), pp. 1491-1494

[76] P. K. Choudhury; W. K. Soon On the tapered optical fibers with radially anisotropic liquid crystal clad, Prog. Electromagn. Res., Volume 115 (2011), pp. 461-475

[77] M. M. Hasan; D. S. Kumar; M. R. C. Mahdy; D. N. Hasan; M. A. Matin Robust optical fiber using single negative metamaterial cladding, IEEE Photon. Technol. Lett., Volume 25 (2013) no. 11, pp. 1043-1046

[78] S. Hou; S. Zhang; Y. Liu; D. Wang; J. Lei Investigation on characteristics of w-type fiber with an inner cladding made of negative refractive index materials, Optik, Volume 125 (2014) no. 20, pp. 6127-6130

[79] J. G. Pollock; A. K. Iyer Experimental verification of below-cutoff propagation in miniaturized circular waveguides using anisotropic ENNZ metamaterial liners, IEEE Trans. Microw. Theory Tech., Volume 64 (2016) no. 4, pp. 1297-1305

[80] E. Baladi; J. G. Pollock; A. K. Iyer New approach for extraordinary transmission through an array of subwavelength apertures using thin ENNZ metamaterial liners, Opt. Express, Volume 23 (2015) no. 16, 20356

[81] H. A. Bethe Theory of diffraction by small holes, Phys. Rev., Volume 66 (1944), pp. 163-182

[82] M. F. Limonov; M. V. Rybin; A. N. Poddubny; Y. S. Kivshar Fano resonances in photonics, Nat. Photon., Volume 11 (2017) no. 9, pp. 543-554

[83] R. W. Ziolkowski; A. Erentok Metamaterial-based efficient electrically small antennas, IEEE Trans. Antennas Propag., Volume 54 (2006) no. 7, pp. 2113-2130

[84] A. Alù; N. Engheta Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers, J. Appl. Phys., Volume 97 (2005) no. 9, 094310

[85] N. Engheta An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability, IEEE Antennas Wirel. Propag. Lett., Volume 1 (2002), pp. 10-13

[86] A. Alù; N. Engheta An overview of salient properties of planar guided-wave structures with Double-Negative (DNG) and Single-Negative (SNG) layers, Negative-Refraction Metamaterials, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2005, pp. 339-380

[87] A. Alu; N. Engheta Guided modes in a waveguide filled with a pair of Single-Negative (SNG), Double-Negative (DNG), and/or Double-Positive (DPS) layers, IEEE Trans. Microw. Theory Tech., Volume 52 (2004) no. 1, pp. 199-210

[88] E. Baladi; A. K. Iyer Far-field magnification of subdiffraction conducting features using metamaterial-lined aperture arrays, IEEE Trans. Antennas Propag., Volume 66 (2018) no. 7, pp. 3482-3490

[89] M. Semple; E. Baladi; A. K. Iyer Optical metasurface based on subwavelength nanoplasmonic metamaterial-lined apertures, IEEE J. Sel. Top. Quantum Electron., Volume 25 (2019) no. 3, pp. 1-8

[90] A. Alu; N. Engheta Optical metamaterials based on optical nanocircuits, Proc. IEEE, Volume 99 (2011) no. 10, pp. 1669-1681

[91] N. Engheta From RF circuits to optical nanocircuits, IEEE Microw. Mag., Volume 13 (2012) no. 4, pp. 100-113

[92] M. G. Silveirinha; A. Alù; J. Li; N. Engheta Nanoinsulators and nanoconnectors for optical nanocircuits, J. Appl. Phys., Volume 103 (2008) no. 6, 064305

[93] H. Caglayan; S.-H. Hong; B. Edwards; C. R. Kagan; N. Engheta Near-infrared metatronic nanocircuits by design, Phys. Rev. Lett., Volume 111 (2013) no. 7, 073904

[94] N. Engheta Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials, Science (New York, N.Y.), Volume 317 (2007) no. 5845, pp. 1698-1702

[95] T. W. Ebbesen; H. J. Lezec; H. F. Ghaemi; T. Thio; P. A. Wolff Extraordinary optical transmission through sub-wavelength hole arrays, Nature, Volume 391 (1998) no. 6668, pp. 667-669

[96] J. B. Pendry; L. Martín-Moreno; F. J. Garcia-Vidal Mimicking surface plasmons with structured surfaces, Science (New York, N.Y.), Volume 305 (2004) no. 5685, pp. 847-848

[97] R. W. Wood On a remarkable case of uneven distribution of light in a diffraction grating spectrum, Proc. Phys. Soc. Lond., Volume 18 (1902) no. 1, p. 269

[98] A. Hessel; A. A. Oliner A new theory of wood’s anomalies on optical gratings, Appl. Opt., Volume 4 (1965) no. 10, pp. 1275-1297

[99] F. Medina; F. Mesa; R. Marques Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective, IEEE Trans. Microw. Theory Tech., Volume 56 (2008) no. 12, pp. 3108-3120

[100] S. Ghosh; K. V. Srivastava An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory, IEEE Antennas Wirel. Propag. Lett., Volume 14 (2015), pp. 511-514

[101] B. B. A. Munk Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, New York, USA, 2000

[102] N. Liu; H. Liu; S. Zhu; H. Giessen Stereometamaterials, Nat. Photon., Volume 3 (2009) no. 3, pp. 157-162

[103] M. Decker; R. Zhao; C. M. Soukoulis; S. Linden; M. Wegener Twisted split-ring-resonator photonic metamaterial with huge optical activity, Opt. Lett., Volume 35 (2010) no. 10, 1593

[104] A. Arbabi; A. Faraon Fundamental limits of ultrathin metasurfaces, Sci. Rep., Volume 7 (2017) no. 1, 43722

Cited by Sources:

Comments - Policy