[Bragg spectroscopy and pair-breaking-continuum mode in a superfluid Fermi gas]
The superfluid, pair condensed spin- Fermi gases are supposed to exhibit at nonzero wave vector a still unobserved collective excitation mode in their pair-breaking continuum. Using BCS theory at zero temperature and in the long wavelength limit, we predict that this mode is quantitatively observable (in frequency, width and spectral weight) in the response of a cold atom gas to a laser Bragg excitation, if one measures the perturbation induced on the order parameter modulus rather than on the density.
Les gaz superfluides de fermions de spin , condensés par paires, sont censés présenter à vecteur d’onde non nul un mode d’excitation collectif encore inobservé dans leur continuum de paire brisée. À l’aide de la théorie BCS à température nulle et dans la limite des grandes longueurs d’onde, nous prédisons que ce mode est quantitativement observable (en fréquence, largeur et poids spectral) dans la réponse d’un gaz d’atomes froids à une excitation de Bragg par laser, si l’on mesure la perturbation induite sur le module du paramètre d’ordre plutôt que sur la densité.
Accepted:
Published online:
Keywords: Fermi gases, Pair condensate, Collective modes, Dynamic structure factor, Pair-breaking excitation, Ultracold atoms, BCS theory
Yvan Castin 1
@article{CRPHYS_2020__21_3_203_0, author = {Yvan Castin}, title = {Spectroscopie de {Bragg} et mode du continuum de paire bris\'ee dans un gaz de fermions superfluide}, journal = {Comptes Rendus. Physique}, pages = {203--219}, publisher = {Acad\'emie des sciences, Paris}, volume = {21}, number = {3}, year = {2020}, doi = {10.5802/crphys.33}, language = {fr}, }
Yvan Castin. Spectroscopie de Bragg et mode du continuum de paire brisée dans un gaz de fermions superfluide. Comptes Rendus. Physique, Volume 21 (2020) no. 3, pp. 203-219. doi : 10.5802/crphys.33. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.33/
[1] Bose–Einstein condensation of atoms in a uniform potential, Phys. Rev. Lett., Volume 110 (2013), 200406 | DOI
[2] Homogeneous atomic Fermi gases, Phys. Rev. Lett., Volume 118 (2017), 123401 | DOI
[3] Two-dimensional homogeneous Fermi gases, Phys. Rev. Lett., Volume 120 (2018), 060402 | DOI
[4] prépublication, arXiv :1909.02555 (2019)
« Universal sound diffusion in a strongly interacting Fermi gas » ,[5] Observation of a strongly interacting degenerate Fermi gas of atoms, Science, Volume 298 (2002), p. 2179 | DOI
[6] Measurement of the interaction energy near a Feshbach resonance in a Li Fermi gas, Phys. Rev. Lett., Volume 91 (2003), 020402 | DOI
[7] Collective excitations of a degenerate gas at the BEC-BCS crossover, Phys. Rev. Lett., Volume 92 (2004), 203201 | DOI
[8] Condensation of pairs of fermionic atoms near a Feshbach resonance, Phys. Rev. Lett., Volume 92 (2004), 120403 | DOI
[9] Exploring the thermodynamics of a universal Fermi gas, Nature, Volume 463 (2010), p. 1057 | DOI
[10] Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas, Science, Volume 335 (2012), p. 563
[11] Gidrodinamičeskoe dejstvie i Boze-spektr sverhtekučih Fermi-sistem, Teor. Mat. Fiz., Volume 28 (1976), p. 341 [Theor. Math. Phys. 28 (1976), p. 829]
[12] Pair-breaking collective branch in BCS superconductors and superfluid Fermi gases, Phys. Rev. Lett., Volume 122 (2019), 093403 | DOI
[13] C. R. Phys. (2020)
« Branche d’excitation collective du continuum dans les gaz de fermions condensés par paires : étude analytique et lois d’échelle » , à paraître aux[14] Amplitude/Higgs modes in condensed matter physics, Annu. Rev. Condens. Matter Phys., Volume 6 (2015), p. 269 | DOI
[15] Nonrelativistic dynamics of the amplitude (Higgs) mode in superconductors, Phys. Rev. Lett., Volume 115 (2015), 157002
[16] Higgs amplitude mode in the BCS superconductors NbTiN induced by Terahertz pulse excitation, Phys. Rev. Lett., Volume 111 (2013), 057002 | DOI
[17] Amplitude Higgs mode in the 2H-NbSe superconductor, Phys. Rev. B, Volume 89 (2014), 060503
[18] Higgs mode in a strongly interacting fermionic superfluid, Nat. Phys., Volume 14 (2018), p. 781 | DOI
[19] Collisionless relaxation of the energy gap in superconductors, Zh. Eksp. Teor. Fiz., Volume 65 (1973), p. 2038
[20] Relaxation and persistent oscillations of the order parameter in fermionic condensates, Phys. Rev. Lett., Volume 96 (2006), 097005
[21] Nonequilibrium dynamics of weakly and strongly paired superconductors, Phys. Rev. Lett., Volume 103 (2009), 075301 | DOI
[22] Pair susceptibility and mode propagation in superconductors : A microscopic approach, J. Low Temp. Phys., Volume 43 (1981), p. 591 | DOI
[23] Rapid ramps across the BEC-BCS crossover : A route to measuring the superfluid gap, Phys. Rev. A, Volume 86 (2012), 053604 | DOI
[24] Bragg spectroscopy of a Bose–Einstein condensate, Phys. Rev. Lett., Volume 82 (1999), p. 4569 | DOI
[25] Excitation spectrum of a Bose–Einstein condensate, Phys. Rev. Lett., Volume 88 (2002), 120407 | DOI
[26] Bragg spectroscopy of a strongly interacting Fermi gas, Phys. Rev. Lett., Volume 101 (2008), 250403 | DOI
[27] Studies of the universal contact in a strongly interacting Fermi gas using Bragg spectroscopy, New J. Phys., Volume 13 (2011), 055010
[28] Goldstone mode and pair-breaking excitations in atomic Fermi superfluids, Nat. Phys., Volume 13 (2017), p. 943 | DOI
[29] Making, probing and understanding ultracold Fermi gases, Ultra-cold Fermi Gases (M. Inguscio; W. Ketterle; C. Salomon, eds.) (Cours de l’école de physique Enrico Fermi 2006 de Varenne), SIF, Bologne, 2007 (section 2)
[30] Atom interferometric detection of the pairing order parameter in a Fermi gas, Phys. Rev. Lett., Volume 94 (2005), 223202 | DOI
[31] Vortices and superfluidity in a strongly interacting Fermi gas, Nature, Volume 435 (2005), p. 1047 | DOI
[32] Collective modes of the extended Hubbard model with negative U and arbitrary electron density, Phys. Rev. B, Volume 46 (1992), 11025 | DOI
[33] Cooper-pair-condensate fluctuations and plasmons in layered superconductors, Phys. Rev. B, Volume 48 (1993), 10404 | DOI
[34] Dynamic structure factor of a superfluid Fermi gas, Eur. Phys. J. D, Volume 17 (2001), 49
[35] Low energy collective modes of a superfluid trapped atomic Fermi gas, Phys. Rev. Lett., Volume 87 (2001), 270403 | DOI
[36] Spectroscopy of superfluid pairing in atomic Fermi gases, Phys. Rev. Lett., Volume 93 (2004), 080401 | DOI
[37] Density response of a trapped Fermi gas : a crossover from the pair vibration mode to the Goldstone mode, Phys. Rev. A, Volume 84 (2011), 033623 | DOI
[38] Dynamic density and spin responses of a superfluid Fermi gas in the BCS-BEC crossover : Path integral formulation and pair fluctuation theory, Ann. Phys., Volume 373 (2016), p. 470 | DOI | MR | Zbl
[39] Theory of ultracold atomic Fermi gases, Rev. Mod. Phys., Volume 80 (2008), p. 1215 | DOI
[40] Processus d’interaction entre photons et atomes, InterEditions et Editions du CNRS, Paris, 1988 (section III.A.2)
[41] Quantum Gases in Low Dimensions, édité par M. Olshanii, H. Perrin, L. Pricoupenko, EDP Sciences, Les Ulis, J. Phys. IV France 116, 89 (2004)
« Simple theoretical tools for low dimension Bose gases » , Cours de l’école de printemps des Houches 2003[42] The BCS-BEC Crossover and the Unitary Fermi Gas, Lecture Notes in Physics, vol. 836, Springer, Berlin, 2011, section 5.2
(éditeur),[43] Basic tools for degenerate Fermi gases, Ultra-cold Fermi Gases (M. Inguscio; W. Ketterle; C. Salomon, eds.) (Cours de l’école de physique Enrico Fermi 2006 de Varenne), SIF, Bologne, 2007 (section 3.5.1)
[44] Cohérence, brouillage et dynamique de phase dans un condensat de paires de fermions, thèse de doctorat, École Normale Supérieure, Paris (2016)
[45] Three-phonon and four-phonon interaction processes in a pair-condensed Fermi gas, Ann. Phys. (Berlin), Volume 529 (2017), 1600352 | DOI
[46] Tables of Integrals, Series, and Products, Academic Press, San Diego, 1994 | Zbl
[47] Evolution from BCS superconductivity to Bose condensation : Analytic results for the crossover in three dimensions, Eur. Phys. J. B, Volume 1 (1998), p. 151 | DOI
[48] Le problème à N corps : Propriétés générales des gaz de fermions, Dunod, Paris, 1963 (appendice C) | MR | Zbl
[49] Random-phase approximation in the theory of superconductivity, Phys. Rev., Volume 112 (1958), p. note1900 | DOI | MR
[50] Crossover from BCS Theory to BoseâEinstein Condensation, Bose–Einstein Condensation (A. Griffin; D. W. Snoke; S. Stringari, eds.), Cambridge University Press, 1995, pp. 355-392 (chapitre 15, p. 373) | DOI
[51] prépublication, arXiv :1912.08898 (version 1 déposée le 18 décembre 2019)
« Linear response of a superfluid Fermi gas inside its pair-breaking continuum » ,[52]
« Spectroscopie de Bragg et mode du continuum de paire brisée dans un gaz de fermions superfluide » , hal-02377014 (version 1 déposée le 22 novembre 2019)Cited by Sources:
Comments - Policy