Heterostructures made from van der Waals (vdW) materials provide a template to investigate a wealth of proximity effects at atomically sharp two-dimensional (2D) heterointerfaces. In particular, near-field charge and energy transfer in vdW heterostructures made from semiconducting transition metal dichalcogenides (TMD) have recently attracted interest to design model 2D “donor–acceptor” systems and new optoelectronic components. Here, using Raman scattering and photoluminescence spectroscopies, we report a comprehensive characterization of a molybedenum diselenide () monolayer deposited onto hexagonal boron nitride (hBN) and capped by mono- and bilayer graphene. Along with the atomically flat hBN susbstrate, a single graphene epilayer is sufficient to passivate the layer and provides a homogenous environment without the need for an extra capping layer. As a result, we do not observe photo-induced doping in our heterostructure and the excitonic linewidth gets as narrow as 1.6 meV, approaching the homogeneous limit. The semi-metallic graphene layer neutralizes the 2D semiconductor and enables picosecond non-radiative energy transfer that quenches radiative recombination from long-lived states. Hence, emission from the neutral band edge exciton largely dominates the photoluminescence spectrum of the /graphene heterostructure. Since this exciton has a picosecond radiative lifetime at low temperature, comparable with the non-radiative transfer time, its low-temperature photoluminescence is only quenched by a factor of and in the presence of mono- and bilayer graphene, respectively. Finally, while our bare on hBN exhibits negligible valley polarization at low temperature and under near-resonant excitation, we show that interfacing with graphene yields a single-line emitter with degrees of valley polarization and coherence up to 15 %.
Publié le :
Luis Enrique Parra López 1 ; Loïc Moczko 1 ; Joanna Wolff 1 ; Aditya Singh 2, 1 ; Etienne Lorchat 1 ; Michelangelo Romeo 1 ; Takashi Taniguchi 3 ; Kenji Watanabe 4 ; Stéphane Berciaud 5, 1
@article{CRPHYS_2021__22_S4_77_0, author = {Luis Enrique Parra L\'opez and Lo{\"\i}c Moczko and Joanna Wolff and Aditya Singh and Etienne Lorchat and Michelangelo Romeo and Takashi Taniguchi and Kenji Watanabe and St\'ephane Berciaud}, title = {Single- and narrow-line photoluminescence in a boron nitride-supported {MoSe}$_2$/graphene heterostructure}, journal = {Comptes Rendus. Physique}, pages = {77--88}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {S4}, year = {2021}, doi = {10.5802/crphys.58}, language = {en}, }
TY - JOUR AU - Luis Enrique Parra López AU - Loïc Moczko AU - Joanna Wolff AU - Aditya Singh AU - Etienne Lorchat AU - Michelangelo Romeo AU - Takashi Taniguchi AU - Kenji Watanabe AU - Stéphane Berciaud TI - Single- and narrow-line photoluminescence in a boron nitride-supported MoSe$_2$/graphene heterostructure JO - Comptes Rendus. Physique PY - 2021 SP - 77 EP - 88 VL - 22 IS - S4 PB - Académie des sciences, Paris DO - 10.5802/crphys.58 LA - en ID - CRPHYS_2021__22_S4_77_0 ER -
%0 Journal Article %A Luis Enrique Parra López %A Loïc Moczko %A Joanna Wolff %A Aditya Singh %A Etienne Lorchat %A Michelangelo Romeo %A Takashi Taniguchi %A Kenji Watanabe %A Stéphane Berciaud %T Single- and narrow-line photoluminescence in a boron nitride-supported MoSe$_2$/graphene heterostructure %J Comptes Rendus. Physique %D 2021 %P 77-88 %V 22 %N S4 %I Académie des sciences, Paris %R 10.5802/crphys.58 %G en %F CRPHYS_2021__22_S4_77_0
Luis Enrique Parra López; Loïc Moczko; Joanna Wolff; Aditya Singh; Etienne Lorchat; Michelangelo Romeo; Takashi Taniguchi; Kenji Watanabe; Stéphane Berciaud. Single- and narrow-line photoluminescence in a boron nitride-supported MoSe$_2$/graphene heterostructure. Comptes Rendus. Physique, Volume 22 (2021) no. S4, pp. 77-88. doi : 10.5802/crphys.58. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.58/
[1] Atomically thin MoS: a new direct-gap semiconductor, Phys. Rev. Lett., Volume 105 (2010) no. 13, 136805
[2] Emerging photoluminescence in monolayer MoS, Nano Lett., Volume 10 (2010) no. 4, pp. 1271-1275 | DOI
[3] Colloquium: excitons in atomically thin transition metal dichalcogenides, Rev. Mod. Phys., Volume 90 (2018), 021001 | DOI | MR
[4] Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields, Nat. Commun., Volume 10 (2019) no. 1, 4172 | DOI
[5] Spin and pseudospins in layered transition metal dichalcogenides, Nat. Phys., Volume 10 (2014) no. 5, pp. 343-350 | DOI
[6] Valleytronics in 2D materials, Nat. Rev. Mater., Volume 1 (2016), 16055 | DOI
[7] Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photonics, Volume 10 (2016) no. 4, pp. 216-226 | DOI
[8] Observation of magnetic proximity effect using resonant optical spectroscopy of an electrically tunable MoSeCrBr heterostructure, Phys. Rev. Lett., Volume 124 (2020), 197401 | DOI
[9] Interplay between spin proximity effect and charge-dependent exciton dynamics in MoSe2/CrBr3 van der Waals heterostructures, Nat. Commun., Volume 11 (2020) no. 1, 6021 | DOI
[10] Picosecond photoresponse in van der Waals heterostructures, Nat. Nanotechnol., Volume 11 (2016) no. 1, pp. 42-46 | DOI
[11] Opto-valleytronic spin injection in monolayer MoS/few-layer graphene hybrid spin valves, Nano Lett., Volume 17 (2017) no. 6, pp. 3877-3883 | DOI
[12] Optospintronics in graphene via proximity coupling, ACS Nano, Volume 11 (2017) no. 11, pp. 11678-11686 | DOI
[13] The electronic properties of graphene, Rev. Mod. Phys., Volume 81 (2009), pp. 109-162 | DOI
[14] Optical spectroscopy of graphene: from the far infrared to the ultraviolet, Solid State Commun., Volume 152 (2012) no. 15, pp. 1341-1349 | DOI
[15] Room-temperature valley polarization and coherence in transition metal dichalcogenide–graphene van der waals heterostructures, ACS Photonics, Volume 5 (2018) no. 12, pp. 5047-5054 | DOI
[16] Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures, Nat. Commun., Volume 5 (2014), 5622
[17] Charge versus energy transfer in atomically thin graphene-transition metal dichalcogenide van der Waals heterostructures, Phys. Rev. X, Volume 8 (2018), 011007
[18] Photocarrier generation from interlayer charge-transfer transitions in WS-graphene heterostructures, Sci. Adv., Volume 4 (2018) no. 2, e1700324 | DOI
[19] Theory of optically induced Förster coupling in van der Waals coupled heterostructures, Phys. Rev. B, Volume 99 (2019), 035420 | DOI
[20] Exciton radiative lifetime in transition metal dichalcogenide monolayers, Phys. Rev. B, Volume 93 (2016), 205423 | DOI
[21] Control of the exciton radiative lifetime in van der Waals heterostructures, Phys. Rev. Lett., Volume 123 (2019), 067401
[22] Filtering the photoluminescence spectra of atomically thin semiconductors with graphene, Nat. Nanotechnol., Volume 15 (2020) no. 4, pp. 283-288 | DOI
[23] Tuning the graphene work function by electric field effect, Nano Lett., Volume 9 (2009) no. 10, pp. 3430-3434 | DOI
[24] Quasiparticle band-edge energy and band offsets of monolayer of molybdenum and tungsten chalcogenides, Appl. Phys. Lett., Volume 103 (2013) no. 4, 042106 | DOI
[25] Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures, Sci. Adv., Volume 3 (2017) no. 2, e1601832 | DOI
[26] Exciton broadening in WS/graphene heterostructures, Phys. Rev. B, Volume 96 (2017), 205401
[27] Atmospheric oxygen binding and hole doping in deformed graphene on a SiO substrate, Nano Lett., Volume 10 (2010) no. 12, pp. 4944-4951 | DOI
[28] Photogating of mono-and few-layer MoS, Appl. Phys. Lett., Volume 106 (2015) no. 12, 122103 | DOI
[29] Electron redistribution and energy transfer in graphene/MoS2 heterostructure, Appl. Phys. Lett., Volume 114 (2019) no. 11, 113103
[30] et al. Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol., Volume 5 (2010) no. 10, pp. 722-726 | DOI
[31] Excitonic linewidth approaching the homogeneous limit in MoS-based van der Waals heterostructures, Phys. Rev. X, Volume 7 (2017), 021026
[32] Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers, 2D Mater., Volume 4 (2017) no. 3, 031011 | DOI
[33] Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe, Phys. Rev. Lett., Volume 120 (2018), 037401 | DOI
[34] Large excitonic reflectivity of monolayer MoSe encapsulated in hexagonal boron nitride, Phys. Rev. Lett., Volume 120 (2018), 037402 | DOI
[35] Controlling excitons in an atomically thin membrane with a mirror, Phys. Rev. Lett., Volume 124 (2020), 027401 | DOI
[36] Polarization and time-resolved photoluminescence spectroscopy of excitons in MoSe monolayers, Appl. Phys. Lett., Volume 106 (2015) no. 11, 112101 | DOI
[37] Optical polarization and intervalley scattering in single layers of MoS and MoSe, Sci. Rep., Volume 6 (2016), 25041 | DOI
[38] et al. Electrical control of neutral and charged excitons in a monolayer semiconductor, Nat. Commun., Volume 4 (2013), 1474
[39] et al. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides, Nat. Commun., Volume 10 (2019) no. 1, 3382 | DOI
[40] Interplay of charge transfer and disorder in optoelectronic response in Graphene/hBN/MoS2 van der Waals heterostructures, 2D Mater., Volume 7 (2020), 025043 | DOI
[41] Ultrahigh-gain photodetectors based on atomically thin graphene-MoS heterostructures, Sci. Rep., Volume 4 (2014), 3826
[42] Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol., Volume 8 (2013) no. 4, pp. 235-246 | DOI
[43] Breakdown of the adiabatic Born-Oppenheimer approximation in graphene, Nat. Mater., Volume 6 (2007) no. 3, pp. 198-201 | DOI
[44] Electric field effect tuning of electron-phonon coupling in graphene, Phys. Rev. Lett., Volume 98 (2007) no. 16, 166802
[45] Raman spectroscopy of electrochemically gated graphene transistors: geometrical capacitance, electron-phonon, electron-electron, and electron-defect scattering, Phys. Rev. B, Volume 91 (2015), 205413 | DOI
[46] Observation of anomalous phonon softening in bilayer graphene, Phys. Rev. Lett., Volume 101 (2008), 136804
[47] Optical separation of mechanical strain from charge doping in graphene, Nat. Commun., Volume 3 (2012), 1024
[48] Probing built-in strain in freestanding graphene monolayers by Raman spectroscopy, Phys. Status Solidi (b), Volume 250 (2013) no. 12, pp. 2681-2686 | DOI
[49] All-optical blister test of suspended graphene using micro-Raman spectroscopy, Phys. Rev. Appl., Volume 2 (2014), 054008 | DOI
[50] Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor, Nat. Nanotechnol., Volume 3 (2008) no. 4, pp. 210-215 | DOI
[51] Coulomb engineering of the bandgap and excitons in two-dimensional materials, Nat. Commun., Volume 8 (2017), 15251 | DOI
[52] Energy transfer from individual semiconductor nanocrystals to graphene, ACS Nano, Volume 4 (2010) no. 5, pp. 2964-2968 | DOI
[53] Prominent room temperature valley polarization in WS2/graphene heterostructures grown by chemical vapor deposition, Appl. Phys. Lett., Volume 116 (2020) no. 20, 203102 | DOI
[54] Direct evidence for efficient ultrafast charge separation in epitaxial WS2/graphene heterostructures, Sci. Adv., Volume 6 (2020) no. 20, eaay0761 | DOI
[55] Scanning tunneling microscope-induced excitonic luminescence of a two-dimensional semiconductor, Phys. Rev. Lett., Volume 123 (2019), 027402 | DOI
[56] et al. Extraordinary high room-temperature carrier mobility in graphene-WSe heterostructures (2019) (https://arxiv.org/abs/1909.09523)
[57] Control of semiconductor emitter frequency by increasing polariton momenta, Nat. Photonics, Volume 12 (2018) no. 7, pp. 423-429 | DOI
[58] Nano-imaging of intersubband transitions in van der Waals quantum wells, Nat. Nanotechnol., Volume 13 (2018) no. 11, pp. 1035-1041 | DOI
[59] Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping, 2D Mater., Volume 1 (2014), 011002 | DOI
Cité par Sources :
Commentaires - Politique