Grain size reduction is a very efficient way to block dislocation movements and therefore create very strong metals and alloys. Not only grain boundaries are known obstacles for dislocations, but when reaching nanometer dimensions, crystallites usually become dislocation free, which imposes an additional constraint to develop plasticity. A recent effort to understand grain boundaries-based deformation mechanisms has therefore emerged. These mechanisms can be manifold, involving conservative and diffusive processes that are very poorly understood. A first approach consisting in downscaling mechanisms that are documented at large scale such as Coble creep, proved very limited. On the other hand, stress-assisted grain growth or shear-coupled grain boundary migration, that were recently observed in small-grained materials at room or low temperature may provide a crucial step to fully understand dislocation-less plasticity in nanocrystals. As this is a completely new field with many more degrees of freedom, a continuous research effort has to be carried out to link the mechanical properties of nanocrystals to these mechanisms specifically linked to grain boundaries.
La réduction de la taille des grains est un moyen très efficace de bloquer les mouvements de dislocations et donc d’augmenter la résistance mécanique des métaux et alliages. Non seulement les joints de grains sont des obstacles connus pour les dislocations, mais lorsqu’ils atteignent des dimensions nanométriques, les cristallites deviennent généralement vides de dislocations, ce qui impose une contrainte supplémentaire pour développer la plasticité. Comprendre les mécanismes de déformation basés sur les joints de grains est devenu un enjeu majeur de la métallurgie physique. Ces mécanismes peuvent être multiples, impliquant des processus conservatifs et diffusifs qui sont mal compris. Une première approche qui consiste à transposer aux petites dimensions des mécanismes documentés à grande échelle comme le fluage de Coble, s’est avérée très limitée. Au contraire, la croissance des grains assistée par la contrainte ou la migration des joints de grains couplée au cisaillement, récemment observées dans les matériaux à petits grains à température ambiante, peuvent fournir une clé pour comprendre pleinement la “plasticité sans dislocation” dans les nanocristaux. Comme il s’agit d’un domaine relativement nouveau avec beaucoup plus de degrés de liberté, un effort de recherche continu doit être mené pour relier les propriétés mécaniques des nanocristaux à ces processus de plasticité basés sur les joints de grains.
Published online:
Romain Gautier 1, 2; Armin Rajabzadeh 1; Melvyn Larranaga 1; Nicolas Combe 1; Frédéric Mompiou 1; Marc Legros 1
@article{CRPHYS_2021__22_S3_19_0, author = {Romain Gautier and Armin Rajabzadeh and Melvyn Larranaga and Nicolas Combe and Fr\'ed\'eric Mompiou and Marc Legros}, title = {Shear-coupled migration of grain boundaries: the key missing link in the mechanical behavior of small-grained metals?}, journal = {Comptes Rendus. Physique}, pages = {19--34}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {S3}, year = {2021}, doi = {10.5802/crphys.52}, language = {en}, }
TY - JOUR AU - Romain Gautier AU - Armin Rajabzadeh AU - Melvyn Larranaga AU - Nicolas Combe AU - Frédéric Mompiou AU - Marc Legros TI - Shear-coupled migration of grain boundaries: the key missing link in the mechanical behavior of small-grained metals? JO - Comptes Rendus. Physique PY - 2021 SP - 19 EP - 34 VL - 22 IS - S3 PB - Académie des sciences, Paris DO - 10.5802/crphys.52 LA - en ID - CRPHYS_2021__22_S3_19_0 ER -
%0 Journal Article %A Romain Gautier %A Armin Rajabzadeh %A Melvyn Larranaga %A Nicolas Combe %A Frédéric Mompiou %A Marc Legros %T Shear-coupled migration of grain boundaries: the key missing link in the mechanical behavior of small-grained metals? %J Comptes Rendus. Physique %D 2021 %P 19-34 %V 22 %N S3 %I Académie des sciences, Paris %R 10.5802/crphys.52 %G en %F CRPHYS_2021__22_S3_19_0
Romain Gautier; Armin Rajabzadeh; Melvyn Larranaga; Nicolas Combe; Frédéric Mompiou; Marc Legros. Shear-coupled migration of grain boundaries: the key missing link in the mechanical behavior of small-grained metals?. Comptes Rendus. Physique, Volume 22 (2021) no. S3, pp. 19-34. doi : 10.5802/crphys.52. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.52/
[1] Physical Metallurgy, Elsevier, 1996, 2740 pages
[2] Physical Metallurgy, Elsevier, 2014
[3] Fatigue of single crystalline silicon: Mechanical behaviour and TEM observations, Materials Science and Engineering: A, Volume 483-484 (2008), pp. 353-364 | DOI | Zbl
[4] Grain Refinement Mechanism and Evolution of Dislocation Structure of Co–Cr–Mo Alloy Subjected to High-Pressure Torsion, Materials Transactions, Volume 57 (2016) no. 7, pp. 1109-1118 | DOI
[5] Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion, Transactions of Nonferrous Metals Society of China, Volume 24 (2014) no. 12, pp. 3848-3857 | DOI
[6] Influence of grain size on orientation changes during plastic deformation, Materials Science and Engineering: A, Volume 493 (2008) no. 1-2, pp. 48-52 | DOI
[7] Microsample tensile testing of nanocrystalline metals, Philosophical Magazine A, Volume 80 (2000) no. 4, pp. 1017-1026 | DOI
[8] Mechanical properties of nanocrystalline materials, Progress in Materials Science, Volume 51 (2006) no. 4, pp. 427-556 | DOI
[9] Recrystallization and Related Annealing Phenomena, Elsevier, 2012
[10] Unraveling the nature of room temperature grain growth in nanocrystalline materials, Acta Materialia, Volume 56 (2008) no. 16, p. 4255-266 | DOI | Zbl
[11] Kinetic Instability of Nanocrystalline Aluminum Prepared by Chemical Synthesis; Facile Room-Temperature Grain Growth, Journal of the American Chemical Society, Volume 120 (1998) no. 42, pp. 10847-10855 | DOI
[12] The Deformation and Ageing of Mild Steel: II Characteristics of the Lüders Deformation, Proceedings of the Physical Society Section B, Volume 64 (1951) no. 9, pp. 742-747 | DOI
[13] The influence of polycrystal grain size on several mechanical properties of materials, Metallurgical and Materials Transactions B, Volume 1 (1970) no. 5, pp. 1169-1176 | DOI
[14] The cleavage strength of polycrystals, Journal of the Iron and Steel Institute, Volume 174 (1953), pp. 25-28
[15] The scaling exponent in the size effect of small scale plastic deformation, International Journal of Plasticity, Volume 40 (2013), pp. 152-162 | DOI
[16] Grain size dependence of the strength of metals: The Hall–Petch effect does not scale as the inverse square root of grain size, International Journal of Plasticity, Volume 53 (2014), pp. 56-65 | DOI
[17] Plasticity in Confined Dimensions, Annual Review of Materials Research, Volume 40 (2010) no. 1, pp. 293-317 | DOI
[18] Unravelling the physics of size-dependent dislocation-mediated plasticity, Nature Communications, Volume 6 (2015) no. 1, 5926
[19] Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel, Scripta Materialia, Volume 46 (2002) no. 10, pp. 735-740 | DOI
[20] Deformation in nanocrystalline metals, Materials Today, Volume 9 (2006) no. 5, pp. 24-31 | DOI
[21] Deformation mechanisms of nanograined metallic polycrystals, Acta Materialia, Volume 59 (2011) no. 7, pp. 2565-2574 | DOI
[22] High-tensile ductility in nanocrystalline copper, Journal of Materials Research, Volume 15 (2000) no. 2, pp. 270-273 | DOI
[23] Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films, Acta Materialia, Volume 54 (2006) no. 8, pp. 2253-2263 | DOI
[24] Grain boundary migration during room temperature deformation of nanocrystalline Ni, Scripta Materialia, Volume 55 (2006) no. 8, pp. 695-698 | DOI
[25] Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation, Nature Materials, Volume 3 (2004) no. 1, pp. 43-47 | DOI
[26] In situ TEM nanomechanics, MRS Bulletin, Volume 40 (2015), pp. 62-70 | DOI
[27] Mechanism for diffusion induced grain boundary migration, Acta Metallurgica, Volume 29 (1981) no. 3, pp. 493-500 | DOI
[28] A model for stress-induced migration of tilt grain boundaries in crystals of NaCl structure, Acta Metallurgica, Volume 28 (1980) no. 2, pp. 163-167 | DOI
[29] Grain Boundary–Mediated Plasticity in Nanocrystalline Nickel, Science, Volume 305 (2004), pp. 654-657 | DOI
[30] Comment on ‘‘Grain Boundary–Mediated Plasticity in Nanocrystalline Nickel”, Science, Volume 308 (2005), 356c | DOI
[31] Experimental Observations of Stress-Driven Grain Boundary Migration, Science, Volume 326 (2009) no. 5960, pp. 1686-1690 | DOI
[32] In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films, Acta Materialia, Volume 56 (2008) no. 14, pp. 3380-3393 | DOI
[33] Stress-driven grain growth in ultrafine grained Mg thin film, Scripta Materialia, Volume 68 (2013) no. 6, pp. 424-427 | DOI
[34] Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures, Applied Physics Letters, Volume 87 (2005) no. 6, 061921 | DOI
[35] Dislocation models of crystal grain boundaries, Physical Review, Volume 78 (1950) no. 3, pp. 275-289 | DOI | Zbl
[36] Recent observations on the motion of small angle dislocation boundaries, Acta Metallurgica, Volume 2 (1954) no. 2, pp. 322-333 | DOI | Zbl
[37] Stress-induced movement of crystal boundaries, Acta Metallurgica, Volume 1 (1953) no. 2, pp. 223-229 | DOI
[38] Use of the Frank–-Bilby equation for calculating misfit dislocation arrays in interfaces, Scripta Materialia, Volume 62 (2010) no. 7, pp. 458-461 | DOI
[39] Coupling grain boundary motion to shear deformation, Acta Materialia, Volume 54 (2006) no. 19, pp. 4953-4975 | DOI
[40] Stress-driven migration of symmetrical tilt grain boundaries in Al bicrystals, Acta Materialia, Volume 57 (2009) no. 18, pp. 5396-5405 | DOI
[41] Migration of the tilt grain boundary in Al under an applied external stress, Scripta Materialia, Volume 65 (2011) no. 11, pp. 990-993 | DOI
[42] Dynamics of grain boundary motion coupled to shear deformation: An analytical model and its verification by molecular dynamics, Phys. Rev. B, Volume 78 (2008) no. 6, 064106 | DOI
[43] Grain boundary shear–migration coupling—I. In situ TEM straining experiments in Al polycrystals, Acta Materialia, Volume 57 (2009) no. 7, pp. 2198-2209 | DOI
[44] Phenomenology of shear-coupled grain boundary motion in symmetric tilt and general grain boundaries, Acta Materialia, Volume 61 (2013) no. 4, pp. 1048-1060 | DOI
[45] Grain-boundary shear-migration coupling. II. Geometrical model for general boundaries, Acta Materialia, Volume 57 (2009) no. 8, pp. 2390-2402 | DOI
[46] The OpenCV library, Dr Dobb’s J. Software Tools, Volume 25 (2000), pp. 120-125
[47] Quantitative grain growth and rotation probed by in-situ TEM straining and orientation mapping in small grained Al thin films, Scripta Materialia, Volume 99 (2015), pp. 5-8 | DOI
[48] Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations, Phys. Rev. B, Volume 63 (2001) no. 22, 224106 | DOI
[49] Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., Volume 117 (1995) no. 1, pp. 1-19 | DOI | Zbl
[50] Experimental and theoretical study of the shear-coupled grain boundary migration mechanism, Ph. D. Thesis, Université Paul Sabatier (Toulouse 3) (2013)
[51] Optimization methods for finding minimum energy paths, J. Chem. Phys., Volume 128 (2008) no. 13, 134106 | DOI
[52] The disconnection mechanism of coupled migration and shear at grain boundaries, Acta Materialia, Volume 60 (2012) no. 5, pp. 2007-2020 | DOI
[53] The role of disconnections in deformation-coupled grain boundary migration, Acta Materialia, Volume 77 (2014), pp. 223-235 | DOI
[54] Stress assisted grain growth in ultrafine and nanocrystalline aluminum revealed by in-situ TEM, MRS Proceedings Online Library, Volume 1086 (2008), 10860904 | DOI
[55] Grain Boundary Based Plasticity: In-Situ TEM Experiments and Modelling, Minerals, Metals and Materials Society/AIME, Volume 57 (2011) no. 7, pp. 2198-2209
[56] Experimental quantification of mechanically induced boundary migration in nanocrystalline copper films, Acta Materialia VL -, Volume 140 (2017), pp. 46-55 | DOI
[57] Combination of in situ straining and ACOM TEM: A novel method for analysis of plastic deformation of nanocrystalline metals, Ultramicroscopy, Volume 128 (2013), pp. 68-81 | DOI
[58] Grain rotations in ultrafine-grained aluminum films studied using in situ TEM straining with automated crystal orientation mapping, Materials & Design, Volume 113 (2017), pp. 186-194 | DOI
[59] Grain boundary migration: misorientation dependence, Current Opinion in Solid State and Materials Science, Volume 5 (2001) no. 1, pp. 9-14 | DOI
[60] Grain boundary mediated plasticity: On the evaluation of grain boundary migration - shear coupling, Acta Materialia VL -, Volume 153 (2018), pp. 336-353 | DOI
[61] The symmetry and interfacial structure of bicrystals, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 292 (1979) no. 1395, pp. 449-472 | DOI | MR
[62] On the absorption of dislocations by grain boundaries, Philosophical Magazine, Volume 36 (1977) no. 2, pp. 353-366 | DOI
[63] Steps, dislocations and disconnections as interface defects relating to structure and phase transformations, Acta Materialia, Volume 44 (1996) no. 12, pp. 4749-4763 | DOI
[64] Investigation of grain boundary diffusion in polycrystals by means of extrinsic grain boundary dislocations spreading rate, Acta Metallurgica, Volume 34 (1986) no. 4, pp. 599-605 | DOI
[65] In-situ TEM observations of reverse dislocation motion upon unloading in tensile-deformed UFG aluminium, Acta Materialia, Volume 60 (2012) no. 8, pp. 3402-3414 | DOI
[66] Special interfaces: military transformations, International Materials Reviews, Volume 48 (2003) no. 4, pp. 225-245 | DOI
[67] The role of disconnections in phase transformations, Progress in Materials Science, Volume 54 (2009) no. 6, Sp. Iss. SI, pp. 792-838 | DOI
[68] Steps, dislocations and disconnections as interface defects relating to structure and phase transformations, Acta Materialia, Volume 44 (1996) no. 12, pp. 4749-4763 | DOI
[69] Computer simulation of the structure and mobility of twinning disclocations in H.C.P. Metals, Acta Metallurgica et Materialia, Volume 39 (1991) no. 7, pp. 1469-1480 | DOI
[70] Elementary mechanisms of shear-coupled grain boundary migration, Phys. Rev. Lett., Volume 110 (2013) no. 26, 265507 | DOI
[71] Grain-boundary kinetics: A unified approach, Progress in Materials Science, Volume 98 (2018), pp. 386-476 | DOI
[72] A model for simulating the motion of line defects in twin boundaries in HCP metals, Zeitschrift für Metallkunde, Volume 95 (2004) no. 4, pp. 242-243 | DOI
[73] On the twinning shear of twins in magnesium – Experimental determination and formal description, Acta Materialia, Volume 134 (2017), pp. 267-273 | DOI
[74] On the common topological conditions for shear-coupled twin boundary migration in bcc and hcp metals, Letters on Materials, Volume 10 (2020) no. 4s, pp. 537-542 | DOI
[75] In situ atomistic observation of disconnection-mediated grain boundary migration, Nature Communications, Volume 10 (2019) no. 1, 156 | DOI
[76] Evidence of grain boundary dislocation step motion associated to shear-coupled grain boundary migration, Philosophical Magazine, Volume 93 (2013) no. 10-12, pp. 1299-1316 | DOI
[77] A new method of Burgers vector identification for grain boundary dislocations from electron microscopic images, Transactions of the Japan Institute of Metals, Volume 20 (1979) no. 10, pp. 560-568 | DOI
[78] Role of sessile disconnection dipoles in shear-coupled grain boundary migration, Physical Review Materials, Volume 4 (2020) no. 12, 123606 | DOI
[79] Heterogeneous disconnection nucleation mechanisms during grain boundary migration, Physical Review Materials, Volume 3 (2019) no. 6, 060601 | DOI
[80] Shear-coupled grain-boundary migration dependence on normal strain/stress, Physical Review Materials, Volume 1 (2017) no. 3, 033605 | DOI
[81] Possible origin of the discrepancy in Peierls stresses of fcc metals: First-principles simulations of dislocation mobility in aluminum, Phys. Rev. B, Volume 88 (2013) no. 6, 064106 | DOI
[82] Experimental method for true in situ measurements of shear-coupled grain boundary migration, Scripta Materialia, Volume 63 (2010) no. 6, pp. 633-636 | DOI
[83] Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing, Scripta Materialia, Volume 47 (2002), pp. 893-899 | DOI
[84] Grain boundary shear coupling is not a grain boundary property, Acta Materialia, Volume 167 (2019), pp. 241-247 | DOI
Cited by Sources:
Comments - Politique