L’interaction matière–rayonnement permet à la fois de sonder la physique de ces systèmes complexes et de générer de nouvelles fonctionnalités dans des dispositifs quantiques de basse dimension. Cette revue est une synthèse des recherches menées autour de l’étude de matériaux fortement corrélés, en particulier les interfaces d’oxyde LaAlO3/SrTiO3 et deux familles de cuprates YBa2Cu3O7-𝛿 et Bi2Sr2CaCu2O8+𝛿.
Matter–radiation interaction can both probe the physics of these complex systems and generate new functionalities in low-dimensional quantum devices. This review is a synthesis of research carried out around the study of strongly correlated materials, in particular oxide interfaces LaAlO3/SrTiO3 and two families of cuprates YBa2Cu3O7-𝛿 and Bi2Sr2CaCu2O8+𝛿.
Révisé le :
Accepté le :
Publié le :
Keywords: Superconductivity, Strongly correlated materials, Superconductor electrodynamics, Quantum device
Cheryl Feuillet-Palma 1

@article{CRPHYS_2025__26_G1_129_0, author = {Cheryl Feuillet-Palma}, title = {Transport et interaction mati\`ere{\textendash}rayonnement dans des mat\'eriaux corr\'el\'es}, journal = {Comptes Rendus. Physique}, pages = {129--180}, publisher = {Acad\'emie des sciences, Paris}, volume = {26}, year = {2025}, doi = {10.5802/crphys.220}, language = {fr}, }
Cheryl Feuillet-Palma. Transport et interaction matière–rayonnement dans des matériaux corrélés. Comptes Rendus. Physique, Volume 26 (2025), pp. 129-180. doi : 10.5802/crphys.220. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.220/
[1] Emergent phenomena at oxide interfaces, Nat. Mater., Volume 11 (2012) no. 2, pp. 103-113 | DOI
[2] Interface physics in complex oxide heterostructures, Annu. Rev. Condens. Matter Phys., Volume 2 (2011) no. 1, pp. 141-165 | DOI
[3] A high-mobility electron gas at the LaAlO/SrTiO heterointerface, Nature, Volume 427 (2004) no. 6973, pp. 423-426 | DOI
[4] Physics of SrTiO/sub-based heterostructures and nanostructures : a review, Rep. Progr. Phys., Volume 81 (2018) no. 3, 036503 | DOI
[5] Interface physics in complex oxide heterostructures, Annu. Rev. Condens. Matter Phys., Volume 2 (2011) no. 1, pp. 141-165 | DOI
[6] From SrTiO to Cuprates and back to SrTiO : a way along Alex Müller’s scientific career, Condens. Matter, Volume 6 (2021) no. 1, 2 | DOI
[7] Dielectric properties of SrTiO at low temperatures, Phys. Rev. Lett., Volume 26 (1971) no. 14, 1147 | DOI
[8] Effect of the 110 °K phase transition on the SrTiO conduction bands, Phys. Rev. B, Volume 6 (1972) no. 12, pp. 4740-4753 | DOI
[9] Energy bands for KNiF, SrTiO, KMoO, and KTaO, Phys. Rev. B, Volume 6 (1972) no. 12, pp. 4718-4740 | DOI
[10] et al. Two-dimensional electron gas with universal subbands at the surface of SrTiO, Nature, Volume 469 (2011) no. 7329, pp. 189-193 | DOI
[11] Electron microscopic investigations of the bonding behaviour of metals on SrTiO substrates, Dissertation, University of Stugart (2002)
[12] Dielectric and optical properties of KTaO, J. Phys. Soc. Jpn., Volume 41 (1976) no. 3, pp. 888-893 | DOI
[13] Electric-field-induced Raman scattering in SrTi0 and KTa0, Phys. Rev., Volume 174 (1968) no. 2, pp. 613-623 | DOI
[14] 2DEGs at Perovskite interfaces between KTaO or KNbO and stannates, PLoS One, Volume 9 (2014) no. 3, e91423 | DOI
[15] Electric-field-dependent dielectric constant and nonlinear susceptibility in SrTiO, Phys. Rev. B, Volume 52 (1995) no. 18, pp. 13159-13162 | DOI
[16] Fermi surface of the most dilute superconductor, Phys. Rev. X, Volume 3 (2013) no. 2, 021002 | DOI
[17] Permittivity of strontium titanate, J. Appl. Phys., Volume 43 (1972) no. 5, pp. 2124-2131 | DOI
[18] Electronic transport in doped SrTiO : conduction mechanisms and potential applications, Phys. Rev. B, Volume 81 (2010) no. 15, 155110 | DOI
[19] Superconducting transition temperatures of semiconducting SrTiO, Phys. Rev., Volume 163 (1967) no. 2, pp. 380-390 | DOI
[20] Dependence of the superconducting transition temperature on carrier concentration in semiconducting SrTiO, Phys. Rev. Lett., Volume 14 (1965) no. 9, pp. 305-307 | DOI
[21] D-band surface states on transition-metal Perovskite crystals : I. Qualitative features and application to SrTiO, Phys. Rev. B, Volume 7 (1973) no. 4, pp. 1677-1694 | DOI
[22] Magnetoresistance of cubic and monodomain tetragonal n-type strontium titanate, Phys. Rev. B, Volume 16 (1977) no. 2, pp. 874-883 | DOI
[23] Plasmon mechanism of superconductivity in two- and three-dimensional electron systems, J. Phys. Soc. Jpn., Volume 45 (1978) no. 3, pp. 786-794 | DOI
[24] On metal–insulator transitions, J. Solid State Chem., Volume 88 (1990) no. 1, pp. 5-7 | DOI
[25] Characteristic structural phase transition in perovskite-type compounds, Phys. Rev. Lett., Volume 21 (1968) no. 12, pp. 814-817 | DOI
[26] X-ray truncation rod analysis of the reversible temperature-dependent [001] surface structure of LaAlO, Phys. Rev. B, Volume 64 (2001) no. 23, 235425 | DOI
[27] Progress, properties and prospects of passive high-temperature superconductive microwave devices in Europe, Supercond. Sci. Technol., Volume 10 (1997) no. 12, pp. 867-871 | DOI
[28] Superconducting interfaces between insulating oxides, Science, Volume 317 (2007), 5 | DOI
[29] Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, J. Phys. C : Solid State Phys., Volume 17 (1984) no. 33, pp. 6039-6045 | DOI
[30] Magnetic and superconducting phases at the LaAlO/SrTiO interface : the role of interfacial Tid electrons, Phys. Rev. B, Volume 85 (2012) no. 2, 020407 | DOI
[31] Oxide interfaces—an opportunity for electronics, Science, Volume 327 (2010) no. 5973, pp. 1607-1611 | DOI
[32] et al. Mapping the spatial distribution of charge carriers in LaAlO/SrTiO heterostructures, Nat. Mater., Volume 7 (2008) no. 8, pp. 621-625 | DOI
[33] Magnetic effects at the interface between non-magnetic oxides, Nat. Mater., Volume 6 (2007), 4 | DOI
[34] Why some interfaces cannot be sharp, Nat. Mater., Volume 5 (2006) no. 3, pp. 204-209 | DOI
[35] Tunable quasi-two-dimensional electron gases in oxide heterostructures, Science, Volume 313 (2006) no. 5795, pp. 1942-1945 | DOI
[36] Charge origin and localization at the n-type SrTiO/LaAlO interface, Phys. Rev. B, Volume 78 (2008) no. 19, 193104 | DOI
[37] Avoiding the polarization catastrophe in LaAlO overlayers on SrTiO(001) through polar distortion, Phys. Rev. Lett., Volume 102 (2009) no. 10, 107602 | DOI
[38] Fundamental asymmetry in interfacial electronic reconstruction between insulating oxides : an ab initio study, Phys. Rev. B, Volume 79 (2009) no. 16, 161402 | DOI
[39] High mobility conduction at (110) and (111) LaAlO/SrTiO interfaces, Sci. Rep., Volume 2 (2012) no. 1, 758 | DOI
[40] Two-dimensional electron gases at oxide interfaces, MRS Bull., Volume 33 (2008) no. 11, pp. 1027-1034 | DOI
[41] A polarity-induced defect mechanism for conductivity and magnetism at polar–nonpolar oxide interfaces, Nat. Commun., Volume 5 (2014) no. 1, 5118 | DOI
[42] et al. Electric field control of the LaAlO/SrTiO interface ground state, Nature, Volume 456 (2008) no. 7222, pp. 624-627 | DOI
[43] Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO/SrTiO interface, Nat. Phys., Volume 7 (2011) no. 10, pp. 767-771 | DOI
[44] Coexistence of magnetic order and two-dimensional superconductivity at LaAlO/SrTiO interfaces, Nat. Phys., Volume 7 (2011) no. 10, pp. 762-766 | DOI
[45] Coexistence of superconductivity and ferromagnetism in two dimensions, Phys. Rev. Lett., Volume 107 (2011) no. 5, 056802 | DOI
[46] Superconducting and ferromagnetic phases in SrTiO/LaAlO oxide interface structures : possibility of finite momentum pairing, Phys. Rev. Lett., Volume 108 (2012) no. 11, 117003 | DOI
[47] et al. Two-dimensional superconducting phase in LaTiO/SrTiO heterostructures induced by high-mobility carrier doping, Phys. Rev. Lett., Volume 108 (2012) no. 24, 247004 | DOI
[48] Tunable rashba spin–orbit interaction at oxide interfaces, Phys. Rev. Lett., Volume 104 (2010) no. 12, 126803 | DOI
[49] et al. Limit of the electrostatic doping in two-dimensional electron gases of LaXO(X = Al, Ti)/SrTiO, Sci. Rep., Volume 4 (2015) no. 1, 6788 | DOI
[50] Magnetoresistance in two-dimensional disordered systems : effects of Zeeman splitting and spin–orbit scattering, J. Phys. Soc. Jpn., Volume 50 (1981) no. 8, pp. 2516-2524 | DOI
[51] Spin–orbit interaction and magnetoresistance in the two dimensional random system, Progr. Theor. Phys., Volume 63 (1980) no. 2, pp. 707-710 | DOI
[52] DC and AC transport in field-effect controlled LaAlO/SrTiO interface, 2017 (Superconductivity [cond-mat.supr-con], Université Pierre et Marie Curie - Paris VI)
[53] The Hall effect in group 1B metals, The Hall Effect in Metals and Alloys (C. M. Hurd, ed.) (The International Cryogenics Monograph Series), Springer US, 1972, pp. 113-151 | DOI
[54] Contrôle de la supraconductivité à l’interface d’oxydes LaAlO/SrTiO par effet de champ électrique, 2015 (Autre [cond-mat.other], Université Pierre et Marie Curie - Paris VI)
[55] et al. Top-gated field-effect LaAlO/SrTiO devices made by ion-irradiation, Appl. Phys. Lett., Volume 108 (2016) no. 5, 052602 | DOI
[56] Helical liquids and Majorana bound states in quantum wires, Phys. Rev. Lett., Volume 105 (2010) no. 17, 177002 | DOI
[57] Non-Abelian statistics and topological quantum information processing in 1D wire networks, Nat. Phys., Volume 7 (2011) no. 5, pp. 412-417 (1006.4395) | DOI
[58] Signatures of Majorana Fermions in hybrid superconductor–semiconductor nanowire devices, Science, Volume 336 (2012) no. 6084, pp. 1003-1007 | DOI
[59] et al. Momentum-space imaging of Cooper pairing in a half-Dirac-gas topological superconductor, Nat. Phys., Volume 10 (2014) no. 12, pp. 943-950 | DOI
[60] Hydrogen adsorption and carrier generation in LaAlO–SrTiO heterointerfaces : a first-principles study, J. Phys. : Condens. Matter, Volume 22 (2010), 315501 | DOI
[61] Control of electronic conduction at an oxide heterointerface using surface polar adsorbates, Nat. Commun., Volume 2 no. 1, 494 | DOI
[62] Modulation of electron carrier density at the n-type LaAlO/SrTiO interface by water adsorption, J. Phys. : Condens. Matter, Volume 25 no. 26, 265004 | DOI
[63] Transistor operation and mobility enhancement in top-gated LaAlO/SrTiO heterostructures, Appl. Phys. Lett., Volume 103 (2013) no. 10, 103507 | DOI
[64] Field-effect devices utilizing LaAlO–SrTiO interfaces, Appl. Phys. Lett., Volume 100 (2012) no. 5, 053506 | DOI
[65] Modulation of conductance and superconductivity by top-gating in LaAlO/SrTiO 2-dimensional electron systems, Appl. Phys. Lett., Volume 103 (2013) no. 20, 201603 | DOI
[66] Tuning Spin–Orbit Coupling and Superconductivity at the SrTiO/LaAlO interface : a magnetotransport study, Phys. Rev. Lett., Volume 104 (2010) no. 12, 126802 | DOI
[67] et al. Effect of disorder on superconductivity and Rashba spin–orbit coupling in LaAlO/SrTiO interfaces, Phys. Rev. B, Volume 96 (2017) no. 2, 024509 | DOI
[68] et al. Polaronic metal state at the LaAlO/SrTiO interface, Nat. Commun., Volume 7 (2016) no. 1, 10386 | DOI
[69] A note on the maximum critical field of high-field superconductors, Appl. Phys. Lett., Volume 1 (1962) no. 1, pp. 7-8 | DOI
[70] Upper limit for the critical field in hard superconductors, Phys. Rev. Lett., Volume 9 (1962) no. 6, pp. 266-267 | DOI
[71] Intrinsic spin–orbit coupling in superconducting -doped SrTiO heterostructures, Phys. Rev. B, Volume 86 (2012) no. 8, 085121 | DOI
[72] Theory of the anomalous skin effect in normal and superconducting metals, Phys. Rev., Volume 111 (1958) no. 2, pp. 412-417 | DOI
[73] Electrodynamics of metallic superconductors, Adv. Condens. Matter Phys., Volume 2013 (2013), pp. 1-25 | DOI
[74] et al. Multiple quantum criticality in a two-dimensional superconductor, Nat. Mater., Volume 12 (2013) no. 6, pp. 542-548 | DOI
[75] et al. Gate-tuned superfluid density at the superconducting LaAlO/SrTiO interface, Phys. Rev. B, Volume 86 (2012) no. 6, 060503 | DOI
[76] et al. Single-gap superconductivity and dome of superfluid density in Nb-doped SrTiO, Phys. Rev. Lett., Volume 120 (2018) no. 23, 237002 | DOI
[77] et al. Non-linear I–V characteristics of two-dimensional superconductors : Berezinskii–Kosterlitz–Thouless physics versus inhomogeneity, Phys. Rev. B, Volume 100 (2019) no. 6, 064506 | DOI
[78] et al. Engineering two-dimensional superconductivity and Rashba spin–orbit coupling in LaAlO/SrTiO quantum wells by selective orbital occupancy, Nat. Commun., Volume 6 (2015) no. 1, 6028 | DOI
[79] et al. Gap suppression at a Lifshitz transition in a multi-condensate superconductor, Nat. Mater., Volume 18 (2019) no. 9, pp. 948-954 | DOI
[80] et al. Superfluid stiffness of a KTaO-based two-dimensional electron gas, Nat. Commun., Volume 13 (2022) no. 1, 4625 | DOI
[81] Possible high Tc superconductivity in the Ba–La–Cu–O system, Z. Physik B - Condens. Matter, Volume 64 (1986), pp. 189-193 | DOI
[82] Master’s thesis : Structural investigation of LaSrCuO - Following staging as a function of temperature, figshare. Thesis (2016) | DOI
[83] Ferroelectric field-effects in high-tc superconducting devices, 2017 (Superconductivity [cond-mat.supr-con], Université Pierre et Marie Curie - Paris VI)
[84] et al. Reaction of rb and oxygen overlayers with single-crystalline BiSrCaCuO superconductors, Phys. Rev. B, Volume 39 (1989) no. 4, pp. 2890-2893 | DOI
[85] Thin-film-like BSCCO single crystals made by mechanical exfoliation, Physica C, Volume 474 (2012), pp. 13-17 | DOI
[86] Review on Bi–Sr–Ca–Cu–O whiskers, Supercond. Sci. Technol., Volume 19 (2006) no. 10, p. R81-R99 | DOI
[87] Electric field effect in atomically thin carbon films, Science, Volume 306 (2004) no. 5696, pp. 666-669 | DOI
[88] 2D materials and van der Waals heterostructures, Science, Volume 353 (2016) no. 6298, aac9439 | DOI
[89] et al. High-T superconductivity in ultrathin BiSrCaCuO down to half-unit-cell thickness by protection with graphene, Nat. Commun., Volume 5 (2014), 5708 | DOI
[90] Impuretés et systèmes corrélés. des chaînes aux cuprates supraconducteurs, Ann. Phys. Fr., Volume 30 (2005) no. 1, pp. 1-151 | DOI
[91] Metal–insulator transitions, Rev. Mod. Phys., Volume 70 (1998) no. 4, 225 | DOI
[92] Electron doped superconducting cuprates for photon detectors, Measurement, Volume 122 (2018), pp. 502-506 | DOI
[93] Transport properties of untwinned YBaCuoysingle crystals and the origin of the 60-K plateau, J. Phys. Chem. Solids, Volume 131 (2003) no. 5, pp. 821-830
[94] The single crystal superconducting Bi-2212 whiskers fabrication and their thermal transport properties, J. Alloys Compound., Volume 502 (2010) no. 1, pp. 16-23 | DOI
[95] et al. Pairing symmetry and flux quantization in a tricrystal superconducting ring of YBaCuO, Phys. Rev. Lett., Volume 73 (1994) no. 4, pp. 593-596 | DOI
[96] Pairing symmetry in cuprate superconductors, Rev. Mod. Phys., Volume 72 (2000) no. 4, pp. 969-1016 | DOI
[97] et al. On the electron pairing mechanism of copper-oxide high temperature superconductivity, Proc. Natl. Acad. Sci. USA, Volume 119 (2022) no. 37, e2207449119 | DOI
[98] et al. Angle-resolved photoemission spectroscopy study of the superconducting gap anisotropy in BiSrCaCuO, Phys. Rev. B, Volume 54 (1996) no. 14, p. R9678-R9681 | DOI
[99] Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO-pb dc SQUIDs, Phys. Rev. B, Volume 71 (1993) no. 13, pp. 2134-2137 | DOI
[100] et al. Ordering and manipulation of the magnetic moments in large-scale superconducting -loop arrays, Nature, Volume 422 (2003), pp. 50-53 | DOI
[101] Quasiparticle mean free path in YBaCuO measured by the thermal hall conductivity, Phys. Rev. Lett., Volume 75 (1995) no. 19, pp. 3529-3532 | DOI
[102] Thickness dependence of superconductivity for YBaCuO ultra-thin films, Supercond. Sci. Technol., Volume 13 (2000) no. 5, pp. 580-583 | DOI
[103] Analysis of low-field isotropic vortex glass containing vortex groups in YBaCuO thin films visualized by scanning SQUID microscopy, Sci. Rep., Volume 5 (2015) no. 1, 8677 | DOI
[104] Current distribution in superconducting films carrying quantized fluxoids, Appl. Phys. Lett., Volume 5 (1964) no. 4, pp. 65-66 | DOI
[105] Depairing-like variation of Tc in YBaCuO, Phys. C : Superconduct., Volume 167 (1990) no. 1, pp. 1-5 | DOI
[106] Contribution to the theory of superconducting alloys with paramagnetic impurities, Z. Eks. i Teoret. Fiz., Volume 39 (1960)
[107] Thermodynamical fluctuations and critical behavior in weakly disordered YBCO thin and ultrathin films, Proc. SPIE, Oxide Superconductor Physics and Nano-Engineering II, Photonics West ’96, San Jose, CA (I. Bozovic; D. Pavuna, eds.), 1996, p. 250
[108] Ion-beam induced metal insulator transition in YBCO films, J. Alloys Compounds, Volume 195 (1993), pp. 527-530 | DOI
[109] High-Tc Josephson mixers for terahertz detection, PhD thesis, Université Pierre et Marie Curie, Paris VI (2015)
[110] Patterning of ultrathin YBCO nanowires using a new focused-ion-beam process, Supercond. Sci. Technol., Volume 23 (2010), 045015 | DOI
[111] et al. Nano Josephson superconducting tunnel junctions in YBaCuO directly patterned with a focused helium ion beam, Nat. Nanotechnol., Volume 10 (2015), pp. 598-602 | DOI
[112] Dynamic properties of high-Tc superconducting nano-junctions made with a focused helium ion beam, Sci. Rep., Volume 10 (2020) no. 1, 10256 | DOI
[113] No. V. 5 in Modular Series on Solid State Devices, Prentice Hall, Upper Saddle River, NJ, 2002
[114] The stopping and range of ions in matter, Treatise on Heavy-Ion Science (D. A. Bromley, ed.), Springer, Boston, MA, 1985 | DOI
[115] High-quality planar high-T-c Josephson junctions, Appl. Phys. Lett., Volume 87 (2005) no. 10, 102502 | DOI
[116] High T-c superconducting quantum interference devices made by ion irradiation, Appl. Phys. Lett., Volume 89 (2006) no. 11, 112515 | DOI
[117] High Tc Josephson nanojunctions made by ion irradiation : characteristics and reproducibility, IEEE Trans. Appl. Supercond., Volume 17 (2007) no. 2, pp. 963-966 | DOI
[118] et al. Toward terahertz heterodyne detection with superconducting Josephson junctions, Appl. Phys. Lett., Volume 101 (2012) no. 23, 233505 | DOI
[119] et al. High-Tc superconducting Josephson mixers for terahertz heterodyne detection, J. Appl. Phys., Volume 116 (2014) no. 7, 074505 | DOI
[120] Josephson oscillation linewidth of ion-irradiated YBaCuO junctions, Supercond. Sci. Technol., Volume 29 (2016) no. 7, 074001 | DOI
[121] et al. HTS Josephson junctions arrays for high-frequency mixing, Supercond. Sci. Technol., Volume 31 (2018) no. 3, 035003–9 | DOI
[122] et al. Static and radio frequency magnetic response of high Tc superconducting quantum interference filters made by ion irradiation, Supercond. Sci. Technol., Volume 31 (2018) no. 9, 095005–11 | DOI
[123] et al. High-Tc superconducting detector for highly-sensitive microwave magnetometry, Appl. Phys. Lett., Volume 114 (2019) no. 19, 192602 | DOI
[124] Superconducting weak links, Rev. Mod. Phys., Volume 51 (1979), pp. 101-159 | DOI
[125] Grain boundaries in high-Tc superconductors, Rev. Mod. Phys., Volume 74 (2002) no. 2, pp. 485-549 | DOI
[126] Josephson oscillations and noise temperatures in YBaCu0 grain-boundary junctions, Appl. Phys. Lett., Volume 61 (1992) no. 25, pp. 3053-3055 | DOI
[127] Macroscopic quantum interference effects through superconducting point contacts, Phys. Rev., Volume 141 (1966) no. 1, pp. 367-375 | DOI
[128] How to puzzle out a good high-T superconducting quantum interference filter, Supercond. Sci. Technol., Volume 19 (2006) no. 5, p. S411-S415 | DOI
[129] Quantum sensitivity : superconducting quantum interference filter-based microwave receivers, IEEE Microwave, Volume 15 (2014) no. 6, pp. 57-65 | DOI
[130] et al. Picosecond superconducting single-photon optical detector, Appl. Phys. Lett., Volume 79 (2001) no. 6, pp. 705-707 | DOI
[131] Superconducting nanowire single-photon detectors : physics and applications, Supercond. Sci. Technol., Volume 25 (2012) no. 6, 063001 | DOI
[132] Single-photon detection, kinetic inductance, and non-equilibrium dynamics in niobium and niobium nitride superconducting nanowires, PhD thesis, Yale University (2010)
[133] Single-photon detectors for optical quantum information applications, Nat. Photon., Volume 3 (2009) no. 12, pp. 696-705 | DOI
[134] et al. Review of superconducting nanowire single-photon detector system design options and demonstrated performance, Opt. Eng., Volume 53 (2014) no. 8, 081907 | DOI
[135] NbN single-photon detectors with saturated dependence of quantum efficiency, Supercond. Sci. Technol., Volume 31 (2018) no. 3, 035011 | DOI
[136] et al. Detecting single infrared photons with 93% system efficiency, Nat. Photon., Volume 7 (2013), 035011, pp. 210-214 | DOI
[137] et al. Cavity-enhanced and ultrafast superconducting single-photon detectors, Nano Lett., Volume 16 (2016) no. 11, pp. 7085-7092 | DOI
[138] et al. New constraints on dark photon dark matter with superconducting nanowire detectors in an optical haloscope, Phys. Rev. Lett., Volume 128 (2022) no. 23, 231802 | DOI
[139] et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector, Nat. Photon., Volume 14 (2020) no. 4, 231802, pp. 250-255 | DOI
[140] Efficient single photon detection from 500 nm to 5 m wavelength, Nano Lett., Volume 12 (2012) no. 9, pp. 4799-4804 | DOI
[141] NbN nanowire superconducting single-photon detector for mid-infrared, Phys. Proc., Volume 36 (2012), pp. 72-76 | DOI
[142] et al. Single-photon detection in the mid-infrared up to 10 m wavelength using tungsten silicide superconducting nanowire detectors, APL Photonics, Volume 6 (2021) no. 5, 056101 | DOI
[143] Laser-lithographically written micron-wide superconducting nanowire single-photon detectors, Supercond. Sci. Technol., Volume 35 (2022) no. 5, 055005, 056101 | DOI
[144] et al. Intrinsic picosecond response times of Y–Ba–Cu–O superconducting photodetectors, Appl. Phys. Lett., Volume 74 (1999) no. 6, 055005, pp. 853-855 | DOI
[145] Prospects for faster, higher-temperature superconducting nanowire single-photon detectors, Supercond. Sci. Technol., Volume 31 (2018) no. 4, 040502 | DOI
[146] et al. Hot spot formation in electron-doped PCCO nanobridges, Phys. Rev. B, Volume 94 (2016) no. 6, 060503, 040502 | DOI
[147] Electron doped superconducting cuprates for photon detectors, Measurement, Volume 122 (2018), 060503, pp. 502-506 | DOI
[148] et al. High-temperature superconducting nanowires for photon detection, Physica C, Volume 509 (2015) no. 1, pp. 16-21 | DOI
[149] Observation of dark pulses in 10 nm thick YBCO nanostrips presenting hysteretic current voltage characteristics, Supercond. Sci. Technol., Volume 30 (2017) no. 12, 12LT02 | DOI
[150] et al. Transport properties of ultrathin YBaCuO nanowires : a route to single photon detection, Phys. Rev. B, Volume 96 (2017) no. 6, 064525, 12LT02 | DOI
[151] et al. High-temperature superconducting nano-meanders made by ion irradiation, Supercond. Sci. Technol., Volume 31 (2018) no. 1, 015019, 064525 | DOI
[152] et al. Experimental evidence for hotspot and phase-slip mechanisms of voltage switching in ultrathin YBaCuO nanowires, Phys. Rev. B, Volume 98 (2018) no. 5, 054505, 015019 | DOI
[153] Transport and noise properties of YBCO nanowire based nanoSQUIDs, Supercond. Sci. Technol., Volume 32 (2019) no. 7, 073001, 054505 | DOI
[154] Fabrication and electrical transport characterization of high quality underdoped YBaCuO nanowires, Supercond. Sci. Technol., Volume 33 (2020) no. 6, 064002, 073001 | DOI
[155] Photoresponse of a LaSrCuO nanostrip, Supercond. Sci. Technol., Volume 30 (2017) no. 7, 074001, 064002 | DOI
[156] et al. Highly homogeneous YBCO/LSMO nanowires for photoresponse experiments, Supercond. Sci. Technol., Volume 27 (2014) no. 4, 044027, 074001 | DOI
[157] et al. Single-photon detection using high-temperature superconductors, Nat. Nanotechnol., Volume 18 (2023) no. 4, 044027, pp. 343-349 | DOI
[158] et al. Reset dynamics and latching in niobium superconducting nanowire single-photon detectors, J. Appl. Phys., Volume 108 (2010) no. 8, 084507 | DOI
[159] Ultrafast dynamics of nonequilibrium quasi-particles in high-temperature superconductors, SPIE’s International Symposium (D. Pavuna; I. Bozovic, eds.), Volume 480, 1998, 084507 | DOI
[160] Single-photon detection using magnesium diboride superconducting nanowires, Appl. Phys. Lett., Volume 97 (2010), 212504 | DOI
[161] et al. Critical currents in submicron YBaCuO lines, IEEE Trans. Appl. Supercond., Volume 3 (1993) no. 1, 212504, pp. 2983-2985 | DOI
[162] Approaching the depairing critical current in superconducting YBaCuO nanowires, PhD thesis, Chalmers University, Sweden (2013)
[163] Fabrication and transport measurements of YBaCuO nanostructures, J. Vac. Sci. Technol. B, Volume 18 (2000) no. 1, pp. 25-31 | DOI
[164] Single-photon detection by a dirty current-carrying superconducting strip based on the kinetic-equation approach, Phys. Rev. Appl., Volume 7 (2017) no. 3, 034014 | DOI
[165] Order–disorder-driven change in hole concentration and superconductivity in YBaCuO, Phys. Rev. B, Volume 44 (1991) no. 6, 034014, pp. 2739-2746 | DOI
[166] High critical current density and scaling of phase-slip processes in YBaCuO nanowires, Supercond. Sci. Technol., Volume 25 (2012) no. 3, 035011 | DOI
[167] Dynamics of vortex matter in YBCO sub-micron bridges, Phys. C : Supercond. Appl., Volume 506 (2014), 035011, pp. 188-194 | DOI
[168] Hot spot formation in focused-ion-beam-fabricated YBaCuO nanobridges with high critical current densities, Nanotechnology, Volume 30 (2019) no. 32, 325301 | DOI
[169] Improved nanopatterning for YBCO nanowires approaching the depairing current, IEEE Trans. Appl. Supercond., Volume 23 (2013) no. 3, 325301, p. 1101505-1101505 | DOI
[170] Ultra-thin YBaCuO films with high critical current density, Supercond. Sci. Technol., Volume 29 (2016) no. 6, 065017 | DOI
[171] Self-heating hotspots in superconducting thin-film microbridges, J. Appl. Phys., Volume 45 (1974) no. 9, 065017, pp. 4054-4066 | DOI
[172] et al. Scalable nanofabrication of high-quality YBaCu0 nanowires for single-photon detectors, Phys. Rev. Appl., Volume 20 (2023) no. 4, 044025, 325301 | DOI
[173] YBaCuO nanowires for ultrasensitive magnetic flux detectors and optical applications, PhD thesis, Chalmers University, Sweden (2016), 044025
[174] Microwave response in superconducting nanowires, PhD thesis, University of Illinois at Urbana-Champaign (2009), 044025
[175] Steady-state properties of superconducting bridges, Sov. Phys. - Tech. Phys., Volume 20 (1975) no. 7, pp. 950-954 (Engl. Transl.)
[176] Critical behavior of superconducting nanowires, PhD thesis, PSL Research University (2024)
[177] Effects of the surface boundary on the magnetization process in type-II superconductors, Phys. Rev. B, Volume 47 (1993) no. 13, pp. 8016-8024 | DOI
[178] et al. Numerical simulation of vortex dynamics in type-II superconductors, J. Comput. Phys., Volume 123 (1996) no. 2, pp. 254-266 | DOI
[179] Superconductivity of Metals And Alloys, CRC Press, Boca Raton, 2019 | DOI
[180] Josephson effect in wide superconducting bridges, Zh. Eksp. Teor. Fiz., Volume 68 (1975), pp. 766-775
[181] Intrinsic fluctuations in a superconducting ring closed with a Josephson junction, Phys. Rev. B, Volume 6 (1972) no. 3, pp. 832-835 | DOI
[182] Escape-field distribution for escape from a metastable potential well subject to a steadily increasing bias field, Phys. Rev. B, Volume 51 (1995) no. 21, pp. 15592-15595 | DOI
[183] et al. Current–phase relationship, thermal and quantum phase slips in superconducting nanowires made on a scaffold created using adhesive tape, Nano Lett., Volume 9 (2009) no. 5, pp. 1889-1896 | DOI
[184] Vortex dynamics in ion irradiated YBCO superconducting nanowires : toward single photon detection, PhD thesis, Sorbonne Université (2020)
[185] Microwave study of high-Tc superconductors : from YBaCuO resonantors to ultrathin BiSrCaCuO flakes, PhD thesis, PSL Research University (2023)
[186] Graphene made easy : high quality, large-area samples, Solid State Commun., Volume 149 (2009) no. 17–18, pp. 718-721 | DOI
[187] High quality 2d crystals made by anodic bonding : a general technique for layered materials, Nanotechnology, Volume 23 (2012) no. 50, 505709 | DOI
[188] Superconductor–insulator transition in space charge doped one unit cell BiSrCaCuO, Nat. Commun., Volume 12 (2021) no. 1, 2926, 505709 | DOI
[189] Space charge induced electrostatic doping of two-dimensional materials : graphene as a case study, Appl. Phys. Lett., Volume 107 (2015) no. 14, 143103, 505709 | DOI
[190] Onset of two-dimensional superconductivity in space charge doped few-layer molybdenum disulfide, Nat. Commun., Volume 6 (2015), 8826, 2926 | DOI
[191] Comprehensive phase diagram of two-dimensional space charge doped BiSrCaCuO, Nat. Commun., Volume 8 (2017) no. 1, 2060, 143103 | DOI
[192] Numerical analysis of detection-mechanism models of superconducting nanowire single-photon detector, J. Appl. Phys., Volume 114 (2013) no. 21, 214501, 8826 | DOI
[193] et al. Probing the hotspot interaction length in NbN nanowire superconducting single photon detectors, Appl. Phys. Lett., Volume 110 (2017) no. 23, 233103, 2060 | DOI
Cité par Sources :
Commentaires - Politique