Comptes Rendus
Article de recherche
A diagrammatic approach to correlation functions in superfluids
[Une approche diagrammatique des fonctions de corrélation dans les superfluides]
Comptes Rendus. Physique, Online first (2024), pp. 1-17

Renaud Parentani has given a vast contribution to the development of gravitational analogue models as tools to explore various important aspects of general relativity and of quantum field theory in curved space-time. In these systems, two-point correlation functions are of the utmost importance for the characterization of processes taking place close to the acoustic horizon. In the present paper, dedicated to him, we present a study of path integral methods that allow to determine two-point correlation functions by a perturbative expansion, in a way that — beyond its generality — is especially suited to analyze these processes. Our results apply to non-relativistic superfluids, realizable in terrestrial experiments, as well as to relativistic superfluids, relevant for compact stellar objects.

Renaud Parentani a largement contribué au développement des modèles analogues gravitationnels, utilisés comme outils pour explorer divers et importants aspects de la relativité générale et de la théorie quantique des champs en espace-temps courbe. Dans ces systèmes, les fonctions de corrélation à deux points revêtent une importance capitale pour la caractérisation des processus se produisant à proximité de l’horizon acoustique. Dans le présent article, dédié à sa mémoire, nous présentons une étude des méthodes de l’intégrale de chemin permettant de déterminer les fonctions de corrélation à deux points par un développement perturbatif, d’une manière qui, au-delà de sa généralité, est particulièrement appropriée pour étudier ces processus. Nos résultats s’appliquent tant aux superfluides non relativistes, réalisables dans des expériences en laboratoire, qu’aux superfluides relativistes, pertinents pour les objets stellaires compacts.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.261
Keywords: Effective field theory, correlation functions, inhomogeneous superfluids
Mots-clés : Théorie des champs effectifs, fonctions de corrélation, superfluides inhomogènes

Alessia Biondi 1 ; Maria Luisa Chiofalo 2 ; Massimo Mannarelli 3 ; Silvia Trabucco 4

1 Institut Pprime, CNRS–Université de Poitiers–ISAE-ENSMA, TSA 51124, 86073 Poitiers Cedex 9, France
2 Dipartimento di Fisica, Università di Pisa, Polo Fibonacci, Largo B. Pontecorvo 3, 56127 Pisa, Italy
3 INFN Laboratori Nazionali del Gran Sasso, Via G. Acitelli 22, 67100 Assergi (AQ), Italy
4 Gran Sasso Science Institute, Viale Francesco Crispi 7, 67100 L’Aquila, Italy
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2024__25_S2_A18_0,
     author = {Alessia Biondi and Maria Luisa Chiofalo and Massimo Mannarelli and Silvia Trabucco},
     title = {A diagrammatic approach to correlation functions in superfluids},
     journal = {Comptes Rendus. Physique},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     doi = {10.5802/crphys.261},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Alessia Biondi
AU  - Maria Luisa Chiofalo
AU  - Massimo Mannarelli
AU  - Silvia Trabucco
TI  - A diagrammatic approach to correlation functions in superfluids
JO  - Comptes Rendus. Physique
PY  - 2024
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.261
LA  - en
ID  - CRPHYS_2024__25_S2_A18_0
ER  - 
%0 Journal Article
%A Alessia Biondi
%A Maria Luisa Chiofalo
%A Massimo Mannarelli
%A Silvia Trabucco
%T A diagrammatic approach to correlation functions in superfluids
%J Comptes Rendus. Physique
%D 2024
%V 25
%N S2
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.261
%G en
%F CRPHYS_2024__25_S2_A18_0
Alessia Biondi; Maria Luisa Chiofalo; Massimo Mannarelli; Silvia Trabucco. A diagrammatic approach to correlation functions in superfluids. Comptes Rendus. Physique, Online first (2024), pp. 1-17. doi: 10.5802/crphys.261

[1] L. D. Landau; E. M. Lifshitz Statistical physics. Part 1, Course of Theoretical Physics, Pergamon Press, 1980 no. 5, 544 pages

[2] L. D. Landau; E. M. Lifshitz Statistical physics. Part 2, Course of Theoretical Physics, Pergamon Press, 1980 no. 9, 387 pages

[3] I. M. Khalatnikov Introduction to the theory of superfluidity, Frontiers in Physics, W. A. Benjamin, Inc., 1965, xiv+206 pages

[4] Oliver Penrose; Lars Onsager Bose–Einstein condensation and liquid helium, Phys. Rev., Volume 104 (1956), pp. 576-584 | DOI

[5] P. C Hohenberg; P. C Martin Microscopic theory of superfluid helium, Ann. Phys., Volume 34 (1965) no. 2, pp. 291-359 | DOI

[6] F. D. M. Haldane Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids, Phys. Rev. Lett., Volume 47 (1981), pp. 1840-1843 | DOI

[7] Franco Dalfovo; Stefano Giorgini; Lev P. Pitaevskii; Sandro Stringari Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys., Volume 71 (1999), pp. 463-512 | DOI

[8] Jorge Yago Malo; Luca Lepori; Laura Gentini; Maria Luisa Chiofalo Atomic quantum technologies for quantum matter and fundamental physics applications, Technologies, Volume 12 (2024) no. 5, 64, 122 pages | DOI

[9] William G. Unruh Sonic analog of black holes and the effects of high frequencies on black hole evaporation, Phys. Rev. D, Volume 51 (1995), pp. 2827-2838 | DOI

[10] R. Brout; S. Massar; Renaud Parentani; Ph. Spindel A primer for black hole quantum physics, Phys. Rep., Volume 260 (1995), pp. 329-454 | DOI

[11] Steven Corley Computing the spectrum of black hole radiation in the presence of high frequency dispersion: an analytical approach, Phys. Rev. D, Volume 57 (1998), pp. 6280-6291 | DOI

[12] Hiromi Saida; Masa-aki Sakagami Black hole radiation with high frequency dispersion, Phys. Rev. D, Volume 61 (2000), 084023 | DOI

[13] Y. Himemoto; T. Tanaka Generalization of the model of Hawking radiation with modified high frequency dispersion relation, Proceedings of the Ninth Marcel Grossmann Meeting on General Relativity (V. G. Gurzadyan; R. T. Jantzen; R. Ruffini, eds.), World Scientific (2002), pp. 1384-1394 | DOI

[14] William G. Unruh; Ralf Schutzhold On the universality of the Hawking effect, Phys. Rev. D, Volume 71 (2005), 024028 | DOI

[15] Carlos Barcelo; Stefano Liberati; Matt Visser Analogue gravity, Living Rev. Relativ., Volume 8 (2005), 12, 113 pages | DOI

[16] R. Balbinot; A. Fabbri; S. Fagnocchi; Renaud Parentani Hawking radiation from acoustic black holes, short distance and back-reaction effects, Riv. Nuovo Cim., Volume 28 (2005) no. 3, pp. 1-55 | DOI

[17] Daniel Hartley; Tupac Bravo; Dennis Rätzel; Richard Howl; Ivette Fuentes Analogue simulation of gravitational waves in a 3+1 dimensional Bose–Einstein condensate, Phys. Rev. D, Volume 98 (2018) no. 2, 025011 | DOI

[18] Massimo Mannarelli; Dario Grasso; Silvia Trabucco; Maria Luisa Chiofalo Hawking temperature and phonon emission in acoustic holes, Phys. Rev. D, Volume 103 (2021) no. 7, 076001 | DOI

[19] Massimo Mannarelli; Dario Grasso; Silvia Trabucco; Maria Luisa Chiofalo Phonon emission by acoustic black holes (2021) | arXiv

[20] Maria Luisa Chiofalo; Dario Grasso; Massimo Mannarelli; Silvia Trabucco Dissipative processes at the acoustic horizon, New J. Phys., Volume 26 (2024) no. 5, 053021, 11 pages | DOI

[21] Chiara Coviello; Maria Luisa Chiofalo; Dario Grasso; Stefano Liberati; Massimo Mannarelli; Silvia Trabucco Gravitational waves and black hole perturbations in acoustic analogues, AVS Quantum Sci., Volume 7 (2025) no. 1, 014401, 12 pages | DOI | arXiv

[22] Silvia Trabucco; Luca Lepori; Maria Luisa Chiofalo; Massimo Mannarelli Binary superfluids: low-energy properties and dissipative processes from spontaneous emission of massive phonons (2025) | arXiv

[23] I. Carusotto; S. Fagnocchi; A. Recati; R. Balbinot; A. Fabbri Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates, New J. Phys., Volume 10 (2008), 103001, 15 pages | DOI

[24] Jeff Steinhauer Observation of quantum Hawking radiation and its entanglement in an analogue black hole, Nat. Phys., Volume 12 (2016), pp. 959-965 | DOI

[25] Juan Ramón Muñoz de Nova; Katrine Golubkov; Victor I. Kolobov; Jeff Steinhauer Observation of thermal Hawking radiation and its temperature in an analogue black hole, Nature, Volume 569 (2019) no. 7758, pp. 688-691 | DOI

[26] Daniel Arteaga; Renaud Parentani; Enric Verdaguer Retarded Green functions and modified dispersion relations, Int. J. Theor. Phys., Volume 44 (2005), pp. 1665-1689 | DOI | Zbl

[27] Jean Macher; Renaud Parentani Black/white hole radiation from dispersive theories, Phys. Rev. D, Volume 79 (2009), 124008 | DOI

[28] Stefano Finazzi; Renaud Parentani Hawking radiation in dispersive theories, the two regimes, Phys. Rev. D, Volume 85 (2012) no. 12, 124027 | DOI

[29] Florent Michel; Jean-François Coupechoux; Renaud Parentani Phonon spectrum and correlations in a transonic flow of an atomic Bose gas, Phys. Rev. D, Volume 94 (2016) no. 8, 084027 | DOI

[30] S. L. Shapiro; S. A. Teukolsky Black holes, white dwarfs, and neutron stars: the physics of compact objects, John Wiley & Sons, 1983, xvii+645 pages | DOI

[31] Elena Poli; Thomas Bland; Samuel J. M. White; Manfred J. Mark; Francesca Ferlaino; Silvia Trabucco; Massimo Mannarelli Glitches in rotating supersolids, Phys. Rev. Lett., Volume 131 (2023) no. 22, 223401 | DOI

[32] H. Georgi Effective field theory, Ann. Rev. Nucl. Sci., Volume 43 (1993), pp. 209-252 | DOI

[33] Stefan Scherer Introduction to chiral perturbation theory, Adv. Nucl. Phys., Volume 27 (2003), pp. 277-538

[34] A. A. Abrikosov; L. P. Gorkov; I. E. Dzyaloshinski; R. A. Silverman Methods of quantum field theory in statistical physics, Dover Books on Physics, Dover Publications, 2012

[35] Jean Zinn-Justin Quantum field theory and critical phenomena, Oxford University Press, 2002 | DOI

[36] Holger Bech Nielsen; S. Chadha On how to count Goldstone bosons, Nucl. Phys., B, Volume 105 (1976), pp. 445-453 | DOI

[37] D. T. Son Low-energy quantum effective action for relativistic superfluids (2002) | arXiv

[38] D. T. Son; M. Wingate General coordinate invariance and conformal invariance in nonrelativistic physics: unitary Fermi gas, Ann. Phys., Volume 321 (2006) no. 1, pp. 197-224 | DOI

[39] Massimo Mannarelli; Cristina Manuel Transport theory for cold relativistic superfluids from an analogue model of gravity, Phys. Rev. D, Volume 77 (2008), 103014 | DOI

[40] T. S. Evans The condensed matter limit of relativistic QFT, Thermal field theories and their applications. Proceedings of the 4th International Workshop (Y. X. Gui; F. C. Khanna; Z. B. Su, eds.), World Scientific (1995), pp. 283-296

[41] N. Navon; R. P. Smith; Z. Hadzibabic Quantum gases in optical boxes, Nat. Phys., Volume 17 (2021), pp. 1334-1341 | DOI

[42] U. Fano Effects of configuration interaction on intensities and phase shifts, Phys. Rev., Volume 124 (1961), pp. 1866-1878 | DOI

[43] Herman Feshbach Unified theory of nuclear reactions, Ann. Phys., Volume 5 (1958) no. 4, pp. 357-390 | DOI

[44] Cheng Chin; Rudolf Grimm; Paul Julienne; Eite Tiesinga Feshbach resonances in ultracold gases, Rev. Mod. Phys., Volume 82 (2010), pp. 1225-1286 | DOI

[45] T. S. Evans The condensed matter limit of relativistic QFT (1995) | arXiv

[46] Neven Bilic Relativistic acoustic geometry, Class. Quant. Grav., Volume 16 (1999), pp. 3953-3964 | DOI

[47] Matt Visser; Carmen Molina-Paris Acoustic geometry for general relativistic barotropic irrotational fluid flow, New J. Phys., Volume 12 (2010), 095014, 18 pages | DOI

[48] Alessia Biondi Effective-field theories of analogue gravity (2025) | arXiv

[49] G. Vignale; C. A. Ullrich; S. Conti Time-dependent density functional theory beyond the adiabatic local density approximation, Phys. Rev. Lett., Volume 79 (1997), pp. 4878-4881 | DOI

[50] Maria Luisa Chiofalo; M. P. Tosi Time-dependent density-functional theory for superfluids, Europhys. Lett., Volume 53 (2001) no. 2, 162 | DOI

[51] Maria Luisa Chiofalo; A. Minguzzi; M. P. Tosi Time-dependent linear response of an inhomogeneous Bose superfluid: microscopic theory and connection to current-density functional theory, Phys. B: Condens. Matter, Volume 254 (1998) no. 3, pp. 188-201 | DOI

Cité par Sources :

Commentaires - Politique