Comptes Rendus
Article de synthèse
Transport et interaction matière–rayonnement dans des matériaux corrélés
Comptes Rendus. Physique, Volume 26 (2025), pp. 129-180.

L’interaction matière–rayonnement permet à la fois de sonder la physique de ces systèmes complexes et de générer de nouvelles fonctionnalités dans des dispositifs quantiques de basse dimension. Cette revue est une synthèse des recherches menées autour de l’étude de matériaux fortement corrélés, en particulier les interfaces d’oxyde LaAlO3/SrTiO3 et deux familles de cuprates YBa2Cu3O7-𝛿 et Bi2Sr2CaCu2O8+𝛿.

Matter–radiation interaction can both probe the physics of these complex systems and generate new functionalities in low-dimensional quantum devices. This review is a synthesis of research carried out around the study of strongly correlated materials, in particular oxide interfaces LaAlO3/SrTiO3 and two families of cuprates YBa2Cu3O7-𝛿 and Bi2Sr2CaCu2O8+𝛿.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.220
Mots-clés : Supraconductivité, Matériaux fortements corrélés, Electrodynamique des supraconducteurs, Dispositifs quantiques
Keywords: Superconductivity, Strongly correlated materials, Superconductor electrodynamics, Quantum device

Cheryl Feuillet-Palma 1

1 Laboratoire de Physique et d’étude des Matériaux, ESPCI Paris, CNRS, PSL University, Sorbonne Université, 75005 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2025__26_G1_129_0,
     author = {Cheryl Feuillet-Palma},
     title = {Transport et interaction mati\`ere{\textendash}rayonnement dans des mat\'eriaux corr\'el\'es},
     journal = {Comptes Rendus. Physique},
     pages = {129--180},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {26},
     year = {2025},
     doi = {10.5802/crphys.220},
     language = {fr},
}
TY  - JOUR
AU  - Cheryl Feuillet-Palma
TI  - Transport et interaction matière–rayonnement dans des matériaux corrélés
JO  - Comptes Rendus. Physique
PY  - 2025
SP  - 129
EP  - 180
VL  - 26
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.220
LA  - fr
ID  - CRPHYS_2025__26_G1_129_0
ER  - 
%0 Journal Article
%A Cheryl Feuillet-Palma
%T Transport et interaction matière–rayonnement dans des matériaux corrélés
%J Comptes Rendus. Physique
%D 2025
%P 129-180
%V 26
%I Académie des sciences, Paris
%R 10.5802/crphys.220
%G fr
%F CRPHYS_2025__26_G1_129_0
Cheryl Feuillet-Palma. Transport et interaction matière–rayonnement dans des matériaux corrélés. Comptes Rendus. Physique, Volume 26 (2025), pp. 129-180. doi : 10.5802/crphys.220. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.220/

[1] H. Y. Hwang; Y. Iwasa; M. Kawasaki; B. Keimer; N. Nagaosa; Y. Tokura Emergent phenomena at oxide interfaces, Nat. Mater., Volume 11 (2012) no. 2, pp. 103-113 | DOI

[2] P. Zubko; S. Gariglio; M. Gabay; P. Ghosez; J.-M. Triscone Interface physics in complex oxide heterostructures, Annu. Rev. Condens. Matter Phys., Volume 2 (2011) no. 1, pp. 141-165 | DOI

[3] A. Ohtomo; H. Y. Hwang A high-mobility electron gas at the LaAlO 3 /SrTiO 3 heterointerface, Nature, Volume 427 (2004) no. 6973, pp. 423-426 | DOI

[4] Y.-Y. Pai; A. Tylan-Tyler; P. Irvin; J. Levy Physics of SrTiO 3 /sub-based heterostructures and nanostructures : a review, Rep. Progr. Phys., Volume 81 (2018) no. 3, 036503 | DOI

[5] P. Zubko; S. Gariglio; M. Gabay; P. Ghosez; J.-M. Triscone Interface physics in complex oxide heterostructures, Annu. Rev. Condens. Matter Phys., Volume 2 (2011) no. 1, pp. 141-165 | DOI

[6] A. Bussmann-Holder; H. Keller From SrTiO 3 to Cuprates and back to SrTiO 3  : a way along Alex Müller’s scientific career, Condens. Matter, Volume 6 (2021) no. 1, 2 | DOI

[7] T. Sakudo Dielectric properties of SrTiO 3 at low temperatures, Phys. Rev. Lett., Volume 26 (1971) no. 14, 1147 | DOI

[8] L. F. Mattheiss Effect of the 110 °K phase transition on the SrTiO 3 conduction bands, Phys. Rev. B, Volume 6 (1972) no. 12, pp. 4740-4753 | DOI

[9] L. F. Mattheiss Energy bands for KNiF 3 , SrTiO 3 , KMoO 3 , and KTaO 3 , Phys. Rev. B, Volume 6 (1972) no. 12, pp. 4718-4740 | DOI

[10] A. F. Santander-Syro; O. Copie; T. Kondo et al. Two-dimensional electron gas with universal subbands at the surface of SrTiO 3 , Nature, Volume 469 (2011) no. 7329, pp. 189-193 | DOI

[11] K. van Benthem Electron microscopic investigations of the bonding behaviour of metals on SrTiO 3 substrates, Dissertation, University of Stugart (2002)

[12] Y. Fujii; T. Sakudo Dielectric and optical properties of KTaO 3 , J. Phys. Soc. Jpn., Volume 41 (1976) no. 3, pp. 888-893 | DOI

[13] P. A. Fleury; J. M. Worlock Electric-field-induced Raman scattering in SrTi0 3 and KTa0 3 , Phys. Rev., Volume 174 (1968) no. 2, pp. 613-623 | DOI

[14] X. Fan; W. Zheng; X. Chen; D. J. Singh 2DEGs at Perovskite interfaces between KTaO 3 or KNbO 3 and stannates, PLoS One, Volume 9 (2014) no. 3, e91423 | DOI

[15] J. Hemberger; P. Lunkenheimer; R. Viana; R. Böhmer; A. Loidl Electric-field-dependent dielectric constant and nonlinear susceptibility in SrTiO 3 , Phys. Rev. B, Volume 52 (1995) no. 18, pp. 13159-13162 | DOI

[16] X. Lin; Z. Zhu; B. Fauqué; K. Behnia Fermi surface of the most dilute superconductor, Phys. Rev. X, Volume 3 (2013) no. 2, 021002 | DOI

[17] R. C. Neville; B. Hoeneisen; C. A. Mead Permittivity of strontium titanate, J. Appl. Phys., Volume 43 (1972) no. 5, pp. 2124-2131 | DOI

[18] A. Spinelli; M. A. Torija; C. Liu; C. Jan; C. Leighton Electronic transport in doped SrTiO 3  : conduction mechanisms and potential applications, Phys. Rev. B, Volume 81 (2010) no. 15, 155110 | DOI

[19] C. S. Koonce; M. L. Cohen; J. F. Schooley; W. R. Hosler; E. R. Pfeiffer Superconducting transition temperatures of semiconducting SrTiO 3 , Phys. Rev., Volume 163 (1967) no. 2, pp. 380-390 | DOI

[20] J. F. Schooley; J. F. Schooley; W. R. Hosler; E. Ambler; J. H. Becker; M. L. Cohen; C. S. Koonce Dependence of the superconducting transition temperature on carrier concentration in semiconducting SrTiO 3 , Phys. Rev. Lett., Volume 14 (1965) no. 9, pp. 305-307 | DOI

[21] T. Wolfram; E. A. Kraut; F. J. Morin D-band surface states on transition-metal Perovskite crystals : I. Qualitative features and application to SrTiO 3 , Phys. Rev. B, Volume 7 (1973) no. 4, pp. 1677-1694 | DOI

[22] F. Kuchar; P. Frankus Magnetoresistance of cubic and monodomain tetragonal n-type strontium titanate, Phys. Rev. B, Volume 16 (1977) no. 2, pp. 874-883 | DOI

[23] Y. Takada Plasmon mechanism of superconductivity in two- and three-dimensional electron systems, J. Phys. Soc. Jpn., Volume 45 (1978) no. 3, pp. 786-794 | DOI

[24] N. Mott On metal–insulator transitions, J. Solid State Chem., Volume 88 (1990) no. 1, pp. 5-7 | DOI

[25] K. A. Müller; W. Berlinger; F. Waldner Characteristic structural phase transition in perovskite-type compounds, Phys. Rev. Lett., Volume 21 (1968) no. 12, pp. 814-817 | DOI

[26] R. Francis; S. Moss; A. Jacobson X-ray truncation rod analysis of the reversible temperature-dependent [001] surface structure of LaAlO 3 , Phys. Rev. B, Volume 64 (2001) no. 23, 235425 | DOI

[27] M. A. Hein Progress, properties and prospects of passive high-temperature superconductive microwave devices in Europe, Supercond. Sci. Technol., Volume 10 (1997) no. 12, pp. 867-871 | DOI

[28] N. Reyren; S. Thiel; A. D. Caviglia; L. F. Kourkoutis; G. Hammerl; C. Richter; C. W. Schneider; T. Kopp Superconducting interfaces between insulating oxides, Science, Volume 317 (2007), 5 | DOI

[29] Y. A. Bychkov; E. I. Rashba Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, J. Phys. C : Solid State Phys., Volume 17 (1984) no. 33, pp. 6039-6045 | DOI

[30] N. Pavlenko; T. Kopp; E. Y. Tsymbal; G. A. Sawatzky; J. Mannhart Magnetic and superconducting phases at the LaAlO 3 /SrTiO 3 interface : the role of interfacial Ti 3 d electrons, Phys. Rev. B, Volume 85 (2012) no. 2, 020407 | DOI

[31] J. Mannhart; D. G. Schlom Oxide interfaces—an opportunity for electronics, Science, Volume 327 (2010) no. 5973, pp. 1607-1611 | DOI

[32] M. Basletic; J.-L. Maurice; C. Carrétéro et al. Mapping the spatial distribution of charge carriers in LaAlO 3 /SrTiO 3 heterostructures, Nat. Mater., Volume 7 (2008) no. 8, pp. 621-625 | DOI

[33] A. Brinkman; M. Huijben; M. V. Zalk; J. Huijben; U. Zeitler; J. C. Maan Magnetic effects at the interface between non-magnetic oxides, Nat. Mater., Volume 6 (2007), 4 | DOI

[34] N. Nakagawa; H. Y. Hwang; D. A. Muller Why some interfaces cannot be sharp, Nat. Mater., Volume 5 (2006) no. 3, pp. 204-209 | DOI

[35] S. Thiel; G. Hammerl; A. Schmehl; C. W. Schneider; J. Mannhart Tunable quasi-two-dimensional electron gases in oxide heterostructures, Science, Volume 313 (2006) no. 5795, pp. 1942-1945 | DOI

[36] J. Lee; A. A. Demkov Charge origin and localization at the n-type SrTiO 3 /LaAlO 3 interface, Phys. Rev. B, Volume 78 (2008) no. 19, 193104 | DOI

[37] R. Pentcheva; W. E. Pickett Avoiding the polarization catastrophe in LaAlO 3 overlayers on SrTiO 3 (001) through polar distortion, Phys. Rev. Lett., Volume 102 (2009) no. 10, 107602 | DOI

[38] H. Chen; A. M. Kolpak; S. Ismail-Beigi Fundamental asymmetry in interfacial electronic reconstruction between insulating oxides : an ab initio study, Phys. Rev. B, Volume 79 (2009) no. 16, 161402 | DOI

[39] G. Herranz; F. Sánchez; N. Dix; M. Scigaj; J. Fontcuberta High mobility conduction at (110) and (111) LaAlO 3 /SrTiO 3 interfaces, Sci. Rep., Volume 2 (2012) no. 1, 758 | DOI

[40] J. Mannhart; D. Blank; H. Hwang; A. Millis; J.-M. Triscone Two-dimensional electron gases at oxide interfaces, MRS Bull., Volume 33 (2008) no. 11, pp. 1027-1034 | DOI

[41] L. Yu; A. Zunger A polarity-induced defect mechanism for conductivity and magnetism at polar–nonpolar oxide interfaces, Nat. Commun., Volume 5 (2014) no. 1, 5118 | DOI

[42] A. D. Caviglia; S. Gariglio; N. Reyren et al. Electric field control of the LaAlO 3 /SrTiO 3 interface ground state, Nature, Volume 456 (2008) no. 7222, pp. 624-627 | DOI

[43] J. A. Bert; B. Kalisky; C. Bell; M. Kim; Y. Hikita; H. Y. Hwang; K. A. Moler Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO 3 /SrTiO 3 interface, Nat. Phys., Volume 7 (2011) no. 10, pp. 767-771 | DOI

[44] L. Li; C. Richter; J. Mannhart; R. C. Ashoori Coexistence of magnetic order and two-dimensional superconductivity at LaAlO 3 /SrTiO 3 interfaces, Nat. Phys., Volume 7 (2011) no. 10, pp. 762-766 | DOI

[45] D. A. Dikin; M. Mehta; C. W. Bark; C. M. Folkman; C. B. Eom; V. Chandrasekhar Coexistence of superconductivity and ferromagnetism in two dimensions, Phys. Rev. Lett., Volume 107 (2011) no. 5, 056802 | DOI

[46] K. Michaeli; A. C. Potter; P. A. Lee Superconducting and ferromagnetic phases in SrTiO 3 /LaAlO 3 oxide interface structures : possibility of finite momentum pairing, Phys. Rev. Lett., Volume 108 (2012) no. 11, 117003 | DOI

[47] J. Biscaras; N. Bergeal; S. Hurand et al. Two-dimensional superconducting phase in LaTiO 3 /SrTiO 3 heterostructures induced by high-mobility carrier doping, Phys. Rev. Lett., Volume 108 (2012) no. 24, 247004 | DOI

[48] A. D. Caviglia; M. Gabay; S. Gariglio; N. Reyren; C. Cancellieri; J.-M. Triscone Tunable rashba spin–orbit interaction at oxide interfaces, Phys. Rev. Lett., Volume 104 (2010) no. 12, 126803 | DOI

[49] J. Biscaras; S. Hurand; C. Feuillet-Palma et al. Limit of the electrostatic doping in two-dimensional electron gases of LaXO 3 (X = Al, Ti)/SrTiO 3 , Sci. Rep., Volume 4 (2015) no. 1, 6788 | DOI

[50] S. Maekawa; H. Fukuyama Magnetoresistance in two-dimensional disordered systems : effects of Zeeman splitting and spin–orbit scattering, J. Phys. Soc. Jpn., Volume 50 (1981) no. 8, pp. 2516-2524 | DOI

[51] S. Hikami; A. I. Larkin; Y. Nagaoka Spin–orbit interaction and magnetoresistance in the two dimensional random system, Progr. Theor. Phys., Volume 63 (1980) no. 2, pp. 707-710 | DOI

[52] A. Jouan DC and AC transport in field-effect controlled LaAlO 3 /SrTiO 3 interface, 2017 (Superconductivity [cond-mat.supr-con], Université Pierre et Marie Curie - Paris VI)

[53] C. M. Hurd The Hall effect in group 1B metals, The Hall Effect in Metals and Alloys (C. M. Hurd, ed.) (The International Cryogenics Monograph Series), Springer US, 1972, pp. 113-151 | DOI

[54] S. Hurand Contrôle de la supraconductivité à l’interface d’oxydes LaAlO 3 /SrTiO 3 par effet de champ électrique, 2015 (Autre [cond-mat.other], Université Pierre et Marie Curie - Paris VI)

[55] S. Hurand; A. Jouan; C. Feuillet-Palma et al. Top-gated field-effect LaAlO 3 /SrTiO 3 devices made by ion-irradiation, Appl. Phys. Lett., Volume 108 (2016) no. 5, 052602 | DOI

[56] Y. Oreg; G. Refael; F. von Oppen Helical liquids and Majorana bound states in quantum wires, Phys. Rev. Lett., Volume 105 (2010) no. 17, 177002 | DOI

[57] J. Alicea; Y. Oreg; G. Refael; F. von Oppen; M. P. A. Fisher Non-Abelian statistics and topological quantum information processing in 1D wire networks, Nat. Phys., Volume 7 (2011) no. 5, pp. 412-417 (1006.4395) | DOI

[58] V. Mourik; K. Zuo; S. M. Frolov; S. R. Plissard; E. P. A. M. Bakkers; L. P. Kouwenhoven Signatures of Majorana Fermions in hybrid superconductor–semiconductor nanowire devices, Science, Volume 336 (2012) no. 6084, pp. 1003-1007 | DOI

[59] S.-Y. Xu; N. Alidoust; I. Belopolski et al. Momentum-space imaging of Cooper pairing in a half-Dirac-gas topological superconductor, Nat. Phys., Volume 10 (2014) no. 12, pp. 943-950 | DOI

[60] W.-j. Son; E. Cho; J. Lee; S. Han Hydrogen adsorption and carrier generation in LaAlO 3 –SrTiO 3 heterointerfaces : a first-principles study, J. Phys. : Condens. Matter, Volume 22 (2010), 315501 | DOI

[61] Y. Xie; Y. Hikita; C. Bell; H. Y. Hwang Control of electronic conduction at an oxide heterointerface using surface polar adsorbates, Nat. Commun., Volume 2 no. 1, 494 | DOI

[62] Y. Li; J. Yu Modulation of electron carrier density at the n-type LaAlO 3 /SrTiO 3 interface by water adsorption, J. Phys. : Condens. Matter, Volume 25 no. 26, 265004 | DOI

[63] M. Hosoda; Y. Hikita; H. Y. Hwang; C. Bell Transistor operation and mobility enhancement in top-gated LaAlO 3 /SrTiO 3 heterostructures, Appl. Phys. Lett., Volume 103 (2013) no. 10, 103507 | DOI

[64] B. Förg; C. Richter; J. Mannhart Field-effect devices utilizing LaAlO 3 –SrTiO 3 interfaces, Appl. Phys. Lett., Volume 100 (2012) no. 5, 053506 | DOI

[65] P. D. Eerkes; W. G. van der Wiel; H. Hilgenkamp Modulation of conductance and superconductivity by top-gating in LaAlO 3 /SrTiO 3 2-dimensional electron systems, Appl. Phys. Lett., Volume 103 (2013) no. 20, 201603 | DOI

[66] M. Ben Shalom; M. Sachs; D. Rakhmilevitch; A. Palevski; Y. Dagan Tuning Spin–Orbit Coupling and Superconductivity at the SrTiO 3 /LaAlO 3 interface : a magnetotransport study, Phys. Rev. Lett., Volume 104 (2010) no. 12, 126802 | DOI

[67] G. Singh; A. Jouan; S. Hurand et al. Effect of disorder on superconductivity and Rashba spin–orbit coupling in LaAlO 3 /SrTiO 3 interfaces, Phys. Rev. B, Volume 96 (2017) no. 2, 024509 | DOI

[68] C. Cancellieri; A. S. Mishchenko; U. Aschauer et al. Polaronic metal state at the LaAlO 3 /SrTiO 3 interface, Nat. Commun., Volume 7 (2016) no. 1, 10386 | DOI

[69] B. S. Chandrasekhar A note on the maximum critical field of high-field superconductors, Appl. Phys. Lett., Volume 1 (1962) no. 1, pp. 7-8 | DOI

[70] A. M. Clogston Upper limit for the critical field in hard superconductors, Phys. Rev. Lett., Volume 9 (1962) no. 6, pp. 266-267 | DOI

[71] M. Kim; Y. Kozuka; C. Bell; Y. Hikita; H. Y. Hwang Intrinsic spin–orbit coupling in superconducting δ-doped SrTiO 3 heterostructures, Phys. Rev. B, Volume 86 (2012) no. 8, 085121 | DOI

[72] D. C. Mattis; J. Bardeen Theory of the anomalous skin effect in normal and superconducting metals, Phys. Rev., Volume 111 (1958) no. 2, pp. 412-417 | DOI

[73] M. Dressel Electrodynamics of metallic superconductors, Adv. Condens. Matter Phys., Volume 2013 (2013), pp. 1-25 | DOI

[74] J. Biscaras; N. Bergeal; S. Hurand et al. Multiple quantum criticality in a two-dimensional superconductor, Nat. Mater., Volume 12 (2013) no. 6, pp. 542-548 | DOI

[75] J. A. Bert; K. C. Nowack; B. Kalisky et al. Gate-tuned superfluid density at the superconducting LaAlO 3 /SrTiO 3 interface, Phys. Rev. B, Volume 86 (2012) no. 6, 060503 | DOI

[76] M. Thiemann; M. Beutel; N. R. Dressel et al. Single-gap superconductivity and dome of superfluid density in Nb-doped SrTiO 3 , Phys. Rev. Lett., Volume 120 (2018) no. 23, 237002 | DOI

[77] G. Venditti; J. Biscaras; S. Hurand et al. Non-linear IV characteristics of two-dimensional superconductors : Berezinskii–Kosterlitz–Thouless physics versus inhomogeneity, Phys. Rev. B, Volume 100 (2019) no. 6, 064506 | DOI

[78] G. Herranz; G. Singh; N. Bergeal et al. Engineering two-dimensional superconductivity and Rashba spin–orbit coupling in LaAlO 3 /SrTiO 3 quantum wells by selective orbital occupancy, Nat. Commun., Volume 6 (2015) no. 1, 6028 | DOI

[79] G. Singh; A. Jouan; G. Herranz et al. Gap suppression at a Lifshitz transition in a multi-condensate superconductor, Nat. Mater., Volume 18 (2019) no. 9, pp. 948-954 | DOI

[80] S. Mallik; G. C. Ménard; G. Saïz et al. Superfluid stiffness of a KTaO 3 -based two-dimensional electron gas, Nat. Commun., Volume 13 (2022) no. 1, 4625 | DOI

[81] J. G. Bednorz; K. A. Müller Possible high Tc superconductivity in the Ba–La–Cu–O system, Z. Physik B - Condens. Matter, Volume 64 (1986), pp. 189-193 | DOI

[82] P. J. Ray Master’s thesis : Structural investigation of La (2-x) Sr (x) CuO (4+y) - Following staging as a function of temperature, figshare. Thesis (2016) | DOI

[83] L. Bégon-Lours Ferroelectric field-effects in high-tc superconducting devices, 2017 (Superconductivity [cond-mat.supr-con], Université Pierre et Marie Curie - Paris VI)

[84] P. A. P. Lindberg; Z.-X. Shen; B. O. Wells et al. Reaction of rb and oxygen overlayers with single-crystalline Bi 2 Sr 2 CaCu 2 O 8+δ superconductors, Phys. Rev. B, Volume 39 (1989) no. 4, pp. 2890-2893 | DOI

[85] X. Wang; L. X. You; D. K. Liu; C. T. Lin; X. M. Xie; M. H. Jiang Thin-film-like BSCCO single crystals made by mechanical exfoliation, Physica C, Volume 474 (2012), pp. 13-17 | DOI

[86] P. Badica; K. Togano; S. Awaji; K. Watanabe; H. Kumakura Review on Bi–Sr–Ca–Cu–O whiskers, Supercond. Sci. Technol., Volume 19 (2006) no. 10, p. R81-R99 | DOI

[87] K. S. Novoselov; A. K. Geim; S. V. Morozov; D. Jiang; Y. Zhang; S. V. Dubonos; I. V. Grigorieva; A. A. Firsov Electric field effect in atomically thin carbon films, Science, Volume 306 (2004) no. 5696, pp. 666-669 | DOI

[88] K. S. Novoselov; A. Mishchenko; A. Carvalho; A. H. Castro Neto 2D materials and van der Waals heterostructures, Science, Volume 353 (2016) no. 6298, aac9439 | DOI

[89] D. Jiang; T. Hu; L. You et al. High-T c superconductivity in ultrathin Bi 2 Sr 2 CaCu 2 O 8+x down to half-unit-cell thickness by protection with graphene, Nat. Commun., Volume 5 (2014), 5708 | DOI

[90] J. Bobroff Impuretés et systèmes corrélés. des chaînes aux cuprates supraconducteurs, Ann. Phys. Fr., Volume 30 (2005) no. 1, pp. 1-151 | DOI

[91] M. Imada; A. Fujimori; Y. Tokura Metal–insulator transitions, Rev. Mod. Phys., Volume 70 (1998) no. 4, 225 | DOI

[92] P. Romano; M. Riccio; A. Guarino; N. Martucciello; G. Grimaldi; A. Leo; A. Nigro Electron doped superconducting cuprates for photon detectors, Measurement, Volume 122 (2018), pp. 502-506 | DOI

[93] K. Segawa; Y. Ando Transport properties of untwinned YBa 2 Cu 3 oysingle crystals and the origin of the 60-K plateau, J. Phys. Chem. Solids, Volume 131 (2003) no. 5, pp. 821-830

[94] S. Altın; M. Aksan; M. Yakıncı; Y. Balcı The single crystal superconducting Bi-2212 whiskers fabrication and their thermal transport properties, J. Alloys Compound., Volume 502 (2010) no. 1, pp. 16-23 | DOI

[95] C. C. Tsuei; J. R. Kirtley; C. C. Chi et al. Pairing symmetry and flux quantization in a tricrystal superconducting ring of YBa 2 Cu 3 O 7-δ , Phys. Rev. Lett., Volume 73 (1994) no. 4, pp. 593-596 | DOI

[96] C. C. Tsuei; J. R. Kirtley Pairing symmetry in cuprate superconductors, Rev. Mod. Phys., Volume 72 (2000) no. 4, pp. 969-1016 | DOI

[97] S. M. O’Mahony; W. Ren; W. Chen et al. On the electron pairing mechanism of copper-oxide high temperature superconductivity, Proc. Natl. Acad. Sci. USA, Volume 119 (2022) no. 37, e2207449119 | DOI

[98] H. Ding; M. R. Norman; J. C. Campuzano et al. Angle-resolved photoemission spectroscopy study of the superconducting gap anisotropy in Bi 2 Sr 2 CaCu 2 O 8+x , Phys. Rev. B, Volume 54 (1996) no. 14, p. R9678-R9681 | DOI

[99] D. A. Wollman; D. J. Van Harlingen; W. C. Lee; D. M. Ginsberg; A. J. Leggett Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO-pb dc SQUIDs, Phys. Rev. B, Volume 71 (1993) no. 13, pp. 2134-2137 | DOI

[100] H. Hilgenkamp; Ariando; H. J. Smilde et al. Ordering and manipulation of the magnetic moments in large-scale superconducting π-loop arrays, Nature, Volume 422 (2003), pp. 50-53 | DOI

[101] K. Krishana; J. M. Harris; N. P. Ong Quasiparticle mean free path in YBa 2 Cu 3 O 7 measured by the thermal hall conductivity, Phys. Rev. Lett., Volume 75 (1995) no. 19, pp. 3529-3532 | DOI

[102] W. H. Tang; C. Y. Ng; C. Y. Yau; J. Gao Thickness dependence of superconductivity for YBa 2 Cu 3 O y ultra-thin films, Supercond. Sci. Technol., Volume 13 (2000) no. 5, pp. 580-583 | DOI

[103] F. S. Wells; A. V. Pan; X. R. Wang; S. A. Fedoseev; H. Hilgenkamp Analysis of low-field isotropic vortex glass containing vortex groups in YBa 2 Cu 3 O 7-x thin films visualized by scanning SQUID microscopy, Sci. Rep., Volume 5 (2015) no. 1, 8677 | DOI

[104] J. Pearl Current distribution in superconducting films carrying quantized fluxoids, Appl. Phys. Lett., Volume 5 (1964) no. 4, pp. 65-66 | DOI

[105] J. Lesueur; P. Nedellec; H. Bernas; J. P. Burger; L. Dumoulin Depairing-like variation of Tc in YBa 2 Cu 3 O 7-δ , Phys. C : Superconduct., Volume 167 (1990) no. 1, pp. 1-5 | DOI

[106] A. A. Abrikosov; L. P. Gor’kov Contribution to the theory of superconducting alloys with paramagnetic impurities, Z. Eks. i Teoret. Fiz., Volume 39 (1960)

[107] J. Lesueur; S. Degoy; M. Aprili; D. Chambonnet; D. Keller Thermodynamical fluctuations and critical behavior in weakly disordered YBCO thin and ultrathin films, Proc. SPIE, Oxide Superconductor Physics and Nano-Engineering II, Photonics West ’96, San Jose, CA (I. Bozovic; D. Pavuna, eds.), 1996, p. 250

[108] J. Lesueur; L. Dumoulin; S. Quillet; J. Radcliffe Ion-beam induced metal insulator transition in YBCO films, J. Alloys Compounds, Volume 195 (1993), pp. 527-530 | DOI

[109] M. Malnou High-Tc Josephson mixers for terahertz detection, PhD thesis, Université Pierre et Marie Curie, Paris VI (2015)

[110] N. Curtz; E. Koller; H. Zbinden; M. Decroux; L. Antognazza Patterning of ultrathin YBCO nanowires using a new focused-ion-beam process, Supercond. Sci. Technol., Volume 23 (2010), 045015 | DOI

[111] S. A. Cybart; E. Y. Cho; T. J. Wong et al. Nano Josephson superconducting tunnel junctions in YBa 2 Cu 3 O 7-δ directly patterned with a focused helium ion beam, Nat. Nanotechnol., Volume 10 (2015), pp. 598-602 | DOI

[112] F. Couedo; P. Amari; C. Feuillet-Palma; C. Ulysse; Y. K. Srivastava; R. Singh; N. Bergeal; J. Lesueur Dynamic properties of high-Tc superconducting nano-junctions made with a focused helium ion beam, Sci. Rep., Volume 10 (2020) no. 1, 10256 | DOI

[113] R. C. Jaeger No. V. 5 in Modular Series on Solid State Devices, Prentice Hall, Upper Saddle River, NJ, 2002

[114] J. F. Ziegler; J. P. Biersack The stopping and range of ions in matter, Treatise on Heavy-Ion Science (D. A. Bromley, ed.), Springer, Boston, MA, 1985 | DOI

[115] N. Bergeal; X. Grison; J. Lesueur; G. Faini; M. Aprili; J. P. Contour High-quality planar high-T-c Josephson junctions, Appl. Phys. Lett., Volume 87 (2005) no. 10, 102502 | DOI

[116] N. Bergeal; J. Lesueur; G. Faini; M. Aprili; J. P. Contour High T-c superconducting quantum interference devices made by ion irradiation, Appl. Phys. Lett., Volume 89 (2006) no. 11, 112515 | DOI

[117] J. Lesueur; N. Bergeal; M. Sirena; X. Grison; G. Faini; M. Aprili; J. P. Contour High Tc Josephson nanojunctions made by ion irradiation : characteristics and reproducibility, IEEE Trans. Appl. Supercond., Volume 17 (2007) no. 2, pp. 963-966 | DOI

[118] M. Malnou; A. Luo; T. Wolf et al. Toward terahertz heterodyne detection with superconducting Josephson junctions, Appl. Phys. Lett., Volume 101 (2012) no. 23, 233505 | DOI

[119] M. Malnou; C. Feuillet-Palma; C. Ulysse et al. High-Tc superconducting Josephson mixers for terahertz heterodyne detection, J. Appl. Phys., Volume 116 (2014) no. 7, 074505 | DOI

[120] A. Sharafiev; M. Malnou; C. Feuillet-Palma; C. Ulysse; P. Febvre; J. Lesueur; N. Bergeal Josephson oscillation linewidth of ion-irradiated YBa 2 Cu 3 O 7 junctions, Supercond. Sci. Technol., Volume 29 (2016) no. 7, 074001 | DOI

[121] A. Sharafiev; M. Malnou; C. Feuillet-Palma et al. HTS Josephson junctions arrays for high-frequency mixing, Supercond. Sci. Technol., Volume 31 (2018) no. 3, 035003–9 | DOI

[122] E. R. Pawlowski; J. Kermorvant; D. Crété et al. Static and radio frequency magnetic response of high Tc superconducting quantum interference filters made by ion irradiation, Supercond. Sci. Technol., Volume 31 (2018) no. 9, 095005–11 | DOI

[123] F. Couedo; E. R. Pawlowski; J. Kermorvant et al. High-Tc superconducting detector for highly-sensitive microwave magnetometry, Appl. Phys. Lett., Volume 114 (2019) no. 19, 192602 | DOI

[124] K. K. Likharev Superconducting weak links, Rev. Mod. Phys., Volume 51 (1979), pp. 101-159 | DOI

[125] H. Hilgenkamp; J. Mannhart Grain boundaries in high-Tc superconductors, Rev. Mod. Phys., Volume 74 (2002) no. 2, pp. 485-549 | DOI

[126] Y. Y. Divin; J. Mygind; N. F. Pedersen; P. Chaudhari Josephson oscillations and noise temperatures in YBa 2 Cu 3 0 7-x grain-boundary junctions, Appl. Phys. Lett., Volume 61 (1992) no. 25, pp. 3053-3055 | DOI

[127] J. E. Zimmerman; A. H. Silver Macroscopic quantum interference effects through superconducting point contacts, Phys. Rev., Volume 141 (1966) no. 1, pp. 367-375 | DOI

[128] V. Schultze; R. IJsselsteijn; H.-G. Meyer How to puzzle out a good high-T c superconducting quantum interference filter, Supercond. Sci. Technol., Volume 19 (2006) no. 5, p. S411-S415 | DOI

[129] O. Mukhanov; G. Prokopenko; R. Romanofsky Quantum sensitivity : superconducting quantum interference filter-based microwave receivers, IEEE Microwave, Volume 15 (2014) no. 6, pp. 57-65 | DOI

[130] G. N. Gol’tsman; O. Okunev; G. Chulkova et al. Picosecond superconducting single-photon optical detector, Appl. Phys. Lett., Volume 79 (2001) no. 6, pp. 705-707 | DOI

[131] C. M. Natarajan; M. G. Tanner; R. H. Hadfield Superconducting nanowire single-photon detectors : physics and applications, Supercond. Sci. Technol., Volume 25 (2012) no. 6, 063001 | DOI

[132] A. J. Annunziata Single-photon detection, kinetic inductance, and non-equilibrium dynamics in niobium and niobium nitride superconducting nanowires, PhD thesis, Yale University (2010)

[133] R. H. Hadfield Single-photon detectors for optical quantum information applications, Nat. Photon., Volume 3 (2009) no. 12, pp. 696-705 | DOI

[134] E. A. Dauler; M. E. Grein; A. J. Kerman et al. Review of superconducting nanowire single-photon detector system design options and demonstrated performance, Opt. Eng., Volume 53 (2014) no. 8, 081907 | DOI

[135] K. Smirnov; A. Divochiy; Y. Vakhtomin; P. Morozov; P. Zolotov; A. Antipov; V. Seleznev NbN single-photon detectors with saturated dependence of quantum efficiency, Supercond. Sci. Technol., Volume 31 (2018) no. 3, 035011 | DOI

[136] F. Marsili; V. Verma; J. Stern et al. Detecting single infrared photons with 93% system efficiency, Nat. Photon., Volume 7 (2013), 035011, pp. 210-214 | DOI

[137] A. Vetter; S. Ferrari; P. Rath et al. Cavity-enhanced and ultrafast superconducting single-photon detectors, Nano Lett., Volume 16 (2016) no. 11, pp. 7085-7092 | DOI

[138] J. Chiles; I. Charaev; R. Lasenby et al. New constraints on dark photon dark matter with superconducting nanowire detectors in an optical haloscope, Phys. Rev. Lett., Volume 128 (2022) no. 23, 231802 | DOI

[139] B. Korzh; Q.-Y. Zhao; J. P. Allmaras et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector, Nat. Photon., Volume 14 (2020) no. 4, 231802, pp. 250-255 | DOI

[140] F. Marsili; F. Bellei; F. Najafi; A. E. Dane; E. A. Dauler; R. J. Molnar; K. K. Berggren Efficient single photon detection from 500 nm to 5 μm wavelength, Nano Lett., Volume 12 (2012) no. 9, pp. 4799-4804 | DOI

[141] A. Korneev; Y. Korneeva; I. Florya; B. Voronov; G. Goltsman NbN nanowire superconducting single-photon detector for mid-infrared, Phys. Proc., Volume 36 (2012), pp. 72-76 | DOI

[142] V. B. Verma; B. Korzh; A. B. Walter et al. Single-photon detection in the mid-infrared up to 10 m wavelength using tungsten silicide superconducting nanowire detectors, APL Photonics, Volume 6 (2021) no. 5, 056101 | DOI

[143] M. Protte; V. B. Verma; J. P. Höpker; R. P. Mirin; S. Woo Nam; T. J. Bartley Laser-lithographically written micron-wide superconducting nanowire single-photon detectors, Supercond. Sci. Technol., Volume 35 (2022) no. 5, 055005, 056101 | DOI

[144] M. Lindgren; M. Currie; C. Williams et al. Intrinsic picosecond response times of Y–Ba–Cu–O superconducting photodetectors, Appl. Phys. Lett., Volume 74 (1999) no. 6, 055005, pp. 853-855 | DOI

[145] D. F. Santavicca Prospects for faster, higher-temperature superconducting nanowire single-photon detectors, Supercond. Sci. Technol., Volume 31 (2018) no. 4, 040502 | DOI

[146] S. Charpentier; R. Arpaia; J. Gaudet et al. Hot spot formation in electron-doped PCCO nanobridges, Phys. Rev. B, Volume 94 (2016) no. 6, 060503, 040502 | DOI

[147] P. Romano; M. Riccio; A. Guarino; N. Martucciello; G. Grimaldi; A. Leo; A. Nigro Electron doped superconducting cuprates for photon detectors, Measurement, Volume 122 (2018), 060503, pp. 502-506 | DOI

[148] R. Arpaia; M. Ejrnaes; L. Parlato et al. High-temperature superconducting nanowires for photon detection, Physica C, Volume 509 (2015) no. 1, pp. 16-21 | DOI

[149] M. Ejrnaes; L. Parlato; R. Arpaia; T. Bauch; F. Lombardi; R. Cristiano; F. Tafuri; G. P. Pepe Observation of dark pulses in 10 nm thick YBCO nanostrips presenting hysteretic current voltage characteristics, Supercond. Sci. Technol., Volume 30 (2017) no. 12, 12LT02 | DOI

[150] R. Arpaia; D. Golubev; R. Baghdadi et al. Transport properties of ultrathin YBa 2 Cu 3 O 7-δ nanowires : a route to single photon detection, Phys. Rev. B, Volume 96 (2017) no. 6, 064525, 12LT02 | DOI

[151] P. Amari; C. Feuillet-Palma; A. Jouan et al. High-temperature superconducting nano-meanders made by ion irradiation, Supercond. Sci. Technol., Volume 31 (2018) no. 1, 015019, 064525 | DOI

[152] M. Lyatti; M. A. Wolff; A. Savenko et al. Experimental evidence for hotspot and phase-slip mechanisms of voltage switching in ultrathin YBa 2 Cu 3 O 7-x nanowires, Phys. Rev. B, Volume 98 (2018) no. 5, 054505, 015019 | DOI

[153] E. Trabaldo; R. Arpaia; M. Arzeo; E. Andersson; D. Golubev; F. Lombardi; T. Bauch Transport and noise properties of YBCO nanowire based nanoSQUIDs, Supercond. Sci. Technol., Volume 32 (2019) no. 7, 073001, 054505 | DOI

[154] E. Andersson; R. Arpaia; E. Trabaldo; T. Bauch; F. Lombardi Fabrication and electrical transport characterization of high quality underdoped YBa 2 Cu 3 O 7-δ nanowires, Supercond. Sci. Technol., Volume 33 (2020) no. 6, 064002, 073001 | DOI

[155] H. Shibata Photoresponse of a La 1.85 Sr 0.15 CuO 4 nanostrip, Supercond. Sci. Technol., Volume 30 (2017) no. 7, 074001, 064002 | DOI

[156] R. Arpaia; M. Ejrnaes; L. Parlato et al. Highly homogeneous YBCO/LSMO nanowires for photoresponse experiments, Supercond. Sci. Technol., Volume 27 (2014) no. 4, 044027, 074001 | DOI

[157] I. Charaev; D. A. Bandurin; A. T. Bollinger et al. Single-photon detection using high-temperature superconductors, Nat. Nanotechnol., Volume 18 (2023) no. 4, 044027, pp. 343-349 | DOI

[158] A. J. Annunziata; O. Quaranta; D. F. Santavicca et al. Reset dynamics and latching in niobium superconducting nanowire single-photon detectors, J. Appl. Phys., Volume 108 (2010) no. 8, 084507 | DOI

[159] R. Sobolewski Ultrafast dynamics of nonequilibrium quasi-particles in high-temperature superconductors, SPIE’s International Symposium (D. Pavuna; I. Bozovic, eds.), Volume 480, 1998, 084507 | DOI

[160] H. Shibata; H. Takesue; T. Honjo; T. Akazaki; Y. Tokura Single-photon detection using magnesium diboride superconducting nanowires, Appl. Phys. Lett., Volume 97 (2010), 212504 | DOI

[161] H. Assink; A. J. M. Harg; C. M. Schep et al. Critical currents in submicron YBa 2 Cu 3 O 7 lines, IEEE Trans. Appl. Supercond., Volume 3 (1993) no. 1, 212504, pp. 2983-2985 | DOI

[162] S. Nawaz Approaching the depairing critical current in superconducting YBa 2 Cu 3 O 7-x nanowires, PhD thesis, Chalmers University, Sweden (2013)

[163] P. Larsson; B. Nilsson; Z. G. Ivanov Fabrication and transport measurements of YBa 2 Cu 3 O 7-x nanostructures, J. Vac. Sci. Technol. B, Volume 18 (2000) no. 1, pp. 25-31 | DOI

[164] D. Y. Vodolazov Single-photon detection by a dirty current-carrying superconducting strip based on the kinetic-equation approach, Phys. Rev. Appl., Volume 7 (2017) no. 3, 034014 | DOI

[165] R. P. Gupta; M. Gupta Order–disorder-driven change in hole concentration and superconductivity in YBa 2 Cu 3 O 6.5 , Phys. Rev. B, Volume 44 (1991) no. 6, 034014, pp. 2739-2746 | DOI

[166] G. Papari; F. Carillo; D. Stornaiuolo; L. Longobardi; F. Beltram; F. Tafuri High critical current density and scaling of phase-slip processes in YBaCuO nanowires, Supercond. Sci. Technol., Volume 25 (2012) no. 3, 035011 | DOI

[167] G. Papari; F. Carillo; D. Stornaiuolo; D. Massarotti; L. Longobardi; F. Beltram; F. Tafuri Dynamics of vortex matter in YBCO sub-micron bridges, Phys. C : Supercond. Appl., Volume 506 (2014), 035011, pp. 188-194 | DOI

[168] S. K. H. Lam; A. Bendavid; J. Du Hot spot formation in focused-ion-beam-fabricated YBa 2 Cu 3 O 7-x nanobridges with high critical current densities, Nanotechnology, Volume 30 (2019) no. 32, 325301 | DOI

[169] R. Arpaia; S. Nawaz; F. Lombardi; T. Bauch Improved nanopatterning for YBCO nanowires approaching the depairing current, IEEE Trans. Appl. Supercond., Volume 23 (2013) no. 3, 325301, p. 1101505-1101505 | DOI

[170] M. Lyatti; A. Savenko; U. Poppe Ultra-thin YBa 2 Cu 3 O 7-x films with high critical current density, Supercond. Sci. Technol., Volume 29 (2016) no. 6, 065017 | DOI

[171] W. J. Skocpol; M. R. Beasley; M. Tinkham Self-heating hotspots in superconducting thin-film microbridges, J. Appl. Phys., Volume 45 (1974) no. 9, 065017, pp. 4054-4066 | DOI

[172] P. Amari; S. Kozlov; E. Recoba-Pawlowski et al. Scalable nanofabrication of high-quality YBa 2 Cu 3 0 7-δ nanowires for single-photon detectors, Phys. Rev. Appl., Volume 20 (2023) no. 4, 044025, 325301 | DOI

[173] R. Arpaia YBa 2 Cu 3 O 7-δ nanowires for ultrasensitive magnetic flux detectors and optical applications, PhD thesis, Chalmers University, Sweden (2016), 044025

[174] R. C. Dinsmore Microwave response in superconducting nanowires, PhD thesis, University of Illinois at Urbana-Champaign (2009), 044025

[175] K. K. Likharev; L. A. Yakobson Steady-state properties of superconducting bridges, Sov. Phys. - Tech. Phys., Volume 20 (1975) no. 7, pp. 950-954 (Engl. Transl.)

[176] S. Kozlov Critical behavior of superconducting nanowires, PhD thesis, PSL Research University (2024)

[177] R. Kato; Y. Enomoto; S. Maekawa Effects of the surface boundary on the magnetization process in type-II superconductors, Phys. Rev. B, Volume 47 (1993) no. 13, pp. 8016-8024 | DOI

[178] W. D. Gropp; H. G. Kaper; G. K. Leaf et al. Numerical simulation of vortex dynamics in type-II superconductors, J. Comput. Phys., Volume 123 (1996) no. 2, pp. 254-266 | DOI

[179] P. G. D. Gennes Superconductivity of Metals And Alloys, CRC Press, Boca Raton, 2019 | DOI

[180] L. G. Aslamazov; A. I. Larkin Josephson effect in wide superconducting bridges, Zh. Eksp. Teor. Fiz., Volume 68 (1975), pp. 766-775

[181] J. Kurkijärvi Intrinsic fluctuations in a superconducting ring closed with a Josephson junction, Phys. Rev. B, Volume 6 (1972) no. 3, pp. 832-835 | DOI

[182] A. Garg Escape-field distribution for escape from a metastable potential well subject to a steadily increasing bias field, Phys. Rev. B, Volume 51 (1995) no. 21, pp. 15592-15595 | DOI

[183] M.-H. Bae; R. C. Dinsmore; T. Aref et al. Current–phase relationship, thermal and quantum phase slips in superconducting nanowires made on a scaffold created using adhesive tape, Nano Lett., Volume 9 (2009) no. 5, pp. 1889-1896 | DOI

[184] P. Amari Vortex dynamics in ion irradiated YBCO superconducting nanowires : toward single photon detection, PhD thesis, Sorbonne Université (2020)

[185] Z. Velluire-Pellat Microwave study of high-Tc superconductors : from YBa 2 Cu 3 O 7-δ resonantors to ultrathin Bi 2 Sr 2 CaCu 2 O 8+δ flakes, PhD thesis, PSL Research University (2023)

[186] A. Shukla; R. Kumar; J. Mazher; A. Balan Graphene made easy : high quality, large-area samples, Solid State Commun., Volume 149 (2009) no. 17–18, pp. 718-721 | DOI

[187] K. Gacem; M. Boukhicha; Z. Chen; A. Shukla High quality 2d crystals made by anodic bonding : a general technique for layered materials, Nanotechnology, Volume 23 (2012) no. 50, 505709 | DOI

[188] F. Wang; J. Biscaras; A. Erb; A. Shukla Superconductor–insulator transition in space charge doped one unit cell Bi 2.1 Sr 1.9 CaCu 2 O 8+x , Nat. Commun., Volume 12 (2021) no. 1, 2926, 505709 | DOI

[189] A. Paradisi; J. Biscaras; A. Shukla Space charge induced electrostatic doping of two-dimensional materials : graphene as a case study, Appl. Phys. Lett., Volume 107 (2015) no. 14, 143103, 505709 | DOI

[190] J. Biscaras; Z. Chen; A. Paradisi; A. Shukla Onset of two-dimensional superconductivity in space charge doped few-layer molybdenum disulfide, Nat. Commun., Volume 6 (2015), 8826, 2926 | DOI

[191] E. Sterpetti; J. Biscaras; A. Erb; A. Shukla Comprehensive phase diagram of two-dimensional space charge doped Bi 2 Sr 2 CaCu 2 O 8+x , Nat. Commun., Volume 8 (2017) no. 1, 2060, 143103 | DOI

[192] A. Engel; A. Schilling Numerical analysis of detection-mechanism models of superconducting nanowire single-photon detector, J. Appl. Phys., Volume 114 (2013) no. 21, 214501, 8826 | DOI

[193] J. J. Renema; R. Gaudio; Q. Wang et al. Probing the hotspot interaction length in NbN nanowire superconducting single photon detectors, Appl. Phys. Lett., Volume 110 (2017) no. 23, 233103, 2060 | DOI

Cité par Sources :

Commentaires - Politique