Sub-picosecond photo-isomerization is the major primary process of energy conversion in retinal proteins and has as such been in the focus of extensive theoretical and experimental work over the past decades. In this review article, we revisit the long-standing question as to how the protein tunes the isomerization speed and quantum yield. We focus on our recent contributions to this field, which underscore the concept of a delicate mixing of reactive and non-reactive excited states, as a result of steric properties and electrostatic interactions with the protein environment. Further avenues and new approaches are outlined which hold promise for advancing our understanding of these intimately coupled chromophore–protein systems.
La photo-isomérisation sub-picoseconde est la principale réaction initiant la conversion d’énergie dans les protéines de rétinal, si bien qu’elle fait l’objet de travaux théoriques et expérimentaux approfondis depuis plus de trente ans. Dans cet article de revue, nous revisitons la question toujours ouverte de savoir comment la protéine détermine la vitesse d’isomérisation et son rendement quantique. A la lumière de nos contributions récentes en ce domaine, nous décrivons le concept d’un mélange d’états excités réactifs et non-réactifs, délicatement ajusté par les interactions stériques et électrostatiques avec l’environnement protéique. De nouvelles perspectives et approches prometteuses sont décrites qui pourront faire progresser la compréhension de ces systèmes chromophore–protéine intimement couplés.
Published online:
Mot clés : Photo-isomérisation, Protéines de rétinal, Couplage chromophore–protéines, Dynamiques non-adiabatiques, Protéines photo-senseurs, État de transfert de charge
Damianos Agathangelou 1; Partha Pratim Roy 2; María del Carmen Marín 3; Nicolas Ferré 4; Massimo Olivucci 3, 5; Tiago Buckup 2; Jérémie Léonard 1; Stefan Haacke 1
@article{CRPHYS_2021__22_S2_111_0, author = {Damianos Agathangelou and Partha Pratim Roy and Mar{\'\i}a del Carmen Mar{\'\i}n and Nicolas Ferr\'e and Massimo Olivucci and Tiago Buckup and J\'er\'emie L\'eonard and Stefan Haacke}, title = {Sub-picosecond {C}$=${C} bond photo-isomerization: evidence for the role of~excited state mixing}, journal = {Comptes Rendus. Physique}, pages = {111--138}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {S2}, year = {2021}, doi = {10.5802/crphys.41}, language = {en}, }
TY - JOUR AU - Damianos Agathangelou AU - Partha Pratim Roy AU - María del Carmen Marín AU - Nicolas Ferré AU - Massimo Olivucci AU - Tiago Buckup AU - Jérémie Léonard AU - Stefan Haacke TI - Sub-picosecond C$=$C bond photo-isomerization: evidence for the role of excited state mixing JO - Comptes Rendus. Physique PY - 2021 SP - 111 EP - 138 VL - 22 IS - S2 PB - Académie des sciences, Paris DO - 10.5802/crphys.41 LA - en ID - CRPHYS_2021__22_S2_111_0 ER -
%0 Journal Article %A Damianos Agathangelou %A Partha Pratim Roy %A María del Carmen Marín %A Nicolas Ferré %A Massimo Olivucci %A Tiago Buckup %A Jérémie Léonard %A Stefan Haacke %T Sub-picosecond C$=$C bond photo-isomerization: evidence for the role of excited state mixing %J Comptes Rendus. Physique %D 2021 %P 111-138 %V 22 %N S2 %I Académie des sciences, Paris %R 10.5802/crphys.41 %G en %F CRPHYS_2021__22_S2_111_0
Damianos Agathangelou; Partha Pratim Roy; María del Carmen Marín; Nicolas Ferré; Massimo Olivucci; Tiago Buckup; Jérémie Léonard; Stefan Haacke. Sub-picosecond C$=$C bond photo-isomerization: evidence for the role of excited state mixing. Comptes Rendus. Physique, Volume 22 (2021) no. S2, pp. 111-138. doi : 10.5802/crphys.41. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.41/
[1] Microbial and animal rhodopsins: structures, functions, and molecular mechanisms, Chem. Rev., Volume 114 (2014), pp. 126-163 | DOI
[2] Visual pigments as photoreceptors, Handbook of Photosensory Receptors, John Wiley & Sons, Ltd, Hoboken (NJ), USA, 2005, pp. 43-76 | DOI
[3] Microbial rhodopsins: diversity, mechanisms, and optogenetic applications, Annu. Rev. Biochem., Volume 86 (2017), pp. 845-872 | DOI
[4] Prediction of structural and environmental effects on the S1-S0 energy gap and jump probability in double-bond cis—trans photoisomerization, Chem. Phys. Lett., Volume 104 (1984), pp. 440-443 | DOI
[5] The retinal chromophore/chloride ion pair: structure of the photo isomerization path and interplay of charge transfer and covalent states, Proc. Natl Acad. Sci. USA, Volume 102 (2005), pp. 6255-6260 | DOI
[6] Shedding new light on retinal protein photochemistry, Annu. Rev. Phys. Chem., Volume 64 (2013), pp. 437-458 | DOI
[7] Primary reactions in retinal proteins, Biol. Med. Phys. Biomed. Eng. (M. Braun; P. Gilch; W. Zinth, eds.), Springer, Berlin, Heidelberg, 2008, pp. 243-273 | DOI
[8] Femtosecond fluorescence study of the rhodopsin chromophore in solution, J. Am. Chem. Soc., Volume 117 (1995), pp. 2669-2670 | DOI
[9] Femtosecond spectroscopy of the photoisomerisation of the protonated Schiff base of all-trans retinal, Chem. Phys. Lett., Volume 263 (1996), pp. 613-621 | DOI
[10] Ultrafast excited state dynamics of the protonated Schiff base of all-trans retinal in solvents, Biophys. J., Volume 88 (2005), pp. 2779-2788 | DOI
[11] Backbone modification of retinal induces protein-like excited state dynamics in solution, J. Am. Chem. Soc., Volume 134 (2012), pp. 8318-8320 | DOI
[12] Excited-state dynamics of a protonated retinal Schiff base in solution, J. Phys. Chem., Volume 100 (1996), pp. 18586-18591 | DOI
[13] Vibrational analysis of excited and ground electronic states of all-trans retinal protonated Schiff-base, Phys. Chem. Chem. Phys., Volume 13 (2011), pp. 21402-21410 | DOI
[14] Coherent high-frequency vibrational dynamics in the excited electronic state of all-trans retinal derivatives, J. Phys. Chem. Lett., Volume 4 (2013), pp. 383-387 | DOI
[15] Intrinsic photoisomerization dynamics of protonated Schiff-base retinal, Nat. Commun., Volume 10 (2019), 1210 | DOI
[16] Conical intersections and the mechanism of singlet photoreactions, Angew. Chem., Int. Ed. Engl., Volume 34 (1995), pp. 549-551 | DOI
[17] Isomerization through conical intersections, Annu. Rev. Phys. Chem., Volume 58 (2007), pp. 613-634 | DOI
[18] Backbone modification of retinal induces protein-like excited state dynamics in solution, J. Am. Chem. Soc., Volume 134 (2012), pp. 8318-8320 | DOI
[19] 100 fs photo-isomerization with vibrational coherences but low quantum yield in Anabaena Sensory Rhodopsin, Phys. Chem. Chem. Phys., Volume 17 (2015), pp. 25429-25439 | DOI
[20] Vibrational coherence and quantum yield of retinal-chromophore-inspired molecular switches, Faraday Discuss., Volume 221 (2020), pp. 299-321 | DOI
[21] Population branching in the conical intersection of the retinal chromophore revealed by multipulse ultrafast optical spectroscopy, J. Am. Chem. Soc., Volume 134 (2012), pp. 955-961 | DOI
[22] Optomechanical control of quantum yield in trans–cis ultrafast photoisomerization of a retinal chromophore model, Angew. Chem., Int. Ed. Engl., Volume 56 (2017), pp. 3842-3846 | DOI
[23] Evidence for a vibrational phase-dependent isotope effect on the photochemistry of vision, Nat. Chem., Volume 10 (2018), pp. 449-455 | DOI
[24] Retinal proteins: photochemistry and optogenetics, Bull. Chem. Soc. Japan, Volume 93 (2020), pp. 76-85 | DOI
[25] Mechanism of voltage-sensitive fluorescence in a microbial rhodopsin, Proc. Natl Acad. Sci. USA, Volume 110 (2013), pp. 5939-5944 | DOI
[26] Molecular rotary motors: unidirectional motion around double bonds, Proc. Natl Acad. Sci. USA, Volume 115 (2018), pp. 9423-9431 | DOI
[27] The retinal conformation and its environment in Rhodopsin in light of a new 2.2 Å crystal structure, J. Mol. Biol., Volume 342 (2004), pp. 571-583 | DOI
[28] Structure of bacteriorhodopsin at 1.55 Å resolution 1, J. Mol. Biol., Volume 291 (1999), pp. 899-911 | DOI
[29] Rapid-flow resonance Raman spectroscopy of photolabile molecules: rhodopsin and isorhodopsin, Proc. Natl Acad. Sci. USA, Volume 73 (1976), pp. 1-5 | DOI
[30] Assignment and interpretation of hydrogen out-of-plane vibrations in the resonance Raman spectra of rhodopsin and bathorhodopsin, Biochemistry, Volume 21 (1982), pp. 384-393 | DOI
[31] The first step in vision: femtosecond isomerization of rhodopsin, Science, Volume 254 (1991), pp. 412-415 | DOI
[32] Anti-stokes Raman study of vibrational cooling dynamics in the primary photochemistry of rhodopsin, J. Phys. Chem., Volume 106 (2002), pp. 8508-8515 | DOI
[33] Dual photoisomerization on distinct potential energy surfaces in a UV-absorbing rhodopsin, J. Am. Chem. Soc., Volume 142 (2020), pp. 11464-11473 | DOI
[34] Resonant optical rectification in bacteriorhodopsin, Proc. Natl Acad. Sci. USA, Volume 101 (2004), pp. 7971-7975 | DOI
[35] Retinal has a highly dipolar vertically excited singlet state: implications for vision, Proc. Natl Acad. Sci. USA, Volume 73 (1976), pp. 2169-2173 | DOI
[36] Physical origin of the opsin shift of bacteriorhodopsin. Comprehensive analysis based on medium effect theory of absorption spectra, J. Am. Chem. Soc., Volume 120 (1998), pp. 4459-4470 | DOI
[37] Combined QM/MM study of the opsin shift in bacteriorhodopsin, J. Comput. Chem., Volume 23 (2002), pp. 96-105 | DOI
[38] Direct QM/MM excited-state dynamics of retinal protonated Schiff base in isolation and methanol solution, J. Phys. Chem. B, Volume 119 (2015), pp. 704-714 | DOI
[39] Mechanism of ultrafast non-reactive deactivation of the retinal chromophore in non-polar solvents, Phys. Chem. Chem. Phys., Volume 19 (2017), pp. 25970-25978 | DOI
[40] Comparative investigation of the photoisomerization of the protonated unprotonated n-butylamine Schiff bases of 9-cis-, 11-cis-, 13-cis-, and all-trans-retinals, J. Am. Chem. Soc., Volume 108 (1986), pp. 1245-1251 | DOI
[41] A comprehensive investigation of the mechanism and photophysics of isomerization of a protonated and unprotonated Schiff base of 11-cis-retinal, J. Am. Chem. Soc., Volume 107 (1985), pp. 1477-1485 | DOI
[42] Effect of protonation on the isomerization properties of n-butylamine Schiff base of isomeric retinal as revealed by direct HPLC analyses: selection of isomerization pathways by retinal proteins, Photochem. Photobiol., Volume 54 (1991), pp. 433-443 | DOI
[43] Femtosecond spectroscopy of the photoisomerization of the protonated Schiff base of all-trans retinal, Chem. Phys. Lett., Volume 263 (1996), pp. 613-621 | DOI
[44] Heterogeneity and relaxation dynamics of the photoexcited retinal Schiff base cation in solution, J. Phys. Chem. B, Volume 113 (2009), pp. 4384-4393 | DOI
[45] Barrierless photoisomerization of 11-cis retinal protonated Schiff base in solution, J. Am. Chem. Soc., Volume 137 (2015), pp. 12434-12437 | DOI
[46] Absorption of Schiff-base retinal chromophores in vacuo, J. Am. Chem. Soc., Volume 127 (2005), pp. 12347-12350 | DOI
[47] The UV-visible action-absorption spectrum of all- trans and 11-cis protonated Schiff base retinal in the gas phase, Phys. Chem. Chem. Phys., Volume 20 (2018), pp. 7190-7194
[48] Rhodopsin-like protein from the purple membrane of Halobacterium halobium, Nature New Biol., Volume 233 (1971), pp. 149-152 | DOI
[49] Femtosecond spectroscopy of the first events of the photochemical cycle in bacteriorhodopsin, Chem. Phys. Lett., Volume 117 (1985), pp. 1-7 | DOI
[50] Early picosecond events in the photocycle of bacteriorhodopsin, Biophys. J., Volume 49 (1986), pp. 651-662 | DOI
[51] Femtosecond time-resolved fluorescence spectroscopy of bacteriorhodopsin: direct observation of excited state dynamics in the primary step of the proton pump cycle, Biophys. Chem., Volume 48 (1993), pp. 101-111 | DOI
[52] Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization, Science, Volume 297 (2002), pp. 822-825 | DOI
[53] The quantum yield of bacteriorhodopsin, FEBS Lett., Volume 263 (1990), pp. 269-273 | DOI
[54] Quantum efficiency of the photochemical cycle of bacteriorhodopsin, Biophys. J., Volume 58 (1990), pp. 597-608 | DOI
[55] Photochemical quantum yield of bacteriorhodopsin from resonance Raman scattering as a probe for photolysis, Chem. Phys., Volume 131 (1989), pp. 17-29 | DOI
[56] Protein catalysis of the retinal subpicosecond photoisomerization in the primary process of bacteriorhodopsin photosynthesis, Science, Volume 261 (1993), pp. 891-894 | DOI
[57] Photoisomerization quantum yield apparent energy content of the K intermediate in the photocycles of bacteriorhodopsin, its mutants D85N, R82Q, and D212N, and deionized blue bacteriorhodopsin, J. Phys. Chem., Volume 100 (1996), pp. 2391-2398 | DOI
[58] Femtosecond spectroscopy of acidified and neutral bacteriorhodopsin, Laser Applications in Life Sciences (Proceedings), Volume 1403 (1991), pp. 407-416 | DOI
[59] Ultrafast protein dynamics of bacteriorhodopsin probed by photon echo and transient absorption spectroscopy, J. Phys. Chem. B, Volume 106 (2002), pp. 6067-6080 | DOI
[60] A light-driven sodium ion pump in marine bacteria, Nat. Commun., Volume 4 (2013), 1678 | DOI
[61] et al. Structural basis for Na transport mechanism by a light-driven Na pump, Nature, Volume 521 (2015), pp. 48-53 | DOI
[62] Structure of the light-driven sodium pump KR2 and its implications for optogenetics, FEBS J., Volume 283 (2016), pp. 1232-1238 | DOI
[63] et al. Femtosecond-to-millisecond structural changes in a light-driven sodium pump, Nature, Volume 583 (2020), pp. 314-318 | DOI
[64] The photochemistry of sodium ion pump rhodopsin observed by watermarked femto- to submillisecond stimulated Raman spectroscopy, Phys. Chem. Chem. Phys., Volume 18 (2016), pp. 24729-24736 | DOI
[65] Ultrafast photoreaction dynamics of a light-driven sodium-ion-pumping retinal protein from Krokinobacter eikastus revealed by femtosecond time-resolved absorption spectroscopy, J. Phys. Chem. Lett., Volume 6 (2015), pp. 4481-4486 | DOI
[66] Origin of the reactive and nonreactive excited states in the primary reaction of rhodopsins: pH dependence of femtosecond absorption of light-driven sodium ion pump rhodopsin KR2, J. Phys. Chem. B, Volume 122 (2018), pp. 4784-4792 | DOI
[67] First steps of retinal photoisomerization in proteorhodopsin, Biophys. J., Volume 91 (2006), pp. 255-262 | DOI
[68] Ultrafast pump–probe study of the primary photoreaction process in pharaonis halorhodopsin: halide ion dependence and isomerization dynamics, J. Phys. Chem. B, Volume 112 (2008), pp. 12795-12800 | DOI
[69] Acid–base equilibrium of the chromophore counterion results in distinct photoisomerization reactivity in the primary event of proteorhodopsin, Phys. Chem. Chem. Phys., Volume 21 (2019), pp. 25728-25734 | DOI
[70] Understanding colour tuning rules and predicting absorption wavelengths of microbial rhodopsins by data-driven machine-learning approach, Sci. Rep., Volume 8 (2018), 15580
[71] Optogenetic tools for subcellular applications in neuroscience, Neuron, Volume 96 (2017), pp. 572-603 | DOI
[72] et al. Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser, Science (2018), eaat0094 | DOI
[73] et al. Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin, Nat. Commun., Volume 10 (2019), 3177 | DOI
[74] Probing the ultrafast charge translocation of photoexcited retinal in bacteriorhodopsin, Science, Volume 309 (2005), pp. 917-920 | DOI
[75] Functional electric field changes in photoactivated proteins revealed by ultrafast Stark spectroscopy of the Trp residues, Proc. Natl Acad. Sci. USA, Volume 106 (2009), pp. 7718-7723 | DOI
[76] Protein dynamics preceding photoisomerization of the retinal chromophore in bacteriorhodopsin revealed by deep-UV femtosecond stimulated Raman spectroscopy, J. Phys. Chem. Lett., Volume 10 (2019), pp. 5422-5427 | DOI
[77] Electronic excitations in finite and infinite polyenes, Phys. Rev. B, Volume 36 (1987), pp. 4337-4358 | DOI
[78] The photoisomerization of retinal in bacteriorhodopsin: experimental evidence for a three-state model, Proc. Natl Acad. Sci. USA, Volume 93 (1996), pp. 15124-15129 | DOI
[79] Solvent effects on the radiative and nonradiative decay of a model of the rhodopsin chromophore, J. Chem. Theor. Comput., Volume 7 (2011), pp. 4050-4059 | DOI
[80] Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization, Proc. Natl Acad. Sci. USA, Volume 97 (2000), pp. 9379-9384 | DOI
[81] About the intrinsic photochemical properties of the 11-cis retinal chromophore: computational clues for a trap state and a lever effect in Rhodopsin catalysis, Theor. Chem. Acc., Volume 118 (2007), pp. 173-183 | DOI
[82] Evidence for the two-state-two-mode model in retinal protonated Schiff-bases from pump degenerate four-wave-mixing experiments, Phys. Chem. Chem. Phys., Volume 14 (2012), pp. 13979-13988 | DOI
[83] Theory and simulation of the ultrafast double-bond isomerization of biological chromophores, Chem. Rev., Volume 117 (2017), pp. 13502-13565 | DOI
[84] Impact of electronic state mixing on the photoisomerization time scale of the retinal chromophore, J. Phys. Chem. Lett., Volume 8 (2017), pp. 5222-5227 | DOI
[85] Electronic state mixing controls the photoreactivity of a rhodopsin with all-trans chromophore analogues, J. Phys. Chem. Lett., Volume 9 (2018), pp. 6350-6355 | DOI
[86] Molecular bases for the selection of the chromophore of animal rhodopsins, Proc. Natl Acad. Sci. USA, Volume 112 (2015), pp. 15297-15302 | DOI
[87] Excited-state vibronic dynamics of bacteriorhodopsin from two-dimensional electronic photon echo spectroscopy and multiconfigurational quantum chemistry, J. Phys. Chem. Lett. (2020), pp. 3889-3896 | DOI
[88] Fine tuning of retinal photoinduced decay in solution, J. Phys. Chem. Lett., Volume 8 (2017), pp. 4407-4412 | DOI
[89] Vibrational analysis of the 13-cis-retinal chromophore in dark-adapted bacteriorhodopsin, J. Phys. Chem., Volume 91 (1987), pp. 804-819 | DOI
[90] Probing ultrafast photochemistry of retinal proteins in the near-IR: bacteriorhodopsin and Anabaena Sensory Rhodopsin versus retinal protonated Schiff base in solution, J. Phys. Chem. B, Volume 117 (2013), pp. 4670-4679 | DOI
[91] Mapping the ultrafast vibrational dynamics of all- trans and 13- cis retinal isomerization in Anabaena Sensory Rhodopsin, Phys. Chem. Chem. Phys., Volume 20 (2018), pp. 30159-30173
[92] Photochemistry of visual pigment chromophore models by ab initio molecular dynamics, J. Phys. Chem. B, Volume 111 (2007), pp. 3782-3788 | DOI
[93] Vibrationally coherent photochemistry in the femtosecond primary event of vision, Science, Volume 266 (1994), pp. 422-424 | DOI
[94] Conical intersection dynamics of the primary photoisomerization event in vision, Nature, Volume 467 (2010), pp. 440-443 | DOI
[95] Local vibrational coherences drive the primary photochemistry of vision, Nat. Chem., Volume 7 (2015), pp. 980-986 | DOI
[96] The primary photochemistry of vision occurs at the molecular speed limit, J. Phys. Chem. B, Volume 121 (2017), pp. 4040-4047 | DOI
[97] Asymmetric toggling of a natural photoswitch: ultrafast spectroscopy of Anabaena Sensory Rhodopsin, J. Am. Chem. Soc., Volume 133 (2011), pp. 20922-20932 | DOI
[98] Synthetic control of retinal photochemistry and photophysics in solution, J. Am. Chem. Soc., Volume 136 (2014), pp. 2650-2658 | DOI
[99] Demonstration of a sensory rhodopsin in eubacteria, Mol. Microbiol., Volume 47 (2003), pp. 1513-1522 | DOI
[100] Photoreactions and structural changes of Anabaena Sensory Rhodopsin, Sens. Basel., Volume 9 (2009), pp. 9741-9804 | DOI
[101] Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 Å, Science, Volume 306 (2004), pp. 1390-1393 | DOI
[102] FTIR study of the photoisomerization processes in the 13-cis and all-trans Forms of Anabaena sensory rhodopsin at 77 K, Biochemistry, Volume 45 (2006), pp. 4362-4370 | DOI
[103] Ultrafast photochemistry of anabaena sensory rhodopsin: experiment and theory, Biochim. Biophys. Acta BBA - Bioenerg., Volume 1837 (2014), pp. 589-597 | DOI
[104] Anabaena sensory rhodopsin is a light-driven unidirectional rotor, Proc. Natl Acad. Sci. USA, Volume 107 (2010), pp. 21322-21326 | DOI
[105] Effect of point mutations on the ultrafast photo-isomerization of anabaena sensory rhodopsin, Faraday Discuss., Volume 207 (2018), pp. 55-75 | DOI
[106] An average solvent electrostatic configuration protocol for QM/MM free energy optimization: implementation and application to rhodopsin systems, J. Chem. Theory Comput., Volume 13 (2017), pp. 6391-6404 | DOI
[107] Pump-degenerate four wave mixing as a technique for analyzing structural and electronic evolution: multidimensional time-resolved dynamics near a conical intersection, J. Phys. Chem. A, Volume 111 (2007), pp. 10517-10529 | DOI
[108] Multidimensional spectroscopy of beta-carotene: vibrational cooling in the excited state, Arch. Biochem. Biophys., Volume 483 (2009), pp. 219-223 | DOI
[109] Multidimensional vibrational coherence spectroscopy, Multidimensional Time-Resolved Spectroscopy (T. Buckup; J. Léonard, eds.), Springer International Publishing, Cham, 2019, pp. 207-245 | DOI
[110] Multidimensional time-resolved spectroscopy of vibrational coherence in biopolyenes, Annu. Rev. Phys. Chem., Volume 65 (2015), pp. 39-57 | DOI
[111] Point mutation of Anabaena Sensory Rhodopsin enhances ground-state hydrogen out-of-plane wag Raman activity, J. Phys. Chem. Lett., Volume 10 (2019), pp. 1012-1017 | DOI
[112] Fluorescence enhancement of a microbial rhodopsin via electronic reprogramming, J. Am. Chem. Soc., Volume 141 (2019), pp. 262-271 | DOI
[113] et al. Toward automatic rhodopsin modeling as a tool for high-throughput computational photobiology, J. Chem. Theor. Comput., Volume 12 (2016), pp. 6020-6034 | DOI
[114] Quantum chemical modeling and preparation of a biomimetic photochemical switch, Angew. Chem. Int. Ed. Engl., Volume 119 (2007), pp. 418-424 | DOI
[115] et al. An artificial molecular switch that mimics the visual pigment and completes its photocycle in picoseconds, Proc. Natl Acad. Sci. USA, Volume 105 (2008), pp. 17642-17647 | DOI
[116] The art of building small: from molecular switches to motors (Nobel lecture), Angew. Chem. Int. Ed., Volume 56 (2017), pp. 11060-11078 | DOI
[117] Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin, Proc. Natl Acad. Sci. USA, Volume 86 (1989), pp. 8309-8313 | DOI
[118] Engineering the vibrational coherence of vision into a synthetic molecular device, Nat. Commun., Volume 9 (2018), 313 | DOI
[119] Coherent ultrafast torsional motion and isomerization of a biomimetic dipolar photoswitch, Phys. Chem. Chem. Phys., Volume 12 (2010), pp. 3178-3187 | DOI
[120] Photoisomerization and relaxation dynamics of a structurally modified biomimetic photoswitch, J. Phys. Chem. A, Volume 116 (2012), pp. 3527-3533 | DOI
[121] Mechanistic origin of the vibrational coherence accompanying the photoreaction of biomimetic molecular switches, Chem. Eur. J., Volume 18 (2012), pp. 15296-15304 | DOI
[122] Isomer-dependent vibrational coherence in ultrafast photoisomerization, New J. Phys., Volume 15 (2013), pp. 105022-105032 | DOI
[123] Synthesis, spectroscopy and QM/MM simulations of a biomimetic ultrafast light-driven molecular motor, Photochem. Photobiol. Sci., Volume 18 (2019), pp. 2259-2269 | DOI
[124] pH dependence of Anabaena Sensory Rhodopsin: retinal isomer composition, rate of dark adaptation, and photochemistry, J. Phys. Chem. B, Volume 118 (2014), pp. 8995-9006 | DOI
[125] pH-dependent absorption spectrum of a protein: a minimal electrostatic model of Anabaena Sensory Rhodopsin, Phys. Chem. Chem. Phys., Volume 19 (2017), pp. 14073-14084 | DOI
[126] Illumination guidelines for ultrafast pump–probe experiments by serial femtosecond crystallography, Nat. Methods, Volume 17 (2020), pp. 681-684 | DOI
[127] Probing ultrafast dynamics during and after passing through conical intersections, Phys. Chem. Chem. Phys., Volume 21 (2019), pp. 13902-13905 | DOI
[128] Mapping the complete reaction path of a complex photochemical reaction, Phys. Rev. Lett., Volume 120 (2018), 183003 | DOI
[129] Femtosecond extreme ultraviolet photoelectron spectroscopy of organic molecules in aqueous solution, J. Phys. Chem. Lett., Volume 9 (2018), pp. 6649-6655 | DOI
Cited by Sources:
Comments - Policy