logo CRAS
Comptes Rendus. Physique
The core structure of screw dislocations with [001] Burgers vector in Mg 2 SiO 4 olivine
Comptes Rendus. Physique, Volume 22 (2021) no. S3, pp. 7-18.

Part of the special issue: Plasticity and Solid State Physics

In this study, we report atomistic calculations of the core structure of screw dislocations with [001] Burgers vector in Mg 2 SiO 4 olivine. Computations based on the THB1 empirical potential set for olivine show that the stable core configurations of the screw dislocations correspond to a dissociation in {110} planes involving collinear partial dislocations. As a consequence, glide appears to be favorable in {110} planes at low temperature. This study also highlights the difference between dislocation glide mechanism in {110} versus (010) or (100) for which glide is expected to occur through a locking–unlocking mechanism.

Dans cette étude, nous présentons les résultats de calculs atomiques de la structure de coeur de la dislocation vis de vecteur de Burgers [001] dans l’olivine (Mg,Fe) 2 SiO 4 . Nos simulations, reposant sur l’utilisation du potentiel semi-empirique THB1, montrent que la configuration stable de la dislocation vis correspond à une structure de coeur dissociée dans les plans {110}. A basse température, le glissement des dislocations de vecteur de Burgers [001] dans les plans {110} de l’olivine est donc favorisé.

Online First:
Published online:
DOI: 10.5802/crphys.27
Keywords: Atomistic simulations, Crystal plasticity, Dislocation glide, Core structure, Olivine
Srinivasan Mahendran 1, 2; Philippe Carrez 2; Patrick Cordier 2, 3

1 Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden
2 Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Unité Matériaux et Transformations, F-59000 Lille, France
3 Institut Universitaire de France, 1 rue Descartes, F-75005 Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Srinivasan Mahendran and Philippe Carrez and Patrick Cordier},
     title = {The core structure of screw dislocations with [001] {Burgers} vector in {Mg}$_2${SiO}$_4$ olivine},
     journal = {Comptes Rendus. Physique},
     pages = {7--18},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S3},
     year = {2021},
     doi = {10.5802/crphys.27},
     language = {en},
TI  - The core structure of screw dislocations with [001] Burgers vector in Mg$_2$SiO$_4$ olivine
JO  - Comptes Rendus. Physique
PY  - 2021
DA  - 2021///
SP  - 7
EP  - 18
VL  - 22
IS  - S3
PB  - Académie des sciences, Paris
UR  - https://doi.org/10.5802/crphys.27
DO  - 10.5802/crphys.27
LA  - en
ID  - CRPHYS_2021__22_S3_7_0
ER  - 
%0 Journal Article
%T The core structure of screw dislocations with [001] Burgers vector in Mg$_2$SiO$_4$ olivine
%J Comptes Rendus. Physique
%D 2021
%P 7-18
%V 22
%N S3
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crphys.27
%R 10.5802/crphys.27
%G en
%F CRPHYS_2021__22_S3_7_0
Srinivasan Mahendran; Philippe Carrez; Patrick Cordier. The core structure of screw dislocations with [001] Burgers vector in Mg$_2$SiO$_4$ olivine. Comptes Rendus. Physique, Volume 22 (2021) no. S3, pp. 7-18. doi : 10.5802/crphys.27. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.27/

[1] R. Peierls The size of a dislocation, Proc. Phys. Soc., Volume 52 (1940), pp. 34-37 | DOI

[2] J. Hirth; J. Lothe Theory of Dislocations, Wiley, New York, 1982

[3] F. Nabarro Dislocations in a simple cubic lattice, Proc. Phys. Soc., Volume 59 (1947), pp. 256-272 | DOI

[4] J. Hartford; B. von Sydow; G. Wahnström; B. Lundqvist Peierls barriers and stresses for edge dislocations in Pd and Al calculated from first principles, Phys. Rev. B, Volume 58 (1998), pp. 2487-2495 | DOI

[5] G. Schoeck The core structure of dislocations: Peierls model vs. atomic simulation, Acta Mater., Volume 54 (2006) no. 18, pp. 4865-4870 | DOI

[6] D. Rodney; L. Ventelon; E. Clouet; L. Pizzagalli; F. Willaime Ab initio modeling of dislocation core properties in metals and semiconductors, Acta Mater., Volume 124 (2017), pp. 633-659 | DOI

[7] T. Vegge; K. W. Jacobsen Atomistic simulations of dislocation processes in copper, J. Phys. Condens. Matter., Volume 14 (2002) no. 11, pp. 2929-2956 | DOI

[8] V. Vitek; V. Paidar Chapter 87 Non-planar dislocation cores: a ubiquitous phenomenon affecting mechanical properties of crystalline materials, Dislocations in Solids (J. Hirth, ed.), Volume 14, Elsevier, Amsterdam, 2008, pp. 440-514

[9] R. Gröger; A. G. Bailey; V. Vitek Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2111 screw dislocations at 0 K, Acta Mater., Volume 56 (2008), pp. 5401-5411 | DOI

[10] N. Chaari; E. Clouet; D. Rodney First-principles study of secondary slip in zirconium, Phys. Rev. Lett., Volume 112 (2014), 075504, 5 pages | DOI

[11] W. Xu; J. Moriarty Accurate atomistic simulations of the Peierls barrier and kink-pair formation energy for 111 screw dislocations in bcc Mo, Comput. Mater. Sci., Volume 9 (1998), pp. 348-356 | DOI

[12] L. Proville; D. Rodney; M.-C. Marinica Quantum effect on thermally activated glide of dislocations, Nat. Mater., Volume 11 (2012), pp. 845-849 | DOI

[13] L. Pizzagalli; A. Pedersen; A. Arnaldsson; H. Jònson; P. Beauchamp Theoretical study of kinks on screw dislocation in silicon, Phys. Rev. B, Volume 77 (2008), 064106 | DOI

[14] T. T. Lau; X. Lin; S. Yip; K. J. V. Vliet Atomistic examination of the unit processes and vacancy-dislocation interaction in dislocation climb, Scr. Mater., Volume 60 (2009), pp. 399-402 | DOI

[15] M. Landeiro Dos Reis; L. Proville; M. Sauzay Modeling the climb-assisted glide of edge dislocations through a random distribution of nanosized vacancy clusters, Phys. Rev. Mater., Volume 2 (2018), 093604

[16] J.-H. Zhai; P. Hirel; P. Carrez Atomic-scale properties of jogs along 1/2110(110) edge dislocations in MgO, Scr. Mater., Volume 181 (2020), pp. 66-69 | DOI

[17] R. Pasianot; D. Farkas; E. J. Savino Dislocation core structure in ordered intermetallic alloys, J. Phys. III France, Volume 1 (1991), pp. 997-1014 | DOI

[18] M. Puls; C. So The core structure of an edge dislocation in NaCl, Phys. Status Solidi, Volume 98 (1980), pp. 87-96 | DOI

[19] G. Watson; E. Kelsey; S. Parker Atomistic simulation of screw dislocations in rock salt structured materials, Phil. Mag. A, Volume 79 (1999), pp. 527-536 | DOI

[20] A. M. Walker; B. Slater; J. D. Gale; K. Wright Predicting the structure of screw dislocations in nanoporous materials, Nat. Mater., Volume 3 (2004), pp. 715-720 | DOI

[21] P. Carrez; D. Ferre; P. Cordier Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO 3 minerals, Nature, Volume 446 (2007), pp. 68-70 | DOI

[22] P. Hirel; M. Mrovec; C. Elsässer Atomistic study of 110 dislocations in strontium titanate, Acta Mater., Volume 60 (2012), pp. 329-338 | DOI

[23] A. Kraych; P. Carrez; P. Hirel; E. Clouet; P. Cordier Peierls potential and kink-pair mechanism in high-pressure MgSiO3 perovskite: An atomic scale study, Phys. Rev. B, Volume 93 (2016), 014103 | DOI

[24] J. R. Smyth; R. M. Hazen The crystal structures of forsterite and hortonolite at several temperatures up to 900 °C, Am. Mineral., Volume 58 (1973), pp. 588-593

[25] D. J. Barber; H.-R. Wenk; G. Hirth; D. L. Kohlstedt Chapter 95 dislocations in minerals, Dislocations in Solids (J. Hirth, ed.), Volume 16, Elsevier, Amsterdam, 2010, pp. 171-232 | DOI

[26] C. B. Raleigh Mechanisms of plastic deformation of olivine, J. Geophys. Res., Volume 73 (1968), pp. 5391-5406 | DOI

[27] D. L. Kohlstedt; C. Goetze; W. B. Durham; J. V. Sande New technique for decorating dislocations in olivine, Science, Volume 191 (1976), pp. 1045-1046 | DOI

[28] W. B. Durham; C. Goetze Plastic flow of oriented single crystals of olivine: 1. Mechanical data, J. Geophys. Res., Volume 82 (1977), pp. 5737-5753 | DOI

[29] M. Darot; Y. Gueguen High-temperature creep of forsterite single crystals, J. Geophys. Res., Volume 86 (1981), pp. 6129-6234 | DOI

[30] Y. Gueguen Dislocations in naturally deformed terrestrial olivine: classification, interpretation, applications, Bull. Mineral., Volume 102 (1979), pp. 178-183

[31] N. L. Carter; H. G. Ave’Lallemant High temperature flow of dunite and peridotite, Geol. Soc. Am. Bull., Volume 81 (1970), pp. 2181-2202 | DOI

[32] P. Phakey; G. Dollinger; J. Christie Transmission electron microscopy of experimentally deformed olivine crystals, Flow and Fracture of Rocks, American Geophysical Union (AGU), Washington, DC, 1972, pp. 117-138

[33] B. Evans; C. Goetze The temperature variation of hardness of olivine and its implication for polycrystalline yield stress, J. Geophys. Res., Volume 84 (1979), pp. 5505-5524 | DOI

[34] S. J. Mackwell; D. L. Kohlstedt; M. S. Paterson The role of water in the deformation of olivine single crystals, J. Geophys. Res., Volume 90 (1985), 11319

[35] H. Idrissi; C. Bollinger; F. Boioli; D. Schryvers; P. Cordier Low-temperature plasticity of olivine revisited with in situ TEM nanomechanical testing, Sci. Adv., Volume 2 (2016), e1501671 | DOI

[36] R. J. Gaboriaud; M. Darot; Y. Gueguen; J. Woirgard Dislocations in olivine indented at low temperatures, Phys. Chem. Miner., Volume 7 (1981), pp. 100-104 | DOI

[37] A. Mussi; P. Cordier; S. Demouchy; C. Vanmansart Characterization of the glide planes of the [001] screw dislocations in olivine using electron tomography, Phys. Chem. Miner., Volume 41 (2014), pp. 537-545 | DOI

[38] J. Durinck; A. Legris; P. Cordier Influence of crystal chemistry on ideal plastic shear anisotropy in forsterite: First principle calculations, Am. Miner., Volume 90 (2005), pp. 1072-1077 | DOI

[39] J. Durinck; A. Legris; P. Cordier Pressure sensitivity of olivine slip systems: First-principle calculations of generalised stacking faults, Phys. Chem. Miner., Volume 32 (2005), pp. 646-654 | DOI

[40] J. Durinck; P. Carrez; P. Cordier Application of the Peierls–Nabarro model to dislocations in forsterite, Eur. J. Mineral., Volume 19 (2007), pp. 631-639 | DOI

[41] V. Vítek Intrinsic stacking faults in body-centred cubic crystals, Phil. Mag., Volume 18 (1968), pp. 773-786 | DOI

[42] G. Schoeck The Peierls model: Progress and limitations, Mater. Sci. Eng. A, Volume 400–401 (2005), pp. 7-17 | DOI

[43] A. M. Walker; J. D. Gale; B. Slater; K. Wright Atomic scale modelling of the cores of dislocations in complex materials part 1: methodology, Phys. Chem. Chem. Phys., Volume 7 (2005), pp. 3227-3234 | DOI

[44] A. M. Walker; J. D. Gale; B. Slater; K. Wright Atomic scale modelling of the cores of dislocations in complex materials part 2: applications, Phys. Chem. Chem. Phys., Volume 7 (2005), pp. 3235-3242 | DOI

[45] P. Carrez; A. Walker; A. Metsue; P. Cordier Evidence from numerical modelling for 3D spreading of [001] screw dislocations in Mg2SiO4 forsterite, Phil. Mag., Volume 88 (2008), pp. 2477-2485 | DOI

[46] S. Plimpton Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., Volume 117 (1995), pp. 1-19 | DOI | Zbl

[47] S. Mahendran; P. Carrez; S. Groh; P. Cordier Dislocation modelling in Mg2SiO4 forsterite: an atomic-scale study based on the THB1 potential, Modell. Simul. Mater. Sci. Eng., Volume 25 (2017), 054002 | DOI

[48] S. Mahendran; P. Carrez; P. Cordier On the glide of [100] dislocation and the origin of ‘pencil glide’ in Mg 2 SiO 4 olivine, Phil. Mag., Volume 99 (2019), pp. 2751-2769 | DOI

[49] D. Mainprice; A. Tommasi; H. Couvy; P. Cordier; D. J. Frost Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth’s upper mantle, Nature, Volume 433 (2005), pp. 731-733 | DOI

[50] G. D. Price; S. C. Parker Computer simulations of the structural and physical properties of the olivine and spinel polymorphs of Mg2SiO4, Phys. Chem. Miner., Volume 10 (1984), pp. 209-216 | DOI

[51] G. D. Price; S. C. Parker The lattice dynamics of forsterite, Min. Mag., Volume 51 (1987) no. 359, pp. 157-170 | DOI

[52] A. M. Walker; P. Carrez; P. Cordier Atomic-scale models of dislocation cores in minerals: progress and prospects, Min. Mag., Volume 74 (2010), pp. 381-413 | DOI

[53] N. Lehto; S. Öberg Effects of dislocation interactions: Application to the period-doubled core of the 90° partial in silicon, Phys. Rev. Lett., Volume 80 (1998), pp. 5568-5571 | DOI

[54] W. Cai; V. V. Bulatob; J. Chang; J. Li; S. Yip Periodic image effects in dislocation modelling, Phil. Mag., Volume 83 (2003), pp. 539-567 | DOI

[55] P. Hirel Atomsk: A tool for manipulating and converting atomic data files, Comput. Phys. Commun., Volume 197 (2015), pp. 212-219 | DOI

[56] D. Wolf; P. Keblinski; S. R. Phillpot; J. Eggebrecht Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r -1 summation, J. Chem. Phys., Volume 110 (1999) no. 17, pp. 8254-8282 | DOI

[57] P. Hirel; A. Kraych; P. Carrez; P. Cordier Atomic core structure and mobility of [100](010 and [010](100) dislocations in MgSiO3 perovskite, Acta Mater., Volume 79 (2014), pp. 117-125 | DOI

[58] S. Ismail-Beigi; T. a. Arias Ab initio study of screw dislocations in Mo and Ta: A new picture of plasticity in bcc transition metals, Phys. Rev. Lett., Volume 84 (2000), pp. 1499-1502 | DOI

[59] D. Caillard; J.-L. Martin Thermally Activated Mechanisms in Crystal Plasticity, Pergamon Materials Series, 8, Elsevier, Oxford, 2003

[60] L. Kubin Dislocations, Mesoscale Simulations and Plastic Flow, Oxford Series on Materials Modelling, Oxford University Press, 2013 | DOI

[61] J. Amodeo; P. Carrez; B. Devincre; P. Cordier Multiscale modelling of MgO plasticity, Acta Mater., Volume 59 (2011), pp. 2291-2301 | DOI

Cited by Sources: