logo CRAS
Comptes Rendus. Physique
Ultrafast dynamics with time-resolved ARPES: photoexcited electrons in monochalcogenide semiconductors
Comptes Rendus. Physique, Volume 22 (2021) no. S2, pp. 103-110.

Part of the special issue: Physics of ultra-fast phenomena

Time-resolved ARPES makes it possible to directly visualize the band dispersion of photoexcited solids, as well as to study its time evolution on the femtosecond time scale. In this article, we show how this technique can be used to monitor the ultrafast hot carrier dynamics and the conduction band dispersion in two typical monochalcogenide semiconductors: direct band gap, n-type indium selenide and indirect band gap, p-type germanium selenide. With this approach, one can directly estimate the effective electron masses of these semiconductors. Moreover, the dynamics of hot electrons in the two semiconductors are analyzed and compared. Our findings provide valuable information for the use of monochalcogenide semiconductors in future optoelectronic devices.

Online First:
Published online:
DOI: 10.5802/crphys.57
Keywords: Time-resolved ARPES, Monochalcogenide semiconductor, Ultrafast dynamics, Effective mass, Out-of-equilibrium 2D materials
Zhesheng Chen 1, 2, 3; Jonathan Caillaux 3; Jiuxiang Zhang 3; Evangelos Papalazarou 3; Jingwei Dong 1; Jean-Pascal Rueff 2; Amina Taleb-Ibrahimi 2; Luca Perfetti 1; Marino Marsi 3

1 Laboratoire des Solides Irradiés, Ecole Polytechnique, CNRS, CEA, 91128 Palaiseau, France
2 Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette, France
3 Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Zhesheng Chen and Jonathan Caillaux and Jiuxiang Zhang and Evangelos Papalazarou and Jingwei Dong and Jean-Pascal Rueff and Amina Taleb-Ibrahimi and Luca Perfetti and Marino Marsi},
     title = {Ultrafast dynamics with time-resolved {ARPES:} photoexcited electrons in monochalcogenide semiconductors},
     journal = {Comptes Rendus. Physique},
     pages = {103--110},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S2},
     year = {2021},
     doi = {10.5802/crphys.57},
     language = {en},
AU  - Zhesheng Chen
AU  - Jonathan Caillaux
AU  - Jiuxiang Zhang
AU  - Evangelos Papalazarou
AU  - Jingwei Dong
AU  - Jean-Pascal Rueff
AU  - Amina Taleb-Ibrahimi
AU  - Luca Perfetti
AU  - Marino Marsi
TI  - Ultrafast dynamics with time-resolved ARPES: photoexcited electrons in monochalcogenide semiconductors
JO  - Comptes Rendus. Physique
PY  - 2021
DA  - 2021///
SP  - 103
EP  - 110
VL  - 22
IS  - S2
PB  - Académie des sciences, Paris
UR  - https://doi.org/10.5802/crphys.57
DO  - 10.5802/crphys.57
LA  - en
ID  - CRPHYS_2021__22_S2_103_0
ER  - 
%0 Journal Article
%A Zhesheng Chen
%A Jonathan Caillaux
%A Jiuxiang Zhang
%A Evangelos Papalazarou
%A Jingwei Dong
%A Jean-Pascal Rueff
%A Amina Taleb-Ibrahimi
%A Luca Perfetti
%A Marino Marsi
%T Ultrafast dynamics with time-resolved ARPES: photoexcited electrons in monochalcogenide semiconductors
%J Comptes Rendus. Physique
%D 2021
%P 103-110
%V 22
%N S2
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crphys.57
%R 10.5802/crphys.57
%G en
%F CRPHYS_2021__22_S2_103_0
Zhesheng Chen; Jonathan Caillaux; Jiuxiang Zhang; Evangelos Papalazarou; Jingwei Dong; Jean-Pascal Rueff; Amina Taleb-Ibrahimi; Luca Perfetti; Marino Marsi. Ultrafast dynamics with time-resolved ARPES: photoexcited electrons in monochalcogenide semiconductors. Comptes Rendus. Physique, Volume 22 (2021) no. S2, pp. 103-110. doi : 10.5802/crphys.57. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.57/

[1] S. Hüfner Photoelectron Spectroscopy, Springer, Berlin, 2003 | DOI

[2] J. Faure et al. Full characterization and optimization of a femtosecond ultraviolet laser source for time and angle-resolved photoemission on solid surfaces, Rev. Sci. Instrum., Volume 83 (2012), 043109 | DOI

[3] S. R. Tamalampudi et al. High performance and bendable few-layered InSe photodetectors with broad spectral response, Nano Lett., Volume 14 (2014), pp. 2800-2806 | DOI

[4] S. Lei et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe, ACS Nano, Volume 8 (2014), pp. 1263-1272 | DOI

[5] S. Manzeli; D. Ovchinnikov; D. Pasquier; O. V. Yazyev; A. Kis 2D transition metal dichalcogenides, Nat. Rev. Mater., Volume 2 (2017), 17033 | DOI

[6] R. Roldán; A. Castellanos-Gomez Black phosphorus: A new bandgap tuning knob, Nat. Photon., Volume 11 (2017), pp. 407-409 | DOI

[7] M. J. Hamer et al. Indirect to direct gap crossover in two-dimensional InSe revealed by angle-resolved photoemission spectroscopy, ACS Nano, Volume 13 (2019), pp. 2136-2142

[8] N. Ubrig et al. Design of van der Waals interfaces for broad-spectrum optoelectronics, Nat. Mater., Volume 19 (2020), pp. 299-304 | DOI

[9] F. Xia; H. Wang; J. C. M. Hwang; A. H. C. Neto; L. Yang Black phosphorus and its isoelectronic materials, Nat. Rev. Phys., Volume 1 (2019), pp. 306-317 | DOI

[10] Z. Chen et al. Band gap renormalization, carrier multiplication, and Stark broadening in photoexcited black phosphorus, Nano Lett., Volume 19 (2018), pp. 488-493 | DOI

[11] Z. Zhang et al. Direct observation of band gap renormalization in layered indium selenide, ACS Nano, Volume 13 (2019), pp. 13486-13491 | DOI

[12] T. Rohwer et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta, Nature, Volume 471 (2011), pp. 490-493 | DOI

[13] A. Grubišić Čabo et al. Observation of ultrafast free carrier dynamics in single layer MoS 2 , Nano Lett., Volume 15 (2015), pp. 5883-5887 | DOI

[14] Y. Ohtsubo et al. Giant anisotropy of spin-orbit splitting at the bismuth surface, Phys. Rev. Lett., Volume 109 (2012), 226404 | DOI

[15] M. Caputo et al. Dynamics of out-of-equilibrium electron and hole pockets in the type-II Weyl semimetal candidate WTe 2 , Phys. Rev. B, Volume 97 (2018), 115115 | DOI

[16] G. Lantz et al. Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott–Hubbard material, Nat. Commun., Volume 8 (2017), 13917 | DOI

[17] C. L. Smallwood et al. Tracking Cooper pairs in a cuprate superconductor by ultrafast angle-resolved photoemission, Science, Volume 336 (2012), pp. 1137-1139 | DOI

[18] H. Soifer et al. Band-resolved imaging of photocurrent in a topological insulator, Phys. Rev. Lett., Volume 122 (2019), 167401 | DOI

[19] J. Kanasaki; H. Tanimura; K. Tanimura Imaging energy-, momentum-, and time-resolved distributions of photoinjected hot electrons in GaAs, Phys. Rev. Lett., Volume 113 (2014), 237401-5 | DOI

[20] D. A. Bandurin et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe, Nat. Nanotechnol., Volume 12 (2016), pp. 223-227 | DOI

[21] W. Feng; W. Zheng; W. Cao; P. Hu Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface, Adv. Mater., Volume 26 (2014), pp. 6587-6593 | DOI

[22] A. Gao et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures, Nat. Nanotechnol., Volume 6 (2019), pp. 217-222 | DOI

[23] G. Shi; E. Kioupakis Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe, Nano Lett., Volume 15 (2015), pp. 6926-6931 | DOI

[24] D.-J. Xue et al. Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet, Adv. Mater., Volume 24 (2012), pp. 4528-4533 | DOI

[25] H. Zhao et al. Band structure and photoelectric characterization of GeSe monolayers, Adv. Funct. Mater., Volume 28 (2017), 1704855-10

[26] X. Zhou et al. Highly anisotropic GeSe nanosheets for phototransistors with ultrahigh photoresponsivity, Adv. Sci., Volume 5 (2018), 1800478-9 | DOI

[27] E. Doni; R. Girlanda; V. Grasso; A. Balzarotti; M. Piacentini Electronic properties of the III–VI layer compounds GaS, GaSe and InSe. I: Band structure, Nuovo Cim. B, Volume 51 (1979), pp. 154-180 | DOI

[28] Y. Yang et al. In-plane optical anisotropy of low-symmetry 2D GeSe, Adv. Opt. Mater., Volume 7 (2018), 1801311-8

[29] Z. Chen et al. Ultrafast electron dynamics reveal the high potential of InSe for hot-carrier optoelectronics, Phys. Rev. B, Volume 97 (2018), 241201-5 | DOI

[30] N. Kuroda; Y. Nishina Anisotropies of energy-bands in GaSe and InSe, Physica B & C, Volume 105 (1981), pp. 30-34 | DOI

[31] J. Faure et al. Direct observation of electron thermalization and electron–phonon coupling in photoexcited bismuth, Phys. Rev. B, Volume 88 (2013), 075120 | DOI

Cited by Sources: