Time-resolved ARPES makes it possible to directly visualize the band dispersion of photoexcited solids, as well as to study its time evolution on the femtosecond time scale. In this article, we show how this technique can be used to monitor the ultrafast hot carrier dynamics and the conduction band dispersion in two typical monochalcogenide semiconductors: direct band gap, -type indium selenide and indirect band gap, -type germanium selenide. With this approach, one can directly estimate the effective electron masses of these semiconductors. Moreover, the dynamics of hot electrons in the two semiconductors are analyzed and compared. Our findings provide valuable information for the use of monochalcogenide semiconductors in future optoelectronic devices.
Published online:
Zhesheng Chen 1, 2, 3; Jonathan Caillaux 3; Jiuxiang Zhang 3; Evangelos Papalazarou 3; Jingwei Dong 1; Jean-Pascal Rueff 2; Amina Taleb-Ibrahimi 2; Luca Perfetti 1; Marino Marsi 3

@article{CRPHYS_2021__22_S2_103_0, author = {Zhesheng Chen and Jonathan Caillaux and Jiuxiang Zhang and Evangelos Papalazarou and Jingwei Dong and Jean-Pascal Rueff and Amina Taleb-Ibrahimi and Luca Perfetti and Marino Marsi}, title = {Ultrafast dynamics with time-resolved {ARPES:} photoexcited electrons in monochalcogenide semiconductors}, journal = {Comptes Rendus. Physique}, pages = {103--110}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {S2}, year = {2021}, doi = {10.5802/crphys.57}, language = {en}, }
TY - JOUR AU - Zhesheng Chen AU - Jonathan Caillaux AU - Jiuxiang Zhang AU - Evangelos Papalazarou AU - Jingwei Dong AU - Jean-Pascal Rueff AU - Amina Taleb-Ibrahimi AU - Luca Perfetti AU - Marino Marsi TI - Ultrafast dynamics with time-resolved ARPES: photoexcited electrons in monochalcogenide semiconductors JO - Comptes Rendus. Physique PY - 2021 SP - 103 EP - 110 VL - 22 IS - S2 PB - Académie des sciences, Paris DO - 10.5802/crphys.57 LA - en ID - CRPHYS_2021__22_S2_103_0 ER -
%0 Journal Article %A Zhesheng Chen %A Jonathan Caillaux %A Jiuxiang Zhang %A Evangelos Papalazarou %A Jingwei Dong %A Jean-Pascal Rueff %A Amina Taleb-Ibrahimi %A Luca Perfetti %A Marino Marsi %T Ultrafast dynamics with time-resolved ARPES: photoexcited electrons in monochalcogenide semiconductors %J Comptes Rendus. Physique %D 2021 %P 103-110 %V 22 %N S2 %I Académie des sciences, Paris %R 10.5802/crphys.57 %G en %F CRPHYS_2021__22_S2_103_0
Zhesheng Chen; Jonathan Caillaux; Jiuxiang Zhang; Evangelos Papalazarou; Jingwei Dong; Jean-Pascal Rueff; Amina Taleb-Ibrahimi; Luca Perfetti; Marino Marsi. Ultrafast dynamics with time-resolved ARPES: photoexcited electrons in monochalcogenide semiconductors. Comptes Rendus. Physique, Physics of ultra-fast phenomena, Volume 22 (2021) no. S2, pp. 103-110. doi : 10.5802/crphys.57. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.57/
[1] Photoelectron Spectroscopy, Springer, Berlin, 2003 | DOI
[2] et al. Full characterization and optimization of a femtosecond ultraviolet laser source for time and angle-resolved photoemission on solid surfaces, Rev. Sci. Instrum., Volume 83 (2012), 043109 | DOI
[3] et al. High performance and bendable few-layered InSe photodetectors with broad spectral response, Nano Lett., Volume 14 (2014), pp. 2800-2806 | DOI
[4] et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe, ACS Nano, Volume 8 (2014), pp. 1263-1272 | DOI
[5] 2D transition metal dichalcogenides, Nat. Rev. Mater., Volume 2 (2017), 17033 | DOI
[6] Black phosphorus: A new bandgap tuning knob, Nat. Photon., Volume 11 (2017), pp. 407-409 | DOI
[7] et al. Indirect to direct gap crossover in two-dimensional InSe revealed by angle-resolved photoemission spectroscopy, ACS Nano, Volume 13 (2019), pp. 2136-2142
[8] et al. Design of van der Waals interfaces for broad-spectrum optoelectronics, Nat. Mater., Volume 19 (2020), pp. 299-304 | DOI
[9] Black phosphorus and its isoelectronic materials, Nat. Rev. Phys., Volume 1 (2019), pp. 306-317 | DOI
[10] et al. Band gap renormalization, carrier multiplication, and Stark broadening in photoexcited black phosphorus, Nano Lett., Volume 19 (2018), pp. 488-493 | DOI
[11] et al. Direct observation of band gap renormalization in layered indium selenide, ACS Nano, Volume 13 (2019), pp. 13486-13491 | DOI
[12] et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta, Nature, Volume 471 (2011), pp. 490-493 | DOI
[13] et al. Observation of ultrafast free carrier dynamics in single layer MoS, Nano Lett., Volume 15 (2015), pp. 5883-5887 | DOI
[14] et al. Giant anisotropy of spin-orbit splitting at the bismuth surface, Phys. Rev. Lett., Volume 109 (2012), 226404 | DOI
[15] et al. Dynamics of out-of-equilibrium electron and hole pockets in the type-II Weyl semimetal candidate WTe, Phys. Rev. B, Volume 97 (2018), 115115 | DOI
[16] et al. Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott–Hubbard material, Nat. Commun., Volume 8 (2017), 13917 | DOI
[17] et al. Tracking Cooper pairs in a cuprate superconductor by ultrafast angle-resolved photoemission, Science, Volume 336 (2012), pp. 1137-1139 | DOI
[18] et al. Band-resolved imaging of photocurrent in a topological insulator, Phys. Rev. Lett., Volume 122 (2019), 167401 | DOI
[19] Imaging energy-, momentum-, and time-resolved distributions of photoinjected hot electrons in GaAs, Phys. Rev. Lett., Volume 113 (2014), 237401-5 | DOI
[20] et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe, Nat. Nanotechnol., Volume 12 (2016), pp. 223-227 | DOI
[21] Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface, Adv. Mater., Volume 26 (2014), pp. 6587-6593 | DOI
[22] et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures, Nat. Nanotechnol., Volume 6 (2019), pp. 217-222 | DOI
[23] Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe, Nano Lett., Volume 15 (2015), pp. 6926-6931 | DOI
[24] et al. Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet, Adv. Mater., Volume 24 (2012), pp. 4528-4533 | DOI
[25] et al. Band structure and photoelectric characterization of GeSe monolayers, Adv. Funct. Mater., Volume 28 (2017), 1704855-10
[26] et al. Highly anisotropic GeSe nanosheets for phototransistors with ultrahigh photoresponsivity, Adv. Sci., Volume 5 (2018), 1800478-9 | DOI
[27] Electronic properties of the III–VI layer compounds GaS, GaSe and InSe. I: Band structure, Nuovo Cim. B, Volume 51 (1979), pp. 154-180 | DOI
[28] et al. In-plane optical anisotropy of low-symmetry 2D GeSe, Adv. Opt. Mater., Volume 7 (2018), 1801311-8
[29] et al. Ultrafast electron dynamics reveal the high potential of InSe for hot-carrier optoelectronics, Phys. Rev. B, Volume 97 (2018), 241201-5 | DOI
[30] Anisotropies of energy-bands in GaSe and InSe, Physica B & C, Volume 105 (1981), pp. 30-34 | DOI
[31] et al. Direct observation of electron thermalization and electron–phonon coupling in photoexcited bismuth, Phys. Rev. B, Volume 88 (2013), 075120 | DOI
Cited by Sources:
Comments - Policy