[Une approche diagrammatique des fonctions de corrélation dans les superfluides]
Renaud Parentani has given a vast contribution to the development of gravitational analogue models as tools to explore various important aspects of general relativity and of quantum field theory in curved space-time. In these systems, two-point correlation functions are of the utmost importance for the characterization of processes taking place close to the acoustic horizon. In the present paper, dedicated to him, we present a study of path integral methods that allow to determine two-point correlation functions by a perturbative expansion, in a way that — beyond its generality — is especially suited to analyze these processes. Our results apply to non-relativistic superfluids, realizable in terrestrial experiments, as well as to relativistic superfluids, relevant for compact stellar objects.
Renaud Parentani a largement contribué au développement des modèles analogues gravitationnels, utilisés comme outils pour explorer divers et importants aspects de la relativité générale et de la théorie quantique des champs en espace-temps courbe. Dans ces systèmes, les fonctions de corrélation à deux points revêtent une importance capitale pour la caractérisation des processus se produisant à proximité de l’horizon acoustique. Dans le présent article, dédié à sa mémoire, nous présentons une étude des méthodes de l’intégrale de chemin permettant de déterminer les fonctions de corrélation à deux points par un développement perturbatif, d’une manière qui, au-delà de sa généralité, est particulièrement appropriée pour étudier ces processus. Nos résultats s’appliquent tant aux superfluides non relativistes, réalisables dans des expériences en laboratoire, qu’aux superfluides relativistes, pertinents pour les objets stellaires compacts.
Révisé le :
Accepté le :
Première publication :
Mots-clés : Théorie des champs effectifs, fonctions de corrélation, superfluides inhomogènes
Alessia Biondi 1 ; Maria Luisa Chiofalo 2 ; Massimo Mannarelli 3 ; Silvia Trabucco 4
CC-BY 4.0
@article{CRPHYS_2024__25_S2_A18_0,
author = {Alessia Biondi and Maria Luisa Chiofalo and Massimo Mannarelli and Silvia Trabucco},
title = {A diagrammatic approach to correlation functions in superfluids},
journal = {Comptes Rendus. Physique},
year = {2024},
publisher = {Acad\'emie des sciences, Paris},
doi = {10.5802/crphys.261},
language = {en},
note = {Online first},
}
TY - JOUR AU - Alessia Biondi AU - Maria Luisa Chiofalo AU - Massimo Mannarelli AU - Silvia Trabucco TI - A diagrammatic approach to correlation functions in superfluids JO - Comptes Rendus. Physique PY - 2024 PB - Académie des sciences, Paris N1 - Online first DO - 10.5802/crphys.261 LA - en ID - CRPHYS_2024__25_S2_A18_0 ER -
%0 Journal Article %A Alessia Biondi %A Maria Luisa Chiofalo %A Massimo Mannarelli %A Silvia Trabucco %T A diagrammatic approach to correlation functions in superfluids %J Comptes Rendus. Physique %D 2024 %V 25 %N S2 %I Académie des sciences, Paris %Z Online first %R 10.5802/crphys.261 %G en %F CRPHYS_2024__25_S2_A18_0
Alessia Biondi; Maria Luisa Chiofalo; Massimo Mannarelli; Silvia Trabucco. A diagrammatic approach to correlation functions in superfluids. Comptes Rendus. Physique, Online first (2024), pp. 1-17. doi: 10.5802/crphys.261
[1] Statistical physics. Part 1, Course of Theoretical Physics, Pergamon Press, 1980 no. 5, 544 pages
[2] Statistical physics. Part 2, Course of Theoretical Physics, Pergamon Press, 1980 no. 9, 387 pages
[3] Introduction to the theory of superfluidity, Frontiers in Physics, W. A. Benjamin, Inc., 1965, xiv+206 pages
[4] Bose–Einstein condensation and liquid helium, Phys. Rev., Volume 104 (1956), pp. 576-584 | DOI
[5] Microscopic theory of superfluid helium, Ann. Phys., Volume 34 (1965) no. 2, pp. 291-359 | DOI
[6] Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids, Phys. Rev. Lett., Volume 47 (1981), pp. 1840-1843 | DOI
[7] Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys., Volume 71 (1999), pp. 463-512 | DOI
[8] Atomic quantum technologies for quantum matter and fundamental physics applications, Technologies, Volume 12 (2024) no. 5, 64, 122 pages | DOI
[9] Sonic analog of black holes and the effects of high frequencies on black hole evaporation, Phys. Rev. D, Volume 51 (1995), pp. 2827-2838 | DOI
[10] A primer for black hole quantum physics, Phys. Rep., Volume 260 (1995), pp. 329-454 | DOI
[11] Computing the spectrum of black hole radiation in the presence of high frequency dispersion: an analytical approach, Phys. Rev. D, Volume 57 (1998), pp. 6280-6291 | DOI
[12] Black hole radiation with high frequency dispersion, Phys. Rev. D, Volume 61 (2000), 084023 | DOI
[13] Generalization of the model of Hawking radiation with modified high frequency dispersion relation, Proceedings of the Ninth Marcel Grossmann Meeting on General Relativity (V. G. Gurzadyan; R. T. Jantzen; R. Ruffini, eds.), World Scientific (2002), pp. 1384-1394 | DOI
[14] On the universality of the Hawking effect, Phys. Rev. D, Volume 71 (2005), 024028 | DOI
[15] Analogue gravity, Living Rev. Relativ., Volume 8 (2005), 12, 113 pages | DOI
[16] Hawking radiation from acoustic black holes, short distance and back-reaction effects, Riv. Nuovo Cim., Volume 28 (2005) no. 3, pp. 1-55 | DOI
[17] Analogue simulation of gravitational waves in a 3+1 dimensional Bose–Einstein condensate, Phys. Rev. D, Volume 98 (2018) no. 2, 025011 | DOI
[18] Hawking temperature and phonon emission in acoustic holes, Phys. Rev. D, Volume 103 (2021) no. 7, 076001 | DOI
[19] Phonon emission by acoustic black holes (2021) | arXiv
[20] Dissipative processes at the acoustic horizon, New J. Phys., Volume 26 (2024) no. 5, 053021, 11 pages | DOI
[21] Gravitational waves and black hole perturbations in acoustic analogues, AVS Quantum Sci., Volume 7 (2025) no. 1, 014401, 12 pages | DOI | arXiv
[22] Binary superfluids: low-energy properties and dissipative processes from spontaneous emission of massive phonons (2025) | arXiv
[23] Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates, New J. Phys., Volume 10 (2008), 103001, 15 pages | DOI
[24] Observation of quantum Hawking radiation and its entanglement in an analogue black hole, Nat. Phys., Volume 12 (2016), pp. 959-965 | DOI
[25] Observation of thermal Hawking radiation and its temperature in an analogue black hole, Nature, Volume 569 (2019) no. 7758, pp. 688-691 | DOI
[26] Retarded Green functions and modified dispersion relations, Int. J. Theor. Phys., Volume 44 (2005), pp. 1665-1689 | DOI | Zbl
[27] Black/white hole radiation from dispersive theories, Phys. Rev. D, Volume 79 (2009), 124008 | DOI
[28] Hawking radiation in dispersive theories, the two regimes, Phys. Rev. D, Volume 85 (2012) no. 12, 124027 | DOI
[29] Phonon spectrum and correlations in a transonic flow of an atomic Bose gas, Phys. Rev. D, Volume 94 (2016) no. 8, 084027 | DOI
[30] Black holes, white dwarfs, and neutron stars: the physics of compact objects, John Wiley & Sons, 1983, xvii+645 pages | DOI
[31] Glitches in rotating supersolids, Phys. Rev. Lett., Volume 131 (2023) no. 22, 223401 | DOI
[32] Effective field theory, Ann. Rev. Nucl. Sci., Volume 43 (1993), pp. 209-252 | DOI
[33] Introduction to chiral perturbation theory, Adv. Nucl. Phys., Volume 27 (2003), pp. 277-538
[34] Methods of quantum field theory in statistical physics, Dover Books on Physics, Dover Publications, 2012
[35] Quantum field theory and critical phenomena, Oxford University Press, 2002 | DOI
[36] On how to count Goldstone bosons, Nucl. Phys., B, Volume 105 (1976), pp. 445-453 | DOI
[37] Low-energy quantum effective action for relativistic superfluids (2002) | arXiv
[38] General coordinate invariance and conformal invariance in nonrelativistic physics: unitary Fermi gas, Ann. Phys., Volume 321 (2006) no. 1, pp. 197-224 | DOI
[39] Transport theory for cold relativistic superfluids from an analogue model of gravity, Phys. Rev. D, Volume 77 (2008), 103014 | DOI
[40] The condensed matter limit of relativistic QFT, Thermal field theories and their applications. Proceedings of the 4th International Workshop (Y. X. Gui; F. C. Khanna; Z. B. Su, eds.), World Scientific (1995), pp. 283-296
[41] Quantum gases in optical boxes, Nat. Phys., Volume 17 (2021), pp. 1334-1341 | DOI
[42] Effects of configuration interaction on intensities and phase shifts, Phys. Rev., Volume 124 (1961), pp. 1866-1878 | DOI
[43] Unified theory of nuclear reactions, Ann. Phys., Volume 5 (1958) no. 4, pp. 357-390 | DOI
[44] Feshbach resonances in ultracold gases, Rev. Mod. Phys., Volume 82 (2010), pp. 1225-1286 | DOI
[45] The condensed matter limit of relativistic QFT (1995) | arXiv
[46] Relativistic acoustic geometry, Class. Quant. Grav., Volume 16 (1999), pp. 3953-3964 | DOI
[47] Acoustic geometry for general relativistic barotropic irrotational fluid flow, New J. Phys., Volume 12 (2010), 095014, 18 pages | DOI
[48] Effective-field theories of analogue gravity (2025) | arXiv
[49] Time-dependent density functional theory beyond the adiabatic local density approximation, Phys. Rev. Lett., Volume 79 (1997), pp. 4878-4881 | DOI
[50] Time-dependent density-functional theory for superfluids, Europhys. Lett., Volume 53 (2001) no. 2, 162 | DOI
[51] Time-dependent linear response of an inhomogeneous Bose superfluid: microscopic theory and connection to current-density functional theory, Phys. B: Condens. Matter, Volume 254 (1998) no. 3, pp. 188-201 | DOI
Cité par Sources :
Commentaires - Politique
