Comptes Rendus
Article de recherche
Decoherence of Schrödinger cat states in light of wave/particle duality
[Décohérence des états du chat de Schrödinger à la lumière de la dualité onde/particule]
Comptes Rendus. Physique, Volume 27 (2026), pp. 17-40

We challenge the standard picture of decohering Schrödinger cat states as an ensemble average obeying a Lindblad master equation, brought about locally from an irreversible interaction with an environment. We generate self-consistent collections of pure system states correlated with specific environmental records, corresponding to the function of the wave-particle correlator first introduced in Carmichael et al. [Phys. Rev. Lett. 85 (2000)]. In the spirit of Carmichael et al. [in Coherent States: Past, Present and Future, World Scientific, 1994], we find that the complementary unravelings evince a pronounced disparity when the “position” and “momentum” of the damped cavity mode — an explicitly open quantum system — are measured. Intensity-field correlations may largely deviate from a monotonic decay, while Wigner functions of the cavity state display contrasting manifestations of quantum interference when conditioned on photon counts sampling a continuous photocurrent. In turn, the conditional photodetection events mark the contextual diffusion of both the net charge generated at the homodyne detector, and the electromagnetic field amplitude in the resonator.

Nous remettons en question l’image standard des états décohérents du chat de Schrödinger, considérés comme une moyenne d’ensemble obéissant à une équation maîtresse de Lindblad, générée localement par une interaction irréversible avec un environnement. Nous générons des collections auto-cohérentes d’états de systèmes purs corrélés à des enregistrements environnementaux spécifiques, correspondant à la fonction du corrélateur onde-particule introduite pour la première fois par Carmichael et al. [Phys. Rev. Lett. 85 (2000)]. Dans l’esprit de Carmichael et al. [dans Coherent States : Past, Present and Future, World Scientific, 1994], nous constatons que les démêlages complémentaires présentent une disparité prononcée lorsque la « position » et la « quantité de mouvement » du mode de cavité amorti — un système quantique explicitement ouvert — sont mesurées. Les corrélations intensité-champ peuvent s’écarter largement d’une décroissance monotone, tandis que les fonctions de Wigner de l’état de cavité présentent des manifestations contrastées d’interférence quantique lorsqu’elles sont conditionnées par le comptage de photons échantillonnant un photocourant continu. À leur tour, les événements de photodétection conditionnels marquent la diffusion contextuelle de la charge nette générée au niveau du détecteur homodyne et de l’amplitude du champ électromagnétique dans le résonateur.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.271
Keywords: Schrödinger cat states, wave/particle duality, conditional homodyne detection, amplitude and phase diffusion, quantum trajectories, Fokker–Planck equation, quantum Monte Carlo algorithm
Mots-clés : États du chat de Schrödinger, dualité onde/particule, détection homodyne conditionnelle, amplitude de diffusion et diffusion de phase, trajectoires quantiques, équation de Fokker–Planck, algorithme de Monte Carlo quantique

Themistoklis K. Mavrogordatos  1

1 Department of Physics, AlbaNova University Center, SE 106 91, Stockholm, Sweden
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2026__27_G1_17_0,
     author = {Themistoklis K. Mavrogordatos},
     title = {Decoherence of {Schr\"odinger} cat states in light of wave/particle duality},
     journal = {Comptes Rendus. Physique},
     pages = {17--40},
     year = {2026},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {27},
     doi = {10.5802/crphys.271},
     language = {en},
}
TY  - JOUR
AU  - Themistoklis K. Mavrogordatos
TI  - Decoherence of Schrödinger cat states in light of wave/particle duality
JO  - Comptes Rendus. Physique
PY  - 2026
SP  - 17
EP  - 40
VL  - 27
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.271
LA  - en
ID  - CRPHYS_2026__27_G1_17_0
ER  - 
%0 Journal Article
%A Themistoklis K. Mavrogordatos
%T Decoherence of Schrödinger cat states in light of wave/particle duality
%J Comptes Rendus. Physique
%D 2026
%P 17-40
%V 27
%I Académie des sciences, Paris
%R 10.5802/crphys.271
%G en
%F CRPHYS_2026__27_G1_17_0
Themistoklis K. Mavrogordatos. Decoherence of Schrödinger cat states in light of wave/particle duality. Comptes Rendus. Physique, Volume 27 (2026), pp. 17-40. doi: 10.5802/crphys.271

[1] L. Mandel Fluctuations of photon beams and their correlations, Proc. Phys. Soc., Volume 72 (1958) no. 6, 1037 | DOI

[2] P. L. Kelley; W. H. Kleiner Theory of electromagnetic field measurement and photoelectron counting, Phys. Rev., Volume 136 (1964) no. 2, p. A316-A334 | DOI

[3] F. Davidson; L. Mandel Photoelectric correlation measurements with time‐to‐amplitude converters, J. Appl. Phys., Volume 39 (1968) no. 1, pp. 62-66 | DOI

[4] H. J. Kimble; M. Dagenais; L. Mandel Photon Antibunching in Resonance Fluorescence, Phys. Rev. Lett., Volume 39 (1977) no. 11, pp. 691-695 | DOI

[5] Bahaa Saleh Photoelectron Events: A Doubly Stochastic Poisson Process or Theory of Photoelectron Statistics, Photoelectron Statistics: With Applications to Spectroscopy and Optical Communication (Springer Series in Optical Sciences), Springer (1978) no. 6, pp. 160-280 | DOI

[6] M. D. Srinivas; E. B. Davies Photon Counting Probabilities in Quantum Optics, Opt. Acta, Volume 28 (1981) no. 7, pp. 981-996 | DOI

[7] L. Mandel Comment on ‘Photon Counting Probabilities in Quantum Optics’, Opt. Acta, Volume 28 (1981) no. 11, pp. 1447-1450 | DOI

[8] M. D. Srinivas; E. B. Davies What Are the Photon Counting Probabilities for Open Systems-A Reply to Mandel’s Comments, Opt. Acta, Volume 29 (1982) no. 3, pp. 235-238 | DOI

[9] Master Equations and Sources I, An Open Systems Approach to Quantum Optics: Lectures Presented at the Université Libre de Bruxelles October 28 to November 4, 1991 (Lecture Notes in Physics Monographs), Springer (1993) no. 18, pp. 5-21 | DOI

[10] E. C. G. Sudarshan Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams, Phys. Rev. Lett., Volume 10 (1963) no. 7, pp. 277-279 | DOI

[11] Roy J. Glauber Coherent and Incoherent States of the Radiation Field, Phys. Rev., Volume 131 (1963) no. 6, pp. 2766-2788 | DOI

[12] Roy J. Glauber Photon Correlations, Phys. Rev. Lett., Volume 10 (1963) no. 3, pp. 84-86 | DOI

[13] Roy J. Glauber The Quantum Theory of Optical Coherence, Phys. Rev., Volume 130 (1963) no. 6, pp. 2529-2539 | DOI

[14] Howard J. Carmichael Statistical Methods in Quantum Optics 2, Theoretical and Mathematical Physics, Springer, 2008 | DOI

[15] E. B. Davies Quantum Theory of Open Systems, Academic Press Inc., 1976

[16] C. C. Gerry; P. L. Knight Quantum superpositions and Schrödinger cat states in quantum optics, Am. J. Phys., Volume 65 (1997) no. 10, pp. 964-974 | DOI

[17] Heinz-Peter Breuer; Francesco Petruccione The Theory of Open Quantum Systems, Oxford University Press, 2007 | DOI

[18] H. J. Carmichael Quantum Open Systems, Strong Light-Matter Coupling, World Scientific, pp. 99-153 | DOI

[19] Fabrizio Minganti; Nicola Bartolo; Jared Lolli; Wim Casteels; Cristiano Ciuti Exact results for Schrödinger cats in driven-dissipative systems and their feedback control, Sci. Rep., Volume 6 (2016) no. 1, 26987, 8 pages | DOI

[20] M. Mamaev; L. C. G. Govia; A. A. Clerk Dissipative stabilization of entangled cat states using a driven Bose–Hubbard dimer, Quantum, Volume 2 (2018), 58, 11 pages | DOI

[21] José Lebreuilly; Camille Aron; Christophe Mora Stabilizing Arrays of Photonic Cat States via Spontaneous Symmetry Breaking, Phys. Rev. Lett., Volume 122 (2019) no. 12, 120402, 6 pages | DOI

[22] Zheng-Yang Zhou; Clemens Gneiting; J. Q. You; Franco Nori Generating and detecting entangled cat states in dissipatively coupled degenerate optical parametric oscillators, Phys. Rev. A, Volume 104 (2021) no. 1, 013715, 6 pages | DOI

[23] Petr Zapletal; Andreas Nunnenkamp; Matteo Brunelli Stabilization of Multimode Schrödinger Cat States Via Normal-Mode Dissipation Engineering, PRX Quantum, Volume 3 (2022) no. 1, 010301, 20 pages | DOI

[24] Matthias G. Krauss; Christiane P. Koch; Daniel M. Reich Optimizing for an arbitrary Schrödinger cat state, Phys. Rev. Res., Volume 5 (2023) no. 4, 043051, 14 pages | DOI

[25] Valerii K. Kozin; Dmitry Miserev; Daniel Loss; Jelena Klinovaja Quantum phase transitions and cat states in cavity-coupled quantum dots, Phys. Rev. Res., Volume 6 (2024) no. 3, 033188, 12 pages | DOI

[26] D. F. Walls; G. J. Milburn Effect of dissipation on quantum coherence, Phys. Rev. A, Volume 31 (1985) no. 4, pp. 2403-2408 | DOI

[27] Simon J. D. Phoenix Wave-packet evolution in the damped oscillator, Phys. Rev. A, Volume 41 (1990) no. 9, pp. 5132-5138 | DOI

[28] M. S. Kim; V. Bužek Schrödinger-cat states at finite temperature: Influence of a finite-temperature heat bath on quantum interferences, Phys. Rev. A, Volume 46 (1992) no. 7, pp. 4239-4251 | DOI

[29] M. Brune; S. Haroche; J.-M. Raimond; L. Davidovich; N. Zagury Manipulation of photons in a cavity by dispersive atom-field coupling: Quantum-nondemolition measurements and generation of ‘‘Schrödinger cat” states, Phys. Rev. A, Volume 45 (1992) no. 7, pp. 5193-5214 | DOI

[30] Wojciech Hubert Zurek Decoherence, einselection, and the quantum origins of the classical, Rev. Mod. Phys., Volume 75 (2003) no. 3, pp. 715-775 | DOI

[31] Oriol Romero-Isart; Mathieu L Juan; Romain Quidant; J Ignacio Cirac Toward quantum superposition of living organisms, New J. Phys., Volume 12 (2010) no. 3, 033015, 16 pages | DOI

[32] Steven M. Girvin Schrödinger cat states in circuit QED, Current Trends in Atomic Physics (Antoine Browaeys; Thierry Lahaye; Trey Porto; Charles S. Adams; Matthias Weidemüller; Leticia F. Cugliandolo, eds.), Oxford University Press, 2019, pp. 402-427 | DOI

[33] Borivoje Dakić; Milan Radonjić Macroscopic Superpositions as Quantum Ground States, Phys. Rev. Lett., Volume 119 (2017) no. 9, 090401, 6 pages | DOI

[34] W. Qin; A. Miranowicz; G. Long; J. Q. You; F. Nori Proposal to test quantum wave-particle superposition on massive mechanical resonators, npj Quantum Inf., Volume 5 (2019) no. 1, 58 | DOI

[35] Wei Qin; Adam Miranowicz; Hui Jing; Franco Nori Generating Long-Lived Macroscopically Distinct Superposition States in Atomic Ensembles, Phys. Rev. Lett., Volume 127 (2021) no. 9, 093602, 8 pages | DOI

[36] Bernard Yurke; D. Stoler Measurement of amplitude probability distributions for photon-number-operator eigenstates, Phys. Rev. A, Volume 36 (1987) no. 4, pp. 1955-1958 | DOI

[37] W. P. Schleich; M. Pernigo; Fam Le Kien Nonclassical state from two pseudoclassical states, Phys. Rev. A, Volume 44 (1991) no. 3, pp. 2172-2187 | DOI

[38] H. J. Carmichael; H. M. Castro-Beltran; G. T. Foster; L. A. Orozco Giant Violations of Classical Inequalities through Conditional Homodyne Detection of the Quadrature Amplitudes of Light, Phys. Rev. Lett., Volume 85 (2000) no. 9, pp. 1855-1858 | DOI

[39] H. J. Carmichael; G. T. Foster; L. A. Orozco; J. E. Reiner; P. R. Rice Intensity-field correlations of non-classical light, Progress in Optics (E. Wolf, ed.) (Progress in Optics), Volume 46, Elsevier, 2004, pp. 355-404 | DOI

[40] H J Carmichael; Hyunchul Nha Vacuum fluctuations and the conditional homodyne detection of squeezed light, J. Opt. B: Quantum Semiclass. Opt., Volume 6 (2004) no. 8, S645 | DOI

[41] E. R. Marquina-Cruz; H. M. Castro-Beltran Nonclassicality of resonance fluorescence via amplitude-intensity correlations, Laser Phys., Volume 18 (2008) no. 2, pp. 157-164 | DOI

[42] R. Hanbury Brown; R. Q. Twiss Correlation between Photons in two Coherent Beams of Light, Nature, Volume 177 (1956) no. 4497, pp. 27-29 | DOI

[43] R. Hanbury Brown; R. Q. Twiss Interferometry of the Intensity Fluctuations in Light II. An Experimental Test of the Theory for Partially Coherent Light, Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci., Volume 243 (1958) no. 1234, pp. 291-319 | DOI

[44] R. Hanbury Brown; R. Q. Twiss Interferometry of the Intensity Fluctuations in Light. I. Basic Theory: The Correlation between Photons in Coherent Beams of Radiation, Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci., Volume 242 (1957) no. 1230, pp. 300-324 | DOI

[45] Bernard Yurke; D. Stoler Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion, Phys. Rev. Lett., Volume 57 (1986) no. 1, pp. 13-16 | DOI

[46] H. M. Wiseman; G. J. Milburn Quantum theory of field-quadrature measurements, Phys. Rev. A, Volume 47 (1993) no. 1, pp. 642-662 | DOI

[47] H. J. Carmichael Quantum Trajectories III, An Open Systems Approach to Quantum Optics (Lecture Notes in Physics Monographs), Volume 18, Springer (1993), pp. 140-154 | DOI

[48] Howard M. Wiseman; Gerard J. Milburn Quantum Measurement and Control, Cambridge University Press, 2009 | DOI

[49] M. Wolinsky; H. J. Carmichael Quantum noise in the parametric oscillator: From squeezed states to coherent-state superpositions, Phys. Rev. Lett., Volume 60 (1988) no. 18, pp. 1836-1839 | DOI

[50] Shang Song; Carlton M. Caves; Bernard Yurke Generation of superpositions of classically distinguishable quantum states from optical back-action evasion, Phys. Rev. A, Volume 41 (1990) no. 9, pp. 5261-5264 | DOI

[51] C. Monroe; D. M. Meekhof; B. E. King; D. J. Wineland A “Schrödinger Cat” Superposition State of an Atom, Science, Volume 272 (1996) no. 5265, pp. 1131-1136 | DOI

[52] M. Dakna; T. Anhut; T. Opatrný; L. Knöll; D.-G. Welsch Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter, Phys. Rev. A, Volume 55 (1997) no. 4, pp. 3184-3194 | DOI

[53] G. S. Agarwal; R. Puri; R. Singh Atomic Schrödinger cat states, Phys. Rev. A, Volume 56 (1997) no. 3, pp. 2249-2254 | DOI

[54] Christopher C. Gerry Generation of optical macroscopic quantum superposition states via state reduction with a Mach–Zehnder interferometer containing a Kerr medium, Phys. Rev. A, Volume 59 (1999) no. 5, pp. 4095-4098 | DOI

[55] A. P. Lund; H. Jeong; T. C. Ralph; M. S. Kim Conditional production of superpositions of coherent states with inefficient photon detection, Phys. Rev. A, Volume 70 (2004) no. 2, 020101, 4 pages | DOI

[56] H. Jeong; A. P. Lund; T. C. Ralph Production of superpositions of coherent states in traveling optical fields with inefficient photon detection, Phys. Rev. A, Volume 72 (2005) no. 1, 013801, 12 pages | DOI

[57] Serge Haroche; Jean-Michel Raimond Exploring the Quantum: Atoms, Cavities, and Photons, Oxford University Press, 2006 | DOI

[58] Scott Glancy; Hilma Vasconcelos Methods for producing optical coherent state superpositions, J. Opt. Soc. Am. B, Volume 25 (2008) no. 5, pp. 712-733 | DOI

[59] Brian Vlastakis; Gerhard Kirchmair; Zaki Leghtas; Simon E. Nigg; Luigi Frunzio; S. M. Girvin; Mazyar Mirrahimi; M. H. Devoret; R. J. Schoelkopf Deterministically Encoding Quantum Information Using 100-Photon Schrödinger Cat States, Science, Volume 342 (2013) no. 6158, pp. 607-610 | DOI

[60] Serge Haroche Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary, Rev. Mod. Phys., Volume 85 (2013) no. 3, pp. 1083-1102 | DOI

[61] Z. Leghtas; S. Touzard; I. M. Pop; A. Kou; B. Vlastakis; A. Petrenko; K. M. Sliwa; A. Narla; S. Shankar; M. J. Hatridge; M. Reagor; L. Frunzio; R. J. Schoelkopf; M. Mirrahimi; M. H. Devoret Confining the state of light to a quantum manifold by engineered two-photon loss, Science, Volume 347 (2015) no. 6224, pp. 853-857 | DOI

[62] Marcel Bergmann; Peter Van Loock Quantum error correction against photon loss using multicomponent cat states, Phys. Rev. A, Volume 94 (2016) no. 4, 042332, 20 pages | DOI

[63] Marios H. Michael; Matti Silveri; R. T. Brierley; Victor V. Albert; Juha Salmilehto; Liang Jiang; S. M. Girvin New Class of Quantum Error-Correcting Codes for a Bosonic Mode, Phys. Rev. X, Volume 6 (2016) no. 3, 031006, 26 pages | DOI

[64] N. Ofek; A. Petrenko; R. W. Heeres; P. Reinhold; Z. Leghtas; B. Vlastakis; Y. Liu; L. Frunzio; S. M. Girvin; L. Jiang; M. Mirrahimi; M. H. Devoret; R. J. Schoelkopf Extending the lifetime of a quantum bit with error correction in superconducting circuits, Nature, Volume 536 (2016) no. 7617, pp. 441-445 | DOI

[65] Jie-Qiao Liao; Jin-Feng Huang; Lin Tian Generation of macroscopic Schrödinger-cat states in qubit-oscillator systems, Phys. Rev. A, Volume 93 (2016) no. 3, 033853, 13 pages | DOI

[66] Chen Wang; Yvonne Y. Gao; Philip Reinhold; R. W. Heeres; Nissim Ofek; Kevin Chou; Christopher Axline; Matthew Reagor; Jacob Blumoff; K. M. Sliwa; L. Frunzio; S. M. Girvin; Liang Jiang; M. Mirrahimi; M. H. Devoret; R. J. Schoelkopf A Schrödinger cat living in two boxes, Science, Volume 352 (2016) no. 6289, pp. 1087-1091 | DOI

[67] Chao Song; Kai Xu; Hekang Li; Yu-Ran Zhang; Xu Zhang; Wuxin Liu; Qiujiang Guo; Zhen Wang; Wenhui Ren; Jie Hao; Hui Feng; Heng Fan; Dongning Zheng; Da-Wei Wang; H. Wang; Shi-Yao Zhu Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits, Science, Volume 365 (2019) no. 6453, pp. 574-577 | DOI

[68] A. Omran; H. Levine; A. Keesling; G. Semeghini; T. T. Wang; S. Ebadi; H. Bernien; A. S. Zibrov; H. Pichler; S. Choi; J. Cui; M. Rossignolo; P. Rembold; S. Montangero; T. Calarco; M. Endres; M. Greiner; V. Vuletić; M. D. Lukin Generation and manipulation of Schrödinger cat states in Rydberg atom arrays, Science, Volume 365 (2019) no. 6453, pp. 570-574 | DOI

[69] Atharv Joshi; Kyungjoo Noh; Yvonne Y Gao Quantum information processing with bosonic qubits in circuit QED, Quantum Sci. Technol., Volume 6 (2021) no. 3, 033001, 23 pages | DOI

[70] M. Lewenstein; M. F. Ciappina; E. Pisanty; J. Rivera-Dean; P. Stammer; Theocharis Lamprou; P. Tzallas Generation of optical Schrödinger cat states in intense laser–matter interactions, Nat. Phys., Volume 17 (2021) no. 10, pp. 1104-1108 | DOI

[71] J. Rivera-Dean; P. Stammer; E. Pisanty; Theocharis Lamprou; P. Tzallas; M. Lewenstein; M. F. Ciappina New schemes for creating large optical Schrödinger cat states using strong laser fields, J. Comput. Electron., Volume 20 (2021) no. 6, pp. 2111-2123 | DOI

[72] J. Rivera-Dean; Theocharis Lamprou; E. Pisanty; P. Stammer; A. F. Ordóñez; A. S. Maxwell; M. F. Ciappina; M. Lewenstein; P. Tzallas Strong laser fields and their power to generate controllable high-photon-number coherent-state superpositions, Phys. Rev. A, Volume 105 (2022) no. 3, 033714, 24 pages | DOI

[73] M. Cosacchi; T. Seidelmann; J. Wiercinski; M. Cygorek; A. Vagov; D. E. Reiter; V. M. Axt Schrödinger cat states in quantum-dot-cavity systems, Phys. Rev. Res., Volume 3 (2021) no. 2, 023088, 11 pages | DOI

[74] I. Pogorelov; T. Feldker; Ch. D. Marciniak; L. Postler; G. Jacob; O. Krieglsteiner; V. Podlesnic; M. Meth; V. Negnevitsky; M. Stadler; B. Höfer; C. Wächter; K. Lakhmanskiy; R. Blatt; P. Schindler; T. Monz Compact Ion-Trap Quantum Computing Demonstrator, PRX Quantum, Volume 2 (2021) no. 2, 020343, 23 pages | DOI

[75] Kan Takase; Jun-ichi Yoshikawa; Warit Asavanant; Mamoru Endo; Akira Furusawa Generation of optical Schrödinger cat states by generalized photon subtraction, Phys. Rev. A, Volume 103 (2021) no. 1, 013710, 8 pages | DOI

[76] Zhiling Wang; Zenghui Bao; Yukai Wu; Yan Li; Weizhou Cai; Weiting Wang; Yuwei Ma; Tianqi Cai; Xiyue Han; Jiahui Wang; Yipu Song; Luyan Sun; Hongyi Zhang; Luming Duan A flying Schrödinger’s cat in multipartite entangled states, Sci. Adv., Volume 8 (2022) no. 10, eabn1778, 7 pages | DOI

[77] X. L. He; Yong Lu; D. Q. Bao; Hang Xue; W. B. Jiang; Z. Wang; A. F. Roudsari; Per Delsing; J. S. Tsai; Z. R. Lin Fast generation of Schrödinger cat states using a Kerr-tunable superconducting resonator, Nat. Commun., Volume 14 (2023) no. 1, 6358, 10 pages | DOI

[78] M. Ayyash; X. Xu; M. Mariantoni Resonant Schrödinger cat states in circuit quantum electrodynamics, Phys. Rev. A, Volume 109 (2024) no. 2, 023703, 14 pages | DOI

[79] Saverio Bocini; Maurizio Fagotti Growing Schrödinger’s cat states by local unitary time evolution of product states, Phys. Rev. Res., Volume 6 (2024) no. 3, 033108, 15 pages | DOI

[80] Christoph Hotter; Arkadiusz Kosior; Helmut Ritsch; Karol Gietka Conditional atomic cat state generation via superradiance | arXiv

[81] X. Yu; B. Wilhelm; D. Holmes; A. Vaartjes; D. Schwienbacher; M. Nurizzo; A. Kringhøj; M. R. van Blankenstein; A. M. Jakob; P. Gupta; F. E. Hudson; K. M. Itoh; R. J. Murray; R. Blume-Kohout; T. D. Ladd; A. S. Dzurak; B. C. Sanders; D. N. Jamieson; A. Morello Creation and manipulation of Schrödinger cat states of a nuclear spin qudit in silicon (2024) | arXiv

[82] J. M. Torres; C. Ventura-Velázquez; I. Arellano-Melendez Perfect revivals of Rabi oscillations and hybrid Bell states in a trapped ion | arXiv

[83] K. Vogel; H. Risken Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase, Phys. Rev. A, Volume 40 (1989) no. 5, pp. 2847-2849 | DOI

[84] D. T. Smithey; M. Beck; M. G. Raymer; A. Faridani Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum, Phys. Rev. Lett., Volume 70 (1993) no. 9, pp. 1244-1247 | DOI

[85] H. J. Carmichael Quantum Fluctuations of Light: A Modern Perspective on Wave/Particle Duality (2001) (Paper presented at the symposium “One Hundred Years of the Quantum: From Max Planck to Entanglement,” University of Puget Sound, October 29 and 30, 2000) | arXiv

[86] E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik, Naturwissenschaften, Volume 23 (1935) no. 50, pp. 844-849 | DOI

[87] V. V. Dodonov; I. A. Malkin; V. I. Man’ko Even and odd coherent states and excitations of a singular oscillator, Physica, Volume 72 (1974) no. 3, pp. 597-615 | DOI

[88] J. S. Neergaard-Nielsen; B. Melholt Nielsen; C. Hettich; Klaus Mølmer; E. S. Polzik Generation of a Superposition of Odd Photon Number States for Quantum Information Networks, Phys. Rev. Lett., Volume 97 (2006), 083604, 4 pages | DOI

[89] Alexei Ourjoumtsev; Rosa Tualle-Brouri; Julien Laurat; Philippe Grangier Generating Optical Schrödinger Kittens for Quantum Information Processing, Science, Volume 312 (2006) no. 5770, pp. 83-86 | DOI

[90] A. Ourjoumtsev; H. Jeong; R. Tualle-Brouri; P. Grangier Generation of optical ‘Schrödinger cats’ from photon number states, Nature, Volume 448 (2007) no. 7155, pp. 784-786 | DOI

[91] D. V. Sychev; A. E. Ulanov; A. A. Pushkina; M. W. Richards; I. A. Fedorov; A. I. Lvovsky Enlargement of optical Schrödinger’s cat states, Nature Photon., Volume 11 (2017) no. 6, pp. 379-382 | DOI

[92] B. Hacker; S. Welte; S. Daiss; A. Shaukat; S. Ritter; L. Li; G. Rempe Deterministic creation of entangled atom–light Schrödinger-cat states, Nature Photon., Volume 13 (2019) no. 2, pp. 110-115 | DOI

[93] Xiaozhou Pan; Jonathan Schwinger; Ni-Ni Huang; Pengtao Song; Weipin Chua; Fumiya Hanamura; Atharv Joshi; Fernando Valadares; Radim Filip; Yvonne Y. Gao Protecting the Quantum Interference of Cat States by Phase-Space Compression, Phys. Rev. X, Volume 13 (2023) no. 2, 021004, 13 pages | DOI

[94] N. Bartolo; F. Minganti; J. Lolli; C. Ciuti Homodyne versus photon-counting quantum trajectories for dissipative Kerr resonators with two-photon driving, Eur. Phys. J. Spec. Top., Volume 226 (2017) no. 12, pp. 2705-2713 | DOI

[95] L. G. Lutterbach; L. Davidovich Method for Direct Measurement of the Wigner Function in Cavity QED and Ion Traps, Phys. Rev. Lett., Volume 78 (1997) no. 13, pp. 2547-2550 | DOI

[96] Krzysztof Wódkiewicz Nonlocality of the Schrödinger cat, New J. Phys., Volume 2 (2000) no. 1, 21, 8 pages | DOI

[97] H. Carmichael Quantum Trajectories IV, An Open Systems Approach to Quantum Optics (Lecture Notes in Physics Monographs), Volume 18, Springer (1993), pp. 155-173 | DOI

[98] P Alsing; H J Carmichael Spontaneous dressed-state polarization of a coupled atom and cavity mode, Quantum Opt., Volume 3 (1991) no. 1, 13 | DOI

[99] P. Alsing; D.-S. Guo; H. J. Carmichael Dynamic Stark effect for the Jaynes–Cummings system, Phys. Rev. A, Volume 45 (1992) no. 7, pp. 5135-5143 | DOI

[100] E. Solano; G. S. Agarwal; H. Walther Strong-Driving-Assisted Multipartite Entanglement in Cavity QED, Phys. Rev. Lett., Volume 90 (2003) no. 2, 027903, 4 pages | DOI

[101] A Venugopalan; Deepak Kumar; R Ghosh Environment-induced decoherence I. The Stern–Gerlach measurement, Phys. A: Stat. Mech. Appl., Volume 220 (1995) no. 3, pp. 563-575 | DOI

[102] Anu Venugopalan Decoherence and Schrödinger-cat states in a Stern–Gerlach-type experiment, Phys. Rev. A, Volume 56 (1997) no. 5, pp. 4307-4310 | DOI

[103] H. J. Carmichael; P. Kochan; L. Tian Coherent States and Open Quantum Systems: A Comment on the Stern–Gerlach Experiment and Schrödinger’s Cat, Coherent states: past, present, and future (D. H. Feng; J. R. Klauder; M. R. Strayer, eds.), World Scientific, 1994, pp. 75-91 | DOI

[104] Q. Ficheux; S. Jezouin; Z. Leghtas; B. Huard Dynamics of a qubit while simultaneously monitoring its relaxation and dephasing, Nat. Commun., Volume 9 (2018) no. 1, 1926, 6 pages | DOI

[105] S. Hacohen-Gourgy; L. S. Martin; E. Flurin; V. V. Ramasesh; K. B. Whaley; I. Siddiqi Quantum dynamics of simultaneously measured non-commuting observables, Nature, Volume 538 (2016) no. 7626, pp. 491-494 | DOI

[106] M. Fortunato; P. Tombesi; D. Vitali; J.-M. Raimond Quantum Feedback for Protecton of Schrödinger Cat States, The Foundations of Quantum Mechanics (Claudio Gerola; Arcangelo Rossi, eds.), World Scientific, 2000, pp. 197-206 | DOI

[107] Linshu Li; Chang-Ling Zou; Victor V. Albert; Sreraman Muralidharan; S. M. Girvin; Liang Jiang Cat Codes with Optimal Decoherence Suppression for a Lossy Bosonic Channel, Phys. Rev. Lett., Volume 119 (2017) no. 3, 030502, 6 pages | DOI

[108] Valerio Di Giulio; Mathieu Kociak; F. Javier García de Abajo Probing quantum optical excitations with fast electrons, Optica, Volume 6 (2019) no. 12, pp. 1524-1534 | DOI

[109] Ofer Kfir Entanglements of Electrons and Cavity Photons in the Strong-Coupling Regime, Phys. Rev. Lett., Volume 123 (2019) no. 10, 103602, 6 pages | DOI

[110] Raphael Dahan; Alexey Gorlach; Urs Haeusler; Aviv Karnieli; Ori Eyal; Peyman Yousefi; Mordechai Segev; Ady Arie; Gadi Eisenstein; Peter Hommelhoff; Ido Kaminer Imprinting the quantum statistics of photons on free electrons, Science, Volume 373 (2021) no. 6561, eabj7128 | DOI

[111] Philipp Stammer; Javier Rivera-Dean; Theocharis Lamprou; Emilio Pisanty; Marcelo F. Ciappina; Paraskevas Tzallas; Maciej Lewenstein High Photon Number Entangled States and Coherent State Superposition from the Extreme Ultraviolet to the Far Infrared, Phys. Rev. Lett., Volume 128 (2022) no. 12, 123603, 7 pages | DOI

[112] J. C. Bergquist; Randall G. Hulet; Wayne M. Itano; D. J. Wineland Observation of Quantum Jumps in a Single Atom, Phys. Rev. Lett., Volume 57 (1986) no. 14, pp. 1699-1702 | DOI

[113] Warren Nagourney; Jon Sandberg; Hans Dehmelt Shelved optical electron amplifier: Observation of quantum jumps, Phys. Rev. Lett., Volume 56 (1986) no. 26, pp. 2797-2799 | DOI

[114] Th. Sauter; W. Neuhauser; R. Blatt; P. E. Toschek Observation of Quantum Jumps, Phys. Rev. Lett., Volume 57 (1986) no. 14, pp. 1696-1698 | DOI

[115] Richard J Cook What are Quantum Jumps?, Phys. Scr., Volume T21 (1988), pp. 49-51 | DOI

[116] V. P. Belavkin A stochastic posterior Schrödinger equation for counting nondemolition measurement, Lett. Math. Phys., Volume 20 (1990) no. 2, pp. 85-89 | DOI | Zbl

[117] A Barchielli; V P Belavkin Measurements continuous in time and a posteriori states in quantum mechanics, J. Phys. A. Math. Gen., Volume 24 (1991) no. 7, 1495 | DOI

[118] Jean Dalibard; Yvan Castin; Klaus Mølmer Wave-function approach to dissipative processes in quantum optics, Phys. Rev. Lett., Volume 68 (1992) no. 5, pp. 580-583 | DOI

[119] C. W. Gardiner; A. S. Parkins; P. Zoller Wave-function quantum stochastic differential equations and quantum-jump simulation methods, Phys. Rev. A, Volume 46 (1992) no. 7, pp. 4363-4381 | DOI

[120] R. Dum; P. Zoller; H. Ritsch Monte Carlo simulation of the atomic master equation for spontaneous emission, Phys. Rev. A, Volume 45 (1992) no. 7, pp. 4879-4887 | DOI

[121] Klaus Mølmer; Yvan Castin; Jean Dalibard Monte Carlo wave-function method in quantum optics, J. Opt. Soc. Am. B, Volume 10 (1993) no. 3, pp. 524-538 | DOI

[122] Philippe Blanchard; A. Jadczyk Event‐enhanced quantum theory and piecewise deterministic dynamics, Ann. Phys. (Berlin), Volume 507 (1995) no. 6, pp. 583-599 | DOI

[123] Nicolas Gisin; Ian C. Percival Quantum State Diffusion: from Foundations to Applications (1997) | arXiv

[124] M. B. Plenio; P. L. Knight The quantum-jump approach to dissipative dynamics in quantum optics, Rev. Mod. Phys., Volume 70 (1998) no. 1, pp. 101-144 | DOI

[125] Ian C. Percival Quantum State Diffusion, Cambridge University Press, 1998

[126] H. Mabuchi; H. M. Wiseman Retroactive Quantum Jumps in a Strongly Coupled Atom-Field System, Phys. Rev. Lett., Volume 81 (1998) no. 21, pp. 4620-4623 | DOI

[127] S. Peil; G. Gabrielse Observing the Quantum Limit of an Electron Cyclotron: QND Measurements of Quantum Jumps between Fock States, Phys. Rev. Lett., Volume 83 (1999) no. 7, pp. 1287-1290 | DOI

[128] Todd A. Brun A simple model of quantum trajectories, Am. J. Phys., Volume 70 (2002) no. 7, pp. 719-737 | DOI

[129] H. M. Wiseman Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation, Phys. Rev. A, Volume 65 (2002) no. 3, 032111, 6 pages | DOI

[130] Sébastien Gleyzes; Stefan Kuhr; Christine Guerlin; Julien Bernu; Samuel Deléglise; Ulrich Busk Hoff; Michel Brune; Jean-Michel Raimond; Serge Haroche Quantum jumps of light recording the birth and death of a photon in a cavity, Nature, Volume 446 (2007) no. 7133, pp. 297-300 | DOI

[131] Gerhard C. Hegerfeldt The Quantum Jump Approach and Some of Its Applications, Time in Quantum Mechanics II (Gonzalo Muga; Andreas Ruschhaupt; Adolfo Campo, eds.) (Lecture Notes in Physics), Volume 789, Springer, 2009, pp. 127-174 | DOI

[132] Alberto Barchielli; Matteo Gregoratti Quantum measurements in continuous time, non-Markovian evolutions and feedback, Philos. Trans. R. Soc. Lond., Ser. A, Volume 370 (2012) no. 1979, pp. 5364-5385 | DOI

[133] Z. K. Minev; S. O. Mundhada; S. Shankar; P. Reinhold; R. Gutiérrez-Jáuregui; R. J. Schoelkopf; M. Mirrahimi; H. J. Carmichael; M. H. Devoret To catch and reverse a quantum jump mid-flight, Nature, Volume 570 (2019) no. 7760, pp. 200-204 | DOI

[134] G. Lindblad On the generators of quantum dynamical semigroups, Commun. Math. Phys., Volume 48 (1976) no. 2, pp. 119-130 | DOI

[135] Howard J. Carmichael Statistical Methods in Quantum Optics 1: Master Equations and Fokker–Planck Equations, Theoretical and Mathematical Physics, Springer, 1999 | DOI

[136] M. Brune; E. Hagley; J. Dreyer; X. Maître; A. Maali; C. Wunderlich; J.-M. Raimond; S. Haroche Observing the Progressive Decoherence of the “Meter” in a Quantum Measurement, Phys. Rev. Lett., Volume 77 (1996) no. 24, pp. 4887-4890 | DOI

[137] S. Deléglise; I. Dotsenko; C. Sayrin; J. Bernu; M. Brune; J.-M. Raimond; S. Haroche Reconstruction of non-classical cavity field states with snapshots of their decoherence, Nature, Volume 455 (2008) no. 7212, pp. 510-514 | DOI

[138] H. J. Carmichael Quantum Trajectories II, An Open Systems Approach to Quantum Optics (Lecture Notes in Physics Monographs), Springer (1993) no. 18, pp. 126-139 | DOI

[139] H. J. Carmichael Quantum jumps revisited: An overview of quantum trajectory theory, Quantum Future From Volta and Como to the Present and Beyond (Philippe Blanchard; Arkadiusz Jadczyk, eds.), Springer, 1999, pp. 15-36 | DOI

[140] Howard M. Wiseman; Jay M. Gambetta Are Dynamical Quantum Jumps Detector Dependent?, Phys. Rev. Lett., Volume 108 (2012) no. 22, 220402, 5 pages | DOI

[141] G. T. Foster; L. A. Orozco; H. M. Castro-Beltran; H. J. Carmichael Quantum State Reduction and Conditional Time Evolution of Wave-Particle Correlations in Cavity QED, Phys. Rev. Lett., Volume 85 (2000) no. 15, pp. 3149-3152 | DOI

[142] J. E. Reiner; W. P. Smith; L. A. Orozco; H. J. Carmichael; P. R. Rice Time evolution and squeezing of the field amplitude in cavity QED, J. Opt. Soc. Am. B, Volume 18 (2001) no. 12, pp. 1911-1921 | DOI

[143] Horace P. Yuen; Vincent W. S. Chan Noise in homodyne and heterodyne detection, Opt. Lett., Volume 8 (1983) no. 3, pp. 177-179 | DOI

[144] A. Denisov; H. M. Castro-Beltran; H. J. Carmichael Time-Asymmetric Fluctuations of Light and the Breakdown of Detailed Balance, Phys. Rev. Lett., Volume 88 (2002) no. 24, 243601, 4 pages | DOI

[145] H. J. Carmichael Coherence and decoherence in the interaction of light with atoms, Phys. Rev. A, Volume 56 (1997) no. 6, pp. 5065-5099 | DOI

[146] V. Bužek; A. Vidiella-Barranco; P. L. Knight Superpositions of coherent states: Squeezing and dissipation, Phys. Rev. A, Volume 45 (1992) no. 9, pp. 6570-6585 | DOI

[147] Wolfgang P. Schleich Wigner Function, Quantum Optics in Phase Space, John Wiley & Sons (2001), pp. 67-98 | DOI

[148] Wolfgang P. Schleich Field States, Quantum Optics in Phase Space, John Wiley & Sons (2001), pp. 291-319 | DOI

[149] Wojciech Hubert Zurek Sub-Planck structure in phase space and its relevance for quantum decoherence, Nature, Volume 412 (2001) no. 6848, pp. 712-717 | DOI

[150] Wojciech Hubert Zurek Decoherence and the transition from quantum to classical — Revisited (2003) | arXiv

[151] Dirk-Gunnar Welsch; Werner Vogel; Tomáš Opatrný II Homodyne Detection and Quantum-State Reconstruction, Progress in Optics (E. Wolf, ed.) (Progress in Optics), Volume 39, Elsevier, 1999, pp. 63-211 | DOI

[152] Wolfgang P. Schleich Quantum States in Phase Space, Quantum Optics in Phase Space, John Wiley & Sons (2001), pp. 99-151 | DOI

[153] W. Vogel; D.-G. Welsch Quantum optics, John Wiley & Sons, 2006 | DOI

[154] K. W. Murch; S. J. Weber; C. Macklin; I. Siddiqi Nature, Nature, Volume 502 (2013) no. 7470, pp. 211-214 | DOI

[155] Jay M. Gambetta; Alexandre Blais; M. Boissonneault; A. A. Houck; D. I. Schuster; S. M. Girvin Quantum trajectory approach to circuit QED: Quantum jumps and the Zeno effect, Phys. Rev. A, Volume 77 (2008) no. 1, 012112, 18 pages | DOI

[156] H. J. Carmichael; Kisik Kim A quantum trajectory unraveling of the superradiance master equation, Opt. Commun., Volume 179 (2000) no. 1, pp. 417-427 | DOI

[157] H. J. Carmichael; Surendra Singh; Reeta Vyas; P. R. Rice Photoelectron waiting times and atomic state reduction in resonance fluorescence, Phys. Rev. A, Volume 39 (1989) no. 3, pp. 1200-1218 | DOI

[158] T. Brandes Waiting times and noise in single particle transport, Ann. Phys. (Berlin), Volume 520 (2008) no. 7, pp. 477-496 | DOI

[159] Hiroki Takahashi; Kentaro Wakui; Shigenari Suzuki; Masahiro Takeoka; Kazuhiro Hayasaka; Akira Furusawa; Masahide Sasaki Generation of Large-Amplitude Coherent-State Superposition via Ancilla-Assisted Photon Subtraction, Phys. Rev. Lett., Volume 101 (2008) no. 23, 233605, 4 pages | DOI

[160] K. Huang; H. Le Jeannic; J. Ruaudel; V. B. Verma; M. D. Shaw; F. Marsili; S. W. Nam; E Wu; H. Zeng; Y.-C. Jeong; R. Filip; O. Morin; J. Laurat Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources, Phys. Rev. Lett., Volume 115 (2015) no. 2, 023602, 6 pages | DOI

[161] A. E. Ulanov; I. A. Fedorov; D. V. Sychev; P. Grangier; A. I. Lvovsky Loss-tolerant state engineering for quantum-enhanced metrology via the reverse Hong–Ou–Mandel effect, Nat. Commun., Volume 7 (2016) no. 1, 11925 | DOI

[162] Z.-H. Li; F. Yu; Z.-Y. Li; M. Al-Amri; M. S. Zubairy Method to deterministically generate large-amplitude optical cat states, Commun. Phys., Volume 7 (2024) no. 1, 134 | DOI

[163] G. Nogues; A. Rauschenbeutel; S. Osnaghi; P. Bertet; M. Brune; J.-M. Raimond; S. Haroche; L. G. Lutterbach; L. Davidovich Measurement of a negative value for the Wigner function of radiation, Phys. Rev. A, Volume 62 (2000) no. 5, 054101, 4 pages | DOI

[164] Max Hofheinz; E. M. Weig; M. Ansmann; Radoslaw C. Bialczak; Erik Lucero; M. Neeley; A. D. O’Connell; H. Wang; John M. Martinis; A. N. Cleland Generation of Fock states in a superconducting quantum circuit, Nature, Volume 454 (2008) no. 7202, pp. 310-314 | DOI

[165] Max Hofheinz; H. Wang; M. Ansmann; Radoslaw C. Bialczak; Erik Lucero; M. Neeley; A. D. O’Connell; D. Sank; J. Wenner; John M. Martinis; A. N. Cleland Synthesizing arbitrary quantum states in a superconducting resonator, Nature, Volume 459 (2009) no. 7246, pp. 546-549 | DOI

[166] C. Eichler; D. Bozyigit; A. Wallraff Characterizing quantum microwave radiation and its entanglement with superconducting qubits using linear detectors, Phys. Rev. A, Volume 86 (2012) no. 3, 032106, 13 pages | DOI

[167] Alexandre Blais; Arne L. Grimsmo; S. M. Girvin; Andreas Wallraff Circuit quantum electrodynamics, Rev. Mod. Phys., Volume 93 (2021) no. 2, 025005, 72 pages | DOI

[168] Shahnawaz Ahmed; Carlos Sánchez Muñoz; Franco Nori; Anton Frisk Kockum Classification and reconstruction of optical quantum states with deep neural networks, Phys. Rev. Res., Volume 3 (2021) no. 3, 033278, 36 pages | DOI

[169] Shahnawaz Ahmed; Carlos Sánchez Muñoz; Franco Nori; Anton Frisk Kockum Quantum State Tomography with Conditional Generative Adversarial Networks, Phys. Rev. Lett., Volume 127 (2021) no. 14, 140502, 8 pages | DOI

[170] Themistoklis K. Mavrogordatos Data and codes for “Decoherence of Schrödinger cat states in light of wave/particle duality”, Stockholm University (2026) | DOI

Cité par Sources :

Commentaires - Politique