[Décohérence des états du chat de Schrödinger à la lumière de la dualité onde/particule]
We challenge the standard picture of decohering Schrödinger cat states as an ensemble average obeying a Lindblad master equation, brought about locally from an irreversible interaction with an environment. We generate self-consistent collections of pure system states correlated with specific environmental records, corresponding to the function of the wave-particle correlator first introduced in Carmichael et al. [Phys. Rev. Lett. 85 (2000)]. In the spirit of Carmichael et al. [in Coherent States: Past, Present and Future, World Scientific, 1994], we find that the complementary unravelings evince a pronounced disparity when the “position” and “momentum” of the damped cavity mode — an explicitly open quantum system — are measured. Intensity-field correlations may largely deviate from a monotonic decay, while Wigner functions of the cavity state display contrasting manifestations of quantum interference when conditioned on photon counts sampling a continuous photocurrent. In turn, the conditional photodetection events mark the contextual diffusion of both the net charge generated at the homodyne detector, and the electromagnetic field amplitude in the resonator.
Nous remettons en question l’image standard des états décohérents du chat de Schrödinger, considérés comme une moyenne d’ensemble obéissant à une équation maîtresse de Lindblad, générée localement par une interaction irréversible avec un environnement. Nous générons des collections auto-cohérentes d’états de systèmes purs corrélés à des enregistrements environnementaux spécifiques, correspondant à la fonction du corrélateur onde-particule introduite pour la première fois par Carmichael et al. [Phys. Rev. Lett. 85 (2000)]. Dans l’esprit de Carmichael et al. [dans Coherent States : Past, Present and Future, World Scientific, 1994], nous constatons que les démêlages complémentaires présentent une disparité prononcée lorsque la « position » et la « quantité de mouvement » du mode de cavité amorti — un système quantique explicitement ouvert — sont mesurées. Les corrélations intensité-champ peuvent s’écarter largement d’une décroissance monotone, tandis que les fonctions de Wigner de l’état de cavité présentent des manifestations contrastées d’interférence quantique lorsqu’elles sont conditionnées par le comptage de photons échantillonnant un photocourant continu. À leur tour, les événements de photodétection conditionnels marquent la diffusion contextuelle de la charge nette générée au niveau du détecteur homodyne et de l’amplitude du champ électromagnétique dans le résonateur.
Révisé le :
Accepté le :
Publié le :
Mots-clés : États du chat de Schrödinger, dualité onde/particule, détection homodyne conditionnelle, amplitude de diffusion et diffusion de phase, trajectoires quantiques, équation de Fokker–Planck, algorithme de Monte Carlo quantique
Themistoklis K. Mavrogordatos  1
CC-BY 4.0
@article{CRPHYS_2026__27_G1_17_0,
author = {Themistoklis K. Mavrogordatos},
title = {Decoherence of {Schr\"odinger} cat states in light of wave/particle duality},
journal = {Comptes Rendus. Physique},
pages = {17--40},
year = {2026},
publisher = {Acad\'emie des sciences, Paris},
volume = {27},
doi = {10.5802/crphys.271},
language = {en},
}
Themistoklis K. Mavrogordatos. Decoherence of Schrödinger cat states in light of wave/particle duality. Comptes Rendus. Physique, Volume 27 (2026), pp. 17-40. doi: 10.5802/crphys.271
[1] Fluctuations of photon beams and their correlations, Proc. Phys. Soc., Volume 72 (1958) no. 6, 1037 | DOI
[2] Theory of electromagnetic field measurement and photoelectron counting, Phys. Rev., Volume 136 (1964) no. 2, p. A316-A334 | DOI
[3] Photoelectric correlation measurements with time‐to‐amplitude converters, J. Appl. Phys., Volume 39 (1968) no. 1, pp. 62-66 | DOI
[4] Photon Antibunching in Resonance Fluorescence, Phys. Rev. Lett., Volume 39 (1977) no. 11, pp. 691-695 | DOI
[5] Photoelectron Events: A Doubly Stochastic Poisson Process or Theory of Photoelectron Statistics, Photoelectron Statistics: With Applications to Spectroscopy and Optical Communication (Springer Series in Optical Sciences), Springer (1978) no. 6, pp. 160-280 | DOI
[6] Photon Counting Probabilities in Quantum Optics, Opt. Acta, Volume 28 (1981) no. 7, pp. 981-996 | DOI
[7] Comment on ‘Photon Counting Probabilities in Quantum Optics’, Opt. Acta, Volume 28 (1981) no. 11, pp. 1447-1450 | DOI
[8] What Are the Photon Counting Probabilities for Open Systems-A Reply to Mandel’s Comments, Opt. Acta, Volume 29 (1982) no. 3, pp. 235-238 | DOI
[9] Master Equations and Sources I, An Open Systems Approach to Quantum Optics: Lectures Presented at the Université Libre de Bruxelles October 28 to November 4, 1991 (Lecture Notes in Physics Monographs), Springer (1993) no. 18, pp. 5-21 | DOI
[10] Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams, Phys. Rev. Lett., Volume 10 (1963) no. 7, pp. 277-279 | DOI
[11] Coherent and Incoherent States of the Radiation Field, Phys. Rev., Volume 131 (1963) no. 6, pp. 2766-2788 | DOI
[12] Photon Correlations, Phys. Rev. Lett., Volume 10 (1963) no. 3, pp. 84-86 | DOI
[13] The Quantum Theory of Optical Coherence, Phys. Rev., Volume 130 (1963) no. 6, pp. 2529-2539 | DOI
[14] Statistical Methods in Quantum Optics 2, Theoretical and Mathematical Physics, Springer, 2008 | DOI
[15] Quantum Theory of Open Systems, Academic Press Inc., 1976
[16] Quantum superpositions and Schrödinger cat states in quantum optics, Am. J. Phys., Volume 65 (1997) no. 10, pp. 964-974 | DOI
[17] The Theory of Open Quantum Systems, Oxford University Press, 2007 | DOI
[18] Quantum Open Systems, Strong Light-Matter Coupling, World Scientific, pp. 99-153 | DOI
[19] Exact results for Schrödinger cats in driven-dissipative systems and their feedback control, Sci. Rep., Volume 6 (2016) no. 1, 26987, 8 pages | DOI
[20] Dissipative stabilization of entangled cat states using a driven Bose–Hubbard dimer, Quantum, Volume 2 (2018), 58, 11 pages | DOI
[21] Stabilizing Arrays of Photonic Cat States via Spontaneous Symmetry Breaking, Phys. Rev. Lett., Volume 122 (2019) no. 12, 120402, 6 pages | DOI
[22] Generating and detecting entangled cat states in dissipatively coupled degenerate optical parametric oscillators, Phys. Rev. A, Volume 104 (2021) no. 1, 013715, 6 pages | DOI
[23] Stabilization of Multimode Schrödinger Cat States Via Normal-Mode Dissipation Engineering, PRX Quantum, Volume 3 (2022) no. 1, 010301, 20 pages | DOI
[24] Optimizing for an arbitrary Schrödinger cat state, Phys. Rev. Res., Volume 5 (2023) no. 4, 043051, 14 pages | DOI
[25] Quantum phase transitions and cat states in cavity-coupled quantum dots, Phys. Rev. Res., Volume 6 (2024) no. 3, 033188, 12 pages | DOI
[26] Effect of dissipation on quantum coherence, Phys. Rev. A, Volume 31 (1985) no. 4, pp. 2403-2408 | DOI
[27] Wave-packet evolution in the damped oscillator, Phys. Rev. A, Volume 41 (1990) no. 9, pp. 5132-5138 | DOI
[28] Schrödinger-cat states at finite temperature: Influence of a finite-temperature heat bath on quantum interferences, Phys. Rev. A, Volume 46 (1992) no. 7, pp. 4239-4251 | DOI
[29] Manipulation of photons in a cavity by dispersive atom-field coupling: Quantum-nondemolition measurements and generation of ‘‘Schrödinger cat” states, Phys. Rev. A, Volume 45 (1992) no. 7, pp. 5193-5214 | DOI
[30] Decoherence, einselection, and the quantum origins of the classical, Rev. Mod. Phys., Volume 75 (2003) no. 3, pp. 715-775 | DOI
[31] Toward quantum superposition of living organisms, New J. Phys., Volume 12 (2010) no. 3, 033015, 16 pages | DOI
[32] Schrödinger cat states in circuit QED, Current Trends in Atomic Physics (Antoine Browaeys; Thierry Lahaye; Trey Porto; Charles S. Adams; Matthias Weidemüller; Leticia F. Cugliandolo, eds.), Oxford University Press, 2019, pp. 402-427 | DOI
[33] Macroscopic Superpositions as Quantum Ground States, Phys. Rev. Lett., Volume 119 (2017) no. 9, 090401, 6 pages | DOI
[34] Proposal to test quantum wave-particle superposition on massive mechanical resonators, npj Quantum Inf., Volume 5 (2019) no. 1, 58 | DOI
[35] Generating Long-Lived Macroscopically Distinct Superposition States in Atomic Ensembles, Phys. Rev. Lett., Volume 127 (2021) no. 9, 093602, 8 pages | DOI
[36] Measurement of amplitude probability distributions for photon-number-operator eigenstates, Phys. Rev. A, Volume 36 (1987) no. 4, pp. 1955-1958 | DOI
[37] Nonclassical state from two pseudoclassical states, Phys. Rev. A, Volume 44 (1991) no. 3, pp. 2172-2187 | DOI
[38] Giant Violations of Classical Inequalities through Conditional Homodyne Detection of the Quadrature Amplitudes of Light, Phys. Rev. Lett., Volume 85 (2000) no. 9, pp. 1855-1858 | DOI
[39] Intensity-field correlations of non-classical light, Progress in Optics (E. Wolf, ed.) (Progress in Optics), Volume 46, Elsevier, 2004, pp. 355-404 | DOI
[40] Vacuum fluctuations and the conditional homodyne detection of squeezed light, J. Opt. B: Quantum Semiclass. Opt., Volume 6 (2004) no. 8, S645 | DOI
[41] Nonclassicality of resonance fluorescence via amplitude-intensity correlations, Laser Phys., Volume 18 (2008) no. 2, pp. 157-164 | DOI
[42] Correlation between Photons in two Coherent Beams of Light, Nature, Volume 177 (1956) no. 4497, pp. 27-29 | DOI
[43] Interferometry of the Intensity Fluctuations in Light II. An Experimental Test of the Theory for Partially Coherent Light, Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci., Volume 243 (1958) no. 1234, pp. 291-319 | DOI
[44] Interferometry of the Intensity Fluctuations in Light. I. Basic Theory: The Correlation between Photons in Coherent Beams of Radiation, Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci., Volume 242 (1957) no. 1230, pp. 300-324 | DOI
[45] Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion, Phys. Rev. Lett., Volume 57 (1986) no. 1, pp. 13-16 | DOI
[46] Quantum theory of field-quadrature measurements, Phys. Rev. A, Volume 47 (1993) no. 1, pp. 642-662 | DOI
[47] Quantum Trajectories III, An Open Systems Approach to Quantum Optics (Lecture Notes in Physics Monographs), Volume 18, Springer (1993), pp. 140-154 | DOI
[48] Quantum Measurement and Control, Cambridge University Press, 2009 | DOI
[49] Quantum noise in the parametric oscillator: From squeezed states to coherent-state superpositions, Phys. Rev. Lett., Volume 60 (1988) no. 18, pp. 1836-1839 | DOI
[50] Generation of superpositions of classically distinguishable quantum states from optical back-action evasion, Phys. Rev. A, Volume 41 (1990) no. 9, pp. 5261-5264 | DOI
[51] A “Schrödinger Cat” Superposition State of an Atom, Science, Volume 272 (1996) no. 5265, pp. 1131-1136 | DOI
[52] Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter, Phys. Rev. A, Volume 55 (1997) no. 4, pp. 3184-3194 | DOI
[53] Atomic Schrödinger cat states, Phys. Rev. A, Volume 56 (1997) no. 3, pp. 2249-2254 | DOI
[54] Generation of optical macroscopic quantum superposition states via state reduction with a Mach–Zehnder interferometer containing a Kerr medium, Phys. Rev. A, Volume 59 (1999) no. 5, pp. 4095-4098 | DOI
[55] Conditional production of superpositions of coherent states with inefficient photon detection, Phys. Rev. A, Volume 70 (2004) no. 2, 020101, 4 pages | DOI
[56] Production of superpositions of coherent states in traveling optical fields with inefficient photon detection, Phys. Rev. A, Volume 72 (2005) no. 1, 013801, 12 pages | DOI
[57] Exploring the Quantum: Atoms, Cavities, and Photons, Oxford University Press, 2006 | DOI
[58] Methods for producing optical coherent state superpositions, J. Opt. Soc. Am. B, Volume 25 (2008) no. 5, pp. 712-733 | DOI
[59] Deterministically Encoding Quantum Information Using 100-Photon Schrödinger Cat States, Science, Volume 342 (2013) no. 6158, pp. 607-610 | DOI
[60] Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary, Rev. Mod. Phys., Volume 85 (2013) no. 3, pp. 1083-1102 | DOI
[61] Confining the state of light to a quantum manifold by engineered two-photon loss, Science, Volume 347 (2015) no. 6224, pp. 853-857 | DOI
[62] Quantum error correction against photon loss using multicomponent cat states, Phys. Rev. A, Volume 94 (2016) no. 4, 042332, 20 pages | DOI
[63] New Class of Quantum Error-Correcting Codes for a Bosonic Mode, Phys. Rev. X, Volume 6 (2016) no. 3, 031006, 26 pages | DOI
[64] Extending the lifetime of a quantum bit with error correction in superconducting circuits, Nature, Volume 536 (2016) no. 7617, pp. 441-445 | DOI
[65] Generation of macroscopic Schrödinger-cat states in qubit-oscillator systems, Phys. Rev. A, Volume 93 (2016) no. 3, 033853, 13 pages | DOI
[66] A Schrödinger cat living in two boxes, Science, Volume 352 (2016) no. 6289, pp. 1087-1091 | DOI
[67] Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits, Science, Volume 365 (2019) no. 6453, pp. 574-577 | DOI
[68] Generation and manipulation of Schrödinger cat states in Rydberg atom arrays, Science, Volume 365 (2019) no. 6453, pp. 570-574 | DOI
[69] Quantum information processing with bosonic qubits in circuit QED, Quantum Sci. Technol., Volume 6 (2021) no. 3, 033001, 23 pages | DOI
[70] Generation of optical Schrödinger cat states in intense laser–matter interactions, Nat. Phys., Volume 17 (2021) no. 10, pp. 1104-1108 | DOI
[71] New schemes for creating large optical Schrödinger cat states using strong laser fields, J. Comput. Electron., Volume 20 (2021) no. 6, pp. 2111-2123 | DOI
[72] Strong laser fields and their power to generate controllable high-photon-number coherent-state superpositions, Phys. Rev. A, Volume 105 (2022) no. 3, 033714, 24 pages | DOI
[73] Schrödinger cat states in quantum-dot-cavity systems, Phys. Rev. Res., Volume 3 (2021) no. 2, 023088, 11 pages | DOI
[74] Compact Ion-Trap Quantum Computing Demonstrator, PRX Quantum, Volume 2 (2021) no. 2, 020343, 23 pages | DOI
[75] Generation of optical Schrödinger cat states by generalized photon subtraction, Phys. Rev. A, Volume 103 (2021) no. 1, 013710, 8 pages | DOI
[76] A flying Schrödinger’s cat in multipartite entangled states, Sci. Adv., Volume 8 (2022) no. 10, eabn1778, 7 pages | DOI
[77] Fast generation of Schrödinger cat states using a Kerr-tunable superconducting resonator, Nat. Commun., Volume 14 (2023) no. 1, 6358, 10 pages | DOI
[78] Resonant Schrödinger cat states in circuit quantum electrodynamics, Phys. Rev. A, Volume 109 (2024) no. 2, 023703, 14 pages | DOI
[79] Growing Schrödinger’s cat states by local unitary time evolution of product states, Phys. Rev. Res., Volume 6 (2024) no. 3, 033108, 15 pages | DOI
[80] Conditional atomic cat state generation via superradiance | arXiv
[81] Creation and manipulation of Schrödinger cat states of a nuclear spin qudit in silicon (2024) | arXiv
[82] Perfect revivals of Rabi oscillations and hybrid Bell states in a trapped ion | arXiv
[83] Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase, Phys. Rev. A, Volume 40 (1989) no. 5, pp. 2847-2849 | DOI
[84] Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum, Phys. Rev. Lett., Volume 70 (1993) no. 9, pp. 1244-1247 | DOI
[85] Quantum Fluctuations of Light: A Modern Perspective on Wave/Particle Duality (2001) (Paper presented at the symposium “One Hundred Years of the Quantum: From Max Planck to Entanglement,” University of Puget Sound, October 29 and 30, 2000) | arXiv
[86] Die gegenwärtige Situation in der Quantenmechanik, Naturwissenschaften, Volume 23 (1935) no. 50, pp. 844-849 | DOI
[87] Even and odd coherent states and excitations of a singular oscillator, Physica, Volume 72 (1974) no. 3, pp. 597-615 | DOI
[88] Generation of a Superposition of Odd Photon Number States for Quantum Information Networks, Phys. Rev. Lett., Volume 97 (2006), 083604, 4 pages | DOI
[89] Generating Optical Schrödinger Kittens for Quantum Information Processing, Science, Volume 312 (2006) no. 5770, pp. 83-86 | DOI
[90] Generation of optical ‘Schrödinger cats’ from photon number states, Nature, Volume 448 (2007) no. 7155, pp. 784-786 | DOI
[91] Enlargement of optical Schrödinger’s cat states, Nature Photon., Volume 11 (2017) no. 6, pp. 379-382 | DOI
[92] Deterministic creation of entangled atom–light Schrödinger-cat states, Nature Photon., Volume 13 (2019) no. 2, pp. 110-115 | DOI
[93] Protecting the Quantum Interference of Cat States by Phase-Space Compression, Phys. Rev. X, Volume 13 (2023) no. 2, 021004, 13 pages | DOI
[94] Homodyne versus photon-counting quantum trajectories for dissipative Kerr resonators with two-photon driving, Eur. Phys. J. Spec. Top., Volume 226 (2017) no. 12, pp. 2705-2713 | DOI
[95] Method for Direct Measurement of the Wigner Function in Cavity QED and Ion Traps, Phys. Rev. Lett., Volume 78 (1997) no. 13, pp. 2547-2550 | DOI
[96] Nonlocality of the Schrödinger cat, New J. Phys., Volume 2 (2000) no. 1, 21, 8 pages | DOI
[97] Quantum Trajectories IV, An Open Systems Approach to Quantum Optics (Lecture Notes in Physics Monographs), Volume 18, Springer (1993), pp. 155-173 | DOI
[98] Spontaneous dressed-state polarization of a coupled atom and cavity mode, Quantum Opt., Volume 3 (1991) no. 1, 13 | DOI
[99] Dynamic Stark effect for the Jaynes–Cummings system, Phys. Rev. A, Volume 45 (1992) no. 7, pp. 5135-5143 | DOI
[100] Strong-Driving-Assisted Multipartite Entanglement in Cavity QED, Phys. Rev. Lett., Volume 90 (2003) no. 2, 027903, 4 pages | DOI
[101] Environment-induced decoherence I. The Stern–Gerlach measurement, Phys. A: Stat. Mech. Appl., Volume 220 (1995) no. 3, pp. 563-575 | DOI
[102] Decoherence and Schrödinger-cat states in a Stern–Gerlach-type experiment, Phys. Rev. A, Volume 56 (1997) no. 5, pp. 4307-4310 | DOI
[103] Coherent States and Open Quantum Systems: A Comment on the Stern–Gerlach Experiment and Schrödinger’s Cat, Coherent states: past, present, and future (D. H. Feng; J. R. Klauder; M. R. Strayer, eds.), World Scientific, 1994, pp. 75-91 | DOI
[104] Dynamics of a qubit while simultaneously monitoring its relaxation and dephasing, Nat. Commun., Volume 9 (2018) no. 1, 1926, 6 pages | DOI
[105] Quantum dynamics of simultaneously measured non-commuting observables, Nature, Volume 538 (2016) no. 7626, pp. 491-494 | DOI
[106] Quantum Feedback for Protecton of Schrödinger Cat States, The Foundations of Quantum Mechanics (Claudio Gerola; Arcangelo Rossi, eds.), World Scientific, 2000, pp. 197-206 | DOI
[107] Cat Codes with Optimal Decoherence Suppression for a Lossy Bosonic Channel, Phys. Rev. Lett., Volume 119 (2017) no. 3, 030502, 6 pages | DOI
[108] Probing quantum optical excitations with fast electrons, Optica, Volume 6 (2019) no. 12, pp. 1524-1534 | DOI
[109] Entanglements of Electrons and Cavity Photons in the Strong-Coupling Regime, Phys. Rev. Lett., Volume 123 (2019) no. 10, 103602, 6 pages | DOI
[110] Imprinting the quantum statistics of photons on free electrons, Science, Volume 373 (2021) no. 6561, eabj7128 | DOI
[111] High Photon Number Entangled States and Coherent State Superposition from the Extreme Ultraviolet to the Far Infrared, Phys. Rev. Lett., Volume 128 (2022) no. 12, 123603, 7 pages | DOI
[112] Observation of Quantum Jumps in a Single Atom, Phys. Rev. Lett., Volume 57 (1986) no. 14, pp. 1699-1702 | DOI
[113] Shelved optical electron amplifier: Observation of quantum jumps, Phys. Rev. Lett., Volume 56 (1986) no. 26, pp. 2797-2799 | DOI
[114] Observation of Quantum Jumps, Phys. Rev. Lett., Volume 57 (1986) no. 14, pp. 1696-1698 | DOI
[115] What are Quantum Jumps?, Phys. Scr., Volume T21 (1988), pp. 49-51 | DOI
[116] A stochastic posterior Schrödinger equation for counting nondemolition measurement, Lett. Math. Phys., Volume 20 (1990) no. 2, pp. 85-89 | DOI | Zbl
[117] Measurements continuous in time and a posteriori states in quantum mechanics, J. Phys. A. Math. Gen., Volume 24 (1991) no. 7, 1495 | DOI
[118] Wave-function approach to dissipative processes in quantum optics, Phys. Rev. Lett., Volume 68 (1992) no. 5, pp. 580-583 | DOI
[119] Wave-function quantum stochastic differential equations and quantum-jump simulation methods, Phys. Rev. A, Volume 46 (1992) no. 7, pp. 4363-4381 | DOI
[120] Monte Carlo simulation of the atomic master equation for spontaneous emission, Phys. Rev. A, Volume 45 (1992) no. 7, pp. 4879-4887 | DOI
[121] Monte Carlo wave-function method in quantum optics, J. Opt. Soc. Am. B, Volume 10 (1993) no. 3, pp. 524-538 | DOI
[122] Event‐enhanced quantum theory and piecewise deterministic dynamics, Ann. Phys. (Berlin), Volume 507 (1995) no. 6, pp. 583-599 | DOI
[123] Quantum State Diffusion: from Foundations to Applications (1997) | arXiv
[124] The quantum-jump approach to dissipative dynamics in quantum optics, Rev. Mod. Phys., Volume 70 (1998) no. 1, pp. 101-144 | DOI
[125] Quantum State Diffusion, Cambridge University Press, 1998
[126] Retroactive Quantum Jumps in a Strongly Coupled Atom-Field System, Phys. Rev. Lett., Volume 81 (1998) no. 21, pp. 4620-4623 | DOI
[127] Observing the Quantum Limit of an Electron Cyclotron: QND Measurements of Quantum Jumps between Fock States, Phys. Rev. Lett., Volume 83 (1999) no. 7, pp. 1287-1290 | DOI
[128] A simple model of quantum trajectories, Am. J. Phys., Volume 70 (2002) no. 7, pp. 719-737 | DOI
[129] Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation, Phys. Rev. A, Volume 65 (2002) no. 3, 032111, 6 pages | DOI
[130] Quantum jumps of light recording the birth and death of a photon in a cavity, Nature, Volume 446 (2007) no. 7133, pp. 297-300 | DOI
[131] The Quantum Jump Approach and Some of Its Applications, Time in Quantum Mechanics II (Gonzalo Muga; Andreas Ruschhaupt; Adolfo Campo, eds.) (Lecture Notes in Physics), Volume 789, Springer, 2009, pp. 127-174 | DOI
[132] Quantum measurements in continuous time, non-Markovian evolutions and feedback, Philos. Trans. R. Soc. Lond., Ser. A, Volume 370 (2012) no. 1979, pp. 5364-5385 | DOI
[133] To catch and reverse a quantum jump mid-flight, Nature, Volume 570 (2019) no. 7760, pp. 200-204 | DOI
[134] On the generators of quantum dynamical semigroups, Commun. Math. Phys., Volume 48 (1976) no. 2, pp. 119-130 | DOI
[135] Statistical Methods in Quantum Optics 1: Master Equations and Fokker–Planck Equations, Theoretical and Mathematical Physics, Springer, 1999 | DOI
[136] Observing the Progressive Decoherence of the “Meter” in a Quantum Measurement, Phys. Rev. Lett., Volume 77 (1996) no. 24, pp. 4887-4890 | DOI
[137] Reconstruction of non-classical cavity field states with snapshots of their decoherence, Nature, Volume 455 (2008) no. 7212, pp. 510-514 | DOI
[138] Quantum Trajectories II, An Open Systems Approach to Quantum Optics (Lecture Notes in Physics Monographs), Springer (1993) no. 18, pp. 126-139 | DOI
[139] Quantum jumps revisited: An overview of quantum trajectory theory, Quantum Future From Volta and Como to the Present and Beyond (Philippe Blanchard; Arkadiusz Jadczyk, eds.), Springer, 1999, pp. 15-36 | DOI
[140] Are Dynamical Quantum Jumps Detector Dependent?, Phys. Rev. Lett., Volume 108 (2012) no. 22, 220402, 5 pages | DOI
[141] Quantum State Reduction and Conditional Time Evolution of Wave-Particle Correlations in Cavity QED, Phys. Rev. Lett., Volume 85 (2000) no. 15, pp. 3149-3152 | DOI
[142] Time evolution and squeezing of the field amplitude in cavity QED, J. Opt. Soc. Am. B, Volume 18 (2001) no. 12, pp. 1911-1921 | DOI
[143] Noise in homodyne and heterodyne detection, Opt. Lett., Volume 8 (1983) no. 3, pp. 177-179 | DOI
[144] Time-Asymmetric Fluctuations of Light and the Breakdown of Detailed Balance, Phys. Rev. Lett., Volume 88 (2002) no. 24, 243601, 4 pages | DOI
[145] Coherence and decoherence in the interaction of light with atoms, Phys. Rev. A, Volume 56 (1997) no. 6, pp. 5065-5099 | DOI
[146] Superpositions of coherent states: Squeezing and dissipation, Phys. Rev. A, Volume 45 (1992) no. 9, pp. 6570-6585 | DOI
[147] Wigner Function, Quantum Optics in Phase Space, John Wiley & Sons (2001), pp. 67-98 | DOI
[148] Field States, Quantum Optics in Phase Space, John Wiley & Sons (2001), pp. 291-319 | DOI
[149] Sub-Planck structure in phase space and its relevance for quantum decoherence, Nature, Volume 412 (2001) no. 6848, pp. 712-717 | DOI
[150] Decoherence and the transition from quantum to classical — Revisited (2003) | arXiv
[151] II Homodyne Detection and Quantum-State Reconstruction, Progress in Optics (E. Wolf, ed.) (Progress in Optics), Volume 39, Elsevier, 1999, pp. 63-211 | DOI
[152] Quantum States in Phase Space, Quantum Optics in Phase Space, John Wiley & Sons (2001), pp. 99-151 | DOI
[153] Quantum optics, John Wiley & Sons, 2006 | DOI
[154] Nature, Nature, Volume 502 (2013) no. 7470, pp. 211-214 | DOI
[155] Quantum trajectory approach to circuit QED: Quantum jumps and the Zeno effect, Phys. Rev. A, Volume 77 (2008) no. 1, 012112, 18 pages | DOI
[156] A quantum trajectory unraveling of the superradiance master equation, Opt. Commun., Volume 179 (2000) no. 1, pp. 417-427 | DOI
[157] Photoelectron waiting times and atomic state reduction in resonance fluorescence, Phys. Rev. A, Volume 39 (1989) no. 3, pp. 1200-1218 | DOI
[158] Waiting times and noise in single particle transport, Ann. Phys. (Berlin), Volume 520 (2008) no. 7, pp. 477-496 | DOI
[159] Generation of Large-Amplitude Coherent-State Superposition via Ancilla-Assisted Photon Subtraction, Phys. Rev. Lett., Volume 101 (2008) no. 23, 233605, 4 pages | DOI
[160] Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources, Phys. Rev. Lett., Volume 115 (2015) no. 2, 023602, 6 pages | DOI
[161] Loss-tolerant state engineering for quantum-enhanced metrology via the reverse Hong–Ou–Mandel effect, Nat. Commun., Volume 7 (2016) no. 1, 11925 | DOI
[162] Method to deterministically generate large-amplitude optical cat states, Commun. Phys., Volume 7 (2024) no. 1, 134 | DOI
[163] Measurement of a negative value for the Wigner function of radiation, Phys. Rev. A, Volume 62 (2000) no. 5, 054101, 4 pages | DOI
[164] Generation of Fock states in a superconducting quantum circuit, Nature, Volume 454 (2008) no. 7202, pp. 310-314 | DOI
[165] Synthesizing arbitrary quantum states in a superconducting resonator, Nature, Volume 459 (2009) no. 7246, pp. 546-549 | DOI
[166] Characterizing quantum microwave radiation and its entanglement with superconducting qubits using linear detectors, Phys. Rev. A, Volume 86 (2012) no. 3, 032106, 13 pages | DOI
[167] Circuit quantum electrodynamics, Rev. Mod. Phys., Volume 93 (2021) no. 2, 025005, 72 pages | DOI
[168] Classification and reconstruction of optical quantum states with deep neural networks, Phys. Rev. Res., Volume 3 (2021) no. 3, 033278, 36 pages | DOI
[169] Quantum State Tomography with Conditional Generative Adversarial Networks, Phys. Rev. Lett., Volume 127 (2021) no. 14, 140502, 8 pages | DOI
[170] Data and codes for “Decoherence of Schrödinger cat states in light of wave/particle duality”, Stockholm University (2026) | DOI
Cité par Sources :
Commentaires - Politique
