Comptes Rendus
Hyperspectral study of the coupling between trions in WSe 2 monolayers to a circular Bragg grating cavity
Comptes Rendus. Physique, Volume 22 (2021) no. S4, pp. 97-105.

Circular Bragg gratings compose a very appealing photonic platform and nanophotonic interface for the controlled light-matter coupling of emitters in nanomaterials. Here, we discuss the integration of exfoliated monolayers of WSe 2 with GaInP Bragg gratings. We apply hyperspectral imaging to our coupled system, and explore the spatio-spectral characteristics of our coupled monolayer-cavity system. Our work represents a valuable step towards the integration of atomically thin quantum emitters in semiconductor nanophotonic cavities.

Supplementary Materials:
Supplementary material for this article is supplied as a separate file:

Première publication :
Publié le :
DOI : 10.5802/crphys.76
Mots clés : Circular Bragg grating, 2D materials, WSe$_2$, Quantum electrodynamics, Light matter coupling, Excitons

Oliver Iff 1 ; Marcelo Davanco 2 ; Simon Betzold 1 ; Magdalena Moczała-Dusanowska 1 ; Matthias Wurdack 3 ; Monika Emmerling 1 ; Sven Höfling 4, 1 ; Christian Schneider 5

1 Technische Physik and Wilhelm-Conrad-Röntgen Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, Würzburg-97074, Germany
2 Center for Nanoscale Science and Technology, NIST, Gaithersburg, 100 Bureau Drive, MD 20899, USA
3 Nonlinear Physics Centre, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
4 SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK
5 Institute of Physics, University of Oldenburg, 26129 Oldenburg, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2021__22_S4_97_0,
     author = {Oliver Iff and Marcelo Davanco and Simon Betzold and Magdalena Mocza{\l}a-Dusanowska and Matthias Wurdack and Monika Emmerling and Sven H\"ofling and Christian Schneider},
     title = {Hyperspectral study of the coupling between trions in {WSe}$_2$ monolayers to a circular {Bragg} grating cavity},
     journal = {Comptes Rendus. Physique},
     pages = {97--105},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S4},
     year = {2021},
     doi = {10.5802/crphys.76},
     language = {en},
}
TY  - JOUR
AU  - Oliver Iff
AU  - Marcelo Davanco
AU  - Simon Betzold
AU  - Magdalena Moczała-Dusanowska
AU  - Matthias Wurdack
AU  - Monika Emmerling
AU  - Sven Höfling
AU  - Christian Schneider
TI  - Hyperspectral study of the coupling between trions in WSe$_2$ monolayers to a circular Bragg grating cavity
JO  - Comptes Rendus. Physique
PY  - 2021
SP  - 97
EP  - 105
VL  - 22
IS  - S4
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.76
LA  - en
ID  - CRPHYS_2021__22_S4_97_0
ER  - 
%0 Journal Article
%A Oliver Iff
%A Marcelo Davanco
%A Simon Betzold
%A Magdalena Moczała-Dusanowska
%A Matthias Wurdack
%A Monika Emmerling
%A Sven Höfling
%A Christian Schneider
%T Hyperspectral study of the coupling between trions in WSe$_2$ monolayers to a circular Bragg grating cavity
%J Comptes Rendus. Physique
%D 2021
%P 97-105
%V 22
%N S4
%I Académie des sciences, Paris
%R 10.5802/crphys.76
%G en
%F CRPHYS_2021__22_S4_97_0
Oliver Iff; Marcelo Davanco; Simon Betzold; Magdalena Moczała-Dusanowska; Matthias Wurdack; Monika Emmerling; Sven Höfling; Christian Schneider. Hyperspectral study of the coupling between trions in WSe$_2$ monolayers to a circular Bragg grating cavity. Comptes Rendus. Physique, Volume 22 (2021) no. S4, pp. 97-105. doi : 10.5802/crphys.76. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.76/

[1] Q. H. Wang; K. Kalantar-Zadeh; A. Kis; J. N. Coleman; M. S. Strano Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., Volume 7 (2012) no. 11, pp. 699-712 | DOI

[2] G. Wang; A. Chernikov; M. M. Glazov; T. F. Heinz; X. Marie; T. Amand; B. Urbaszek Colloquium: Excitons in atomically thin transition metal dichalcogenides, Rev. Mod. Phys., Volume 90 (2018) no. 2, 021001 | DOI | MR

[3] K. F. Mak; J. Shan Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photonics, Volume 10 (2016) no. 4, pp. 216-226 | DOI

[4] J. S. Ponraj; Z.-Q. Xu; S. C. Dhanabalan; H. Mu; Y. Wang; J. Yuan; P. Li et al. Photonics and optoelectronics of two-dimensional materials beyond graphene, Nanotechnology, Volume 27 (2016) no. 46, 462001

[5] J. Kern; A. Trügler; I. Niehues; J. Ewering; R. Schmidt; R. Schneider; S. Najmaei; A. George et al. Nanoantenna-enhanced light-matter interaction in atomically thin WS 2 , ACS Photonics, Volume 2 (2015) no. 9, pp. 1260-1265 | DOI

[6] S. Butun; S. Tongay; K. Aydin Enhanced light emission from large-area monolayer MoS 2 using plasmonic nanodisc arrays, Nano Lett., Volume 15 (2015) no. 4, pp. 2700-2704 | DOI

[7] Y. J. Noori; Y. Cao; J. Roberts; C. Woodhead; R. Bernardo-Gavito; P. Tovee; R. J. Young Photonic crystals for enhanced light extraction from 2D materials, ACS Photonics, Volume 3 (2016) no. 12, pp. 2515-2520 | DOI

[8] N. Lundt; A. Maryński; E. Cherotchenko; A. Pant; X. Fan; S. Tongay; G. Sek et al. Monolayered MoSe 2 : A candidate for room temperature polaritonics, 2D Mater., Volume 4 (2016) no. 1, 015006 | DOI

[9] X. Liu; T. Galfsky; Z. Sun; F. Xia; E. C. Lin; Y. H. Lee; S. Kéna-Cohen; V. M. Menon Strong light-matter coupling in two-dimensional atomic crystals, Nat. Photonics, Volume 9 (2014) no. 1, pp. 30-34 | DOI

[10] Q. Wang; L. Sun; B. Zhang; C. Chen; X. Shen; W. Lu Direct observation of strong light-exciton coupling in thin WS 2 flakes, Opt. Express, Volume 24 (2016) no. 7, pp. 7151-7157 | DOI

[11] C. Schneider; M. M. Glazov; T. Korn; S. Höfling; B. Urbaszek Two-dimensional semiconductors in the regime of strong light-matter coupling, Nat. Commun., Volume 9 (2018) no. 1, 2695 | DOI

[12] H. Knopf; N. Lundt; T. Bucher; S. Höfling; S. Tongay; T. Taniguchi; K. Watanabe; I. Staude et al. Integration of atomically thin layers of transition metal dichalcogenides into high-Q, monolithic Bragg-cavities: an experimental platform for the enhancement of the optical interaction in 2D-materials, Opt. Mater. Express, Volume 9 (2019) no. 2, pp. 598-610 | DOI

[13] S. Schwarz; S. Dufferwiel; P. M. Walker; F. Withers; A. A. Trichet; M. Sich; F. Li et al. Two-dimensional metal-chalcogenide films in tunable optical microcavities, Nano Lett., Volume 14 (2014) no. 12, pp. 7003-7008 | DOI

[14] N. Lundt; Ł. Dusanowski; E. Sedov; P. Stepanov; M. M. Glazov; S. Klembt; M. Klaas; J. Beierlein et al. Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor, Nat. Nanotechnol., Volume 14 (2019) no. 8, pp. 770-775 | DOI

[15] C. Rupprecht; N. Lundt; M. Wurdack; P. Stepanov; E. Estrecho; M. Richard; E. A. Ostrovskaya et al. Micro-mechanical assembly and characterization of high-quality Fabry–Pérot microcavities for the integration of two-dimensional materials, Appl. Phys. Lett., Volume 118 (2021) no. 10, 103103 | DOI

[16] S. Wu; S. Buckley; A. M. Jones; J. S. Ross; N. J. Ghimire; J. Yan; D. G. Mandrus; W. Yao et al. Control of two-dimensional excitonic light emission via photonic crystal, 2D Mater., Volume 1 (2014) no. 1, 011001

[17] L. Zhang; R. Gogna; W. Burg; E. Tutuc; H. Deng Photonic-crystal exciton-polaritons in monolayer semiconductors, Nat. Commun., Volume 9 (2018) no. 1, 713

[18] S. Ates; L. Sapienza; M. Davanco; A. Badolato; K. Srinivasan Bright single-photon emission from a quantum dot in a circular bragg grating microcavity, IEEE J. Sel. Top. Quantum Electron., Volume 18 (2012) no. 6, pp. 1711-1721 | DOI

[19] J. Liu; R. Su; Y. Wei; B. Yao; S. F. C. da Silva; Y. Yu; J. Iles-Smith; K. Srinivasan et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability, Nat. Nanotechnol., Volume 14 (2019) no. 6, pp. 586-593 | DOI

[20] N. M. H. Duong; Z. Q. Xu; M. Kianinia; R. Su; Z. Liu; S. Kim; C. Bradac; T. T. Tran et al. Enhanced emission from WSe 2 monolayers coupled to circular bragg gratings, ACS Photonics, Volume 5 (2018) no. 10, pp. 3950-3955 | DOI

[21] A. M. Jones; H. Yu; N. J. Ghimire; S. Wu; G. Aivazian; J. S. Ross; B. Zhao; J. Yan et al. Optical generation of excitonic valley coherence in monolayer WSe 2 , Nat. Nanotechnol., Volume 8 (2013) no. 9, pp. 634-638 | DOI

[22] O. Iff; Y.-M. He; N. Lundt; S. Stoll; V. Baumann; S. Höfling; C. Schneider Substrate engineering for high-quality emission of free and localized excitons from atomic monolayers in hybrid architectures, Optica, Volume 4 (2017) no. 6, pp. 669-673 | DOI

[23] O. Iff; Q. Buchinger; M. Moczaa-Dusanowska; M. Kamp; S. Betzold; M. Davanco; K. Srinivasan; S. Tongay et al. Purcell-enhanced single photon source based on a deterministically placed WSe 2 monolayer quantum dot in a circular Bragg grating cavity, Nano Lett. (2021) | DOI

[24] F. Cadiz; E. Courtade; C. Robert; G. Wang; Y. Shen; H. Cai; T. Taniguchi; K. Watanabe; H. Carrere et al. Excitonic linewidth approaching the homogeneous limit in MoS 2 -based van der Waals heterostructures, Phys. Rev. X, Volume 7 (2017) no. 2, pp. 1-12

[25] L. N. Tripathi; O. Iff; S. Betzold; M. Emmerling; K. Moon; Y. J. Lee; S.-H. Kwon; S. Höfling; C. Schneider Spontaneous emission enhancement in strain-induced WSe 2 monolayer based quantum light sources on metallic surfaces, ACS Photonics, Volume 5 (2018) no. 5, pp. 1919-1926 | DOI

[26] J. M. Yi; V. Smirnov; X. Piao; J. Hong; H. Kollmann; M. Silies; W. Wang; P. Grob et al. Suppression of radiative damping and enhancement of second harmonic generation in bull’s eye nanoresonators, ACS Nano, Volume 10 (2016) no. 1, pp. 475-483

[27] A. Castellanos-Gomez; M. Buscema; R. Molenaar; V. Singh; L. Janssen; H. S. J. van der Zant; G. a. Steele Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping, 2D Mater., Volume 1 (2014) no. 1, 011002 | DOI

Cité par Sources :

Commentaires - Politique