[Transducteur cryogénique rf-vers-micro-ondes basé sur un système électromécanique sous biais dc]
We report a two-stage, heterodyne rf-to-microwave transducer that combines a tunable electrostatic pre-amplifier with a superconducting electromechanical cavity. A metalized Si3N4 membrane (3 MHz frequency) forms the movable plate of a vacuum-gap capacitor in a microwave LC resonator. A dc bias across the gap converts any small rf signal into a resonant electrostatic force proportional to the bias, providing a voltage-controlled gain that multiplies the cavity’s intrinsic electromechanical gain. In a flip-chip device with a 1.5 µm gap operated at 10 mK we observe dc-tunable anti-spring shifts, and rf-to-microwave transduction at 49 V bias, achieving a charge sensitivity of 87 µe/$\sqrt{\mathrm{Hz}}$ (0.9 nV/$\sqrt{\mathrm{Hz}}$). Extrapolation to sub-micron gaps and state-of-the-art $Q>10^8$ membrane resonators predicts sub-200 fV/$\sqrt{\mathrm{Hz}}$ sensitivity, establishing dc-biased electromechanics as a practical route towards quantum-grade rf electrometers and low-noise modular heterodyne links for superconducting microwave circuits and charge or voltage sensing.
Supplementary Materials:
Supplementary material for this article is supplied as a separate file:
Nous présentons un transducteur hétérodyne rf-vers-micro-ondes à deux étages qui associe un préamplificateur électrostatique accordable à une cavité électromécanique supraconductrice. Une membrane métallisée de Si3N4 (fréquence 3 MHz) forme la plaque mobile d’un condensateur intégré dans un résonateur LC micro-ondes. Une tension constante appliquée au bornes du condensateur diminue la raideur du ressort de la membrane et convertit toute petite tension alternative en une force électrostatique résonnante proportionnelle à cette tension, fournissant un gain contrôlé en tension qui multiplie le gain électromécanique intrinsèque de la cavité. Dans un dispositif flip-chip à espacement de 1.5 µm fonctionnant à 10 mK, nous observons un déplacement des fréquences des modes mécaniques réglables en tension, et une transduction rf vers micro-ondes sous 49 V de polarisation, atteignant une sensibilité de charge de 87 µe/$\sqrt{\mathrm{Hz}}$ (0.9 nV/$\sqrt{\mathrm{Hz}}$). L’extrapolation à des gaps sub-micrométriques et à des résonateurs à membrane de facteur qualité $Q>10^8$ permettra d’atteindre une sensibilité inférieure à 200 fV/$\sqrt{\mathrm{Hz}}$, établissant l’électromécanique polarisée en continu comme une voie vers des électromètres rf atteignant la limite quantique de sensibilité, et des liaisons hétérodynes à faible bruit pour circuits micro-ondes supraconducteurs et détection de charge/tension.
Compléments :
Des compléments sont fournis pour cet article dans le fichier séparé :
Révisé le :
Accepté le :
Publié le :
Mots-clés : Transducteur RF-vers-micro-ondes, électromètre, capteur de charge, électromécanique quantique
Himanshu Patange  1 ; Kyrylo Gerashchenko  1 ; Rémi Rousseau  1 , 2 ; Paul Manset  1 ; Léo Balembois  1 ; Thibault Capelle  3 , 4 ; Samuel Deléglise  1 ; Thibaut Jacqmin  1 , 5
CC-BY 4.0
@article{CRPHYS_2026__27_G1_49_0,
author = {Himanshu Patange and Kyrylo Gerashchenko and R\'emi Rousseau and Paul Manset and L\'eo Balembois and Thibault Capelle and Samuel Del\'eglise and Thibaut Jacqmin},
title = {Cryogenic rf-to-microwave transducer based on a dc-biased electromechanical system},
journal = {Comptes Rendus. Physique},
pages = {49--63},
year = {2026},
publisher = {Acad\'emie des sciences, Paris},
volume = {27},
doi = {10.5802/crphys.273},
language = {en},
}
TY - JOUR AU - Himanshu Patange AU - Kyrylo Gerashchenko AU - Rémi Rousseau AU - Paul Manset AU - Léo Balembois AU - Thibault Capelle AU - Samuel Deléglise AU - Thibaut Jacqmin TI - Cryogenic rf-to-microwave transducer based on a dc-biased electromechanical system JO - Comptes Rendus. Physique PY - 2026 SP - 49 EP - 63 VL - 27 PB - Académie des sciences, Paris DO - 10.5802/crphys.273 LA - en ID - CRPHYS_2026__27_G1_49_0 ER -
%0 Journal Article %A Himanshu Patange %A Kyrylo Gerashchenko %A Rémi Rousseau %A Paul Manset %A Léo Balembois %A Thibault Capelle %A Samuel Deléglise %A Thibaut Jacqmin %T Cryogenic rf-to-microwave transducer based on a dc-biased electromechanical system %J Comptes Rendus. Physique %D 2026 %P 49-63 %V 27 %I Académie des sciences, Paris %R 10.5802/crphys.273 %G en %F CRPHYS_2026__27_G1_49_0
Himanshu Patange; Kyrylo Gerashchenko; Rémi Rousseau; Paul Manset; Léo Balembois; Thibault Capelle; Samuel Deléglise; Thibaut Jacqmin. Cryogenic rf-to-microwave transducer based on a dc-biased electromechanical system. Comptes Rendus. Physique, Volume 27 (2026), pp. 49-63. doi: 10.5802/crphys.273
[1] Nanometre-scale displacement sensing using a single electron transistor, Nature, Volume 424 (2003) no. 6946, pp. 291-293 | DOI
[2] The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer, Science, Volume 280 (1998) no. 5367, pp. 1238-1242 | DOI
[3] Sensitivity of a micromechanical displacement detector based on the radio-frequency single-electron transistor, Appl. Phys. Lett., Volume 77 (2000) no. 23, pp. 3845-3847 | DOI
[4] An ultrasensitive radio-frequency single-electron transistor working up to 4.2 K, J. Appl. Phys., Volume 100 (2006) no. 11, 114321 | DOI
[5] Radio-frequency single-electron transistor: Toward the shot-noise limit, Appl. Phys. Lett., Volume 79 (2001) no. 24, pp. 4031-4033 | DOI
[6] A silicon radio-frequency single electron transistor, Appl. Phys. Lett., Volume 92 (2008) no. 11, 112103 | DOI
[7] Charge sensitivity of radio frequency single-electron transistor, Appl. Phys. Lett., Volume 74 (1999) no. 26, pp. 4052-4054 | DOI
[8] Single shot charge detection using a radio-frequency quantum point contact, Appl. Phys. Lett., Volume 91 (2007) no. 22, 222104 | DOI
[9] Out-of-equilibrium charge dynamics in a hybrid circuit quantum electrodynamics architecture, Phys. Rev. B, Volume 89 (2014), 165404, 4 pages | DOI
[10] Real-time detection of electron tunnelling in a quantum dot, Nature, Volume 423 (2003) no. 6938, pp. 422-425 | DOI
[11] Fast Charge Sensing of Si/SiGe Quantum Dots via a High-Frequency Accumulation Gate, Nano Lett., Volume 19 (2019) no. 8, pp. 5628-5633 | DOI
[12] Probing the limits of gate-based charge sensing, Nat. Commun., Volume 6 (2015) no. 1, 6084, 8 pages | DOI
[13] High-Sensitivity ac-Charge Detection with a MHz-Frequency Fluxonium Qubit, Phys. Rev. X, Volume 14 (2024) no. 1, 011007, 18 pages | DOI
[14] Probing the quantum motion of a macroscopic mechanical oscillator with a radio-frequency superconducting qubit (2025) | arXiv
[15] Microwave Cavity‐Enhanced Transduction for Plug‐and‐Play Nanomechanics at Room Temperature, Nat. Commun., Volume 3 (2012), 728, 6 pages | DOI
[16] Sideband cooling of micromechanical motion to the quantum ground state, Nature, Volume 475 (2011) no. 7356, pp. 359-363 | DOI
[17] Preparation and detection of a mechanical resonator near the ground state of motion, Nature, Volume 463 (2010) no. 7277, pp. 72-75 | DOI
[18] Ground state cooling of an ultracoherent electromechanical system, Nat. Commun., Volume 13 (2022) no. 1, 1507, 7 pages | DOI
[19] Laser cooling of a nanomechanical oscillator into its quantum ground state, Nature, Volume 478 (2011) no. 7367, pp. 89-92
[20] Measurement-based quantum control of mechanical motion, Nature, Volume 563 (2018) no. 7729, pp. 53-58 | DOI
[21] Laser cooling of a micromechanical membrane to the quantum backaction limit, Phys. Rev. Lett., Volume 116 (2016) no. 6, 063601 | DOI
[22] Laser cooling of a nanomechanical oscillator to its zero-point energy, Phys. Rev. Lett., Volume 124 (2020) no. 17, 173601, 7 pages | DOI
[23] Centimeter-scale nanomechanical resonators with low dissipation, Nat. Commun., Volume 15 (2024) no. 1, 4255, 10 pages | DOI
[24] Perimeter modes of nanomechanical resonators exhibit quality factors exceeding 10 9 at room temperature, Phys. Rev. X, Volume 12 (2022) no. 2, 021036, 19 pages | DOI
[25] Elastic strain engineering for ultralow mechanical dissipation, Science, Volume 360 (2018) no. 6390, pp. 764-768 | DOI
[26] Bidirectional and Efficient Conversion between Microwave and Optical Light, Nat. Phys., Volume 10 (2014) no. 4, pp. 321-326 | DOI
[27] Harnessing electro-optic correlations in an efficient mechanical converter, Nat. Phys., Volume 14 (2018) no. 10, pp. 1038-1042 | DOI
[28] Optical detection of radio waves through a nanomechanical transducer, Nature, Volume 507 (2014) no. 7490, pp. 81-85 | DOI
[29] Microwave-to-Optics Conversion Using a Mechanical Oscillator in Its Quantum Ground State, Nat. Phys., Volume 16 (2020), pp. 69-74 | DOI
[30] Superconducting Quantum Electromechanics Interface for Microwave‐to‐Optical Conversion, Nature, Volume 588 (2020), pp. 599-603 | DOI
[31] Universal transduction scheme for nanomechanical systems based on dielectric forces, Nature, Volume 458 (2009), pp. 1001-1004 | DOI
[32] Phonon-number-sensitive electromechanics, Phys. Rev. Lett., Volume 121 (2018) no. 18, 183601, 6 pages | DOI
[33] Sensitivity-bandwidth limit in a multi-mode opto-electro-mechanical transducer, Phys. Rev. Appl., Volume 9 (2018), 034031, 15 pages | DOI
[34] Low Noise Opto-Electro-Mechanical Modulator for RF-to-Optical Transduction in Quantum Communications, Entropy, Volume 25 (2023) no. 7, 1087, 14 pages | DOI
[35] Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution, Nat. Nanotechnol., Volume 12 (2017) no. 8, pp. 776-783 | DOI
[36] Cavity optomechanics, Rev. Mod. Phys., Volume 86 (2014) no. 4, pp. 1391-1452 | DOI
[37] Electrostatic tuning of mechanical and microwave resonances in 3D superconducting radio frequency cavities, AIP Adv., Volume 8 (2018) no. 11, 115223, 7 pages | DOI
[38] High-Q Silicon Nitride Drum Resonators Strongly Coupled to Gates, Nano Lett., Volume 21 (2021) no. 13, pp. 5738-5744 | DOI
[39] RF Transduction in a DC-Biased Superconducting Electromechanical System, Ph. D. Thesis, Sorbonne Université (France) (2025)
[40] Electric circuit model of microwave optomechanics, J. Appl. Phys., Volume 129 (2021) no. 11, 114502 | DOI
[41] A phononic bandgap shield for high-Q membrane microresonators, Appl. Phys. Lett., Volume 104 (2014) no. 2, 023510 | DOI
[42] Generalized dissipation dilution in strained mechanical resonators, Phys. Rev. B, Volume 99 (2019) no. 5, 054107, 8 pages | DOI
[43] Semiconductor devices, physics and technology, John Wiley & Sons, 2012
[44] Annealing reduces Si 3 N 4 microwave-frequency dielectric loss in superconducting resonators, Phys. Rev. Appl., Volume 21 (2024) no. 5, 054044, 12 pages | DOI
[45] Edge mode engineering for optimal ultracoherent silicon nitride membranes, Appl. Phys. Lett., Volume 117 (2020) no. 25, 254102 | DOI
[46] Edge mode engineering for optimal ultracoherent SiN membrane designs, Zenodo (2020) https://zenodo.org/records/4055087 | DOI
[47] Vibration of plates (1969) no. NASA-SP-160 (special publication)
[48] Electromechanical cooling and parametric amplification of an ultrahigh-Q mechanical oscillator, Ph. D. Thesis, Sorbonne Université (France) (2020)
[49] Dynamically Enhancing Qubit-Photon Interactions with Anti-Squeezing, Ph. D. Thesis, Sorbonne Université (France) (2023)
[50] Determination of the vacuum optomechanical coupling rate using frequency noise calibration, Opt. Express, Volume 18 (2010) no. 22, pp. 23236-23246 | DOI
[51] Laser noise in cavity-optomechanical cooling and thermometry, New J. Phys., Volume 15 (2013) no. 3, 035007, 35 pages | DOI
[52] Appearance and Disappearance of Quantum Correlations in Measurement-Based Feedback Control of a Mechanical Oscillator, Phys. Rev. X, Volume 7 (2017), 011001, 14 pages | DOI
[53] Membrane-in-the-middle optomechanics with a soft-clamped membrane at milliKelvin temperatures, Opt. Express, Volume 31 (2023) no. 25, pp. 41773-41782 | DOI
[54] Phononically shielded photonic-crystal mirror membranes for cavity quantum optomechanics, Opt. Express, Volume 31 (2023) no. 8, pp. 13040-13052 | DOI
Cité par Sources :
Commentaires - Politique
