Comptes Rendus
Hyperspectral study of the coupling between trions in WSe2 monolayers to a circular Bragg grating cavity
Comptes Rendus. Physique, Recent advances in 2D material physics, Volume 22 (2021) no. S4, pp. 97-105.

Circular Bragg gratings compose a very appealing photonic platform and nanophotonic interface for the controlled light-matter coupling of emitters in nanomaterials. Here, we discuss the integration of exfoliated monolayers of WSe2 with GaInP Bragg gratings. We apply hyperspectral imaging to our coupled system, and explore the spatio-spectral characteristics of our coupled monolayer-cavity system. Our work represents a valuable step towards the integration of atomically thin quantum emitters in semiconductor nanophotonic cavities.

Supplementary Materials:
Supplementary material for this article is supplied as a separate file:

Première publication :
Publié le :
DOI : 10.5802/crphys.76
Mots-clés : Circular Bragg grating, 2D materials, WSe2, Quantum electrodynamics, Light matter coupling, Excitons

Oliver Iff 1 ; Marcelo Davanco 2 ; Simon Betzold 1 ; Magdalena Moczała-Dusanowska 1 ; Matthias Wurdack 3 ; Monika Emmerling 1 ; Sven Höfling 4, 1 ; Christian Schneider 5

1 Technische Physik and Wilhelm-Conrad-Röntgen Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, Würzburg-97074, Germany
2 Center for Nanoscale Science and Technology, NIST, Gaithersburg, 100 Bureau Drive, MD 20899, USA
3 Nonlinear Physics Centre, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
4 SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK
5 Institute of Physics, University of Oldenburg, 26129 Oldenburg, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2021__22_S4_97_0,
     author = {Oliver Iff and Marcelo Davanco and Simon Betzold and Magdalena Mocza{\l}a-Dusanowska and Matthias Wurdack and Monika Emmerling and Sven H\"ofling and Christian Schneider},
     title = {Hyperspectral study of the coupling between trions in {WSe}$_2$ monolayers to a circular {Bragg} grating cavity},
     journal = {Comptes Rendus. Physique},
     pages = {97--105},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S4},
     year = {2021},
     doi = {10.5802/crphys.76},
     language = {en},
}
TY  - JOUR
AU  - Oliver Iff
AU  - Marcelo Davanco
AU  - Simon Betzold
AU  - Magdalena Moczała-Dusanowska
AU  - Matthias Wurdack
AU  - Monika Emmerling
AU  - Sven Höfling
AU  - Christian Schneider
TI  - Hyperspectral study of the coupling between trions in WSe$_2$ monolayers to a circular Bragg grating cavity
JO  - Comptes Rendus. Physique
PY  - 2021
SP  - 97
EP  - 105
VL  - 22
IS  - S4
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.76
LA  - en
ID  - CRPHYS_2021__22_S4_97_0
ER  - 
%0 Journal Article
%A Oliver Iff
%A Marcelo Davanco
%A Simon Betzold
%A Magdalena Moczała-Dusanowska
%A Matthias Wurdack
%A Monika Emmerling
%A Sven Höfling
%A Christian Schneider
%T Hyperspectral study of the coupling between trions in WSe$_2$ monolayers to a circular Bragg grating cavity
%J Comptes Rendus. Physique
%D 2021
%P 97-105
%V 22
%N S4
%I Académie des sciences, Paris
%R 10.5802/crphys.76
%G en
%F CRPHYS_2021__22_S4_97_0
Oliver Iff; Marcelo Davanco; Simon Betzold; Magdalena Moczała-Dusanowska; Matthias Wurdack; Monika Emmerling; Sven Höfling; Christian Schneider. Hyperspectral study of the coupling between trions in WSe$_2$ monolayers to a circular Bragg grating cavity. Comptes Rendus. Physique, Recent advances in 2D material physics, Volume 22 (2021) no. S4, pp. 97-105. doi : 10.5802/crphys.76. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.76/

[1] Q. H. Wang; K. Kalantar-Zadeh; A. Kis; J. N. Coleman; M. S. Strano Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., Volume 7 (2012) no. 11, pp. 699-712 | DOI

[2] G. Wang; A. Chernikov; M. M. Glazov; T. F. Heinz; X. Marie; T. Amand; B. Urbaszek Colloquium: Excitons in atomically thin transition metal dichalcogenides, Rev. Mod. Phys., Volume 90 (2018) no. 2, 021001 | DOI | MR

[3] K. F. Mak; J. Shan Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photonics, Volume 10 (2016) no. 4, pp. 216-226 | DOI

[4] J. S. Ponraj; Z.-Q. Xu; S. C. Dhanabalan; H. Mu; Y. Wang; J. Yuan; P. Li et al. Photonics and optoelectronics of two-dimensional materials beyond graphene, Nanotechnology, Volume 27 (2016) no. 46, 462001

[5] J. Kern; A. Trügler; I. Niehues; J. Ewering; R. Schmidt; R. Schneider; S. Najmaei; A. George et al. Nanoantenna-enhanced light-matter interaction in atomically thin WS2, ACS Photonics, Volume 2 (2015) no. 9, pp. 1260-1265 | DOI

[6] S. Butun; S. Tongay; K. Aydin Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays, Nano Lett., Volume 15 (2015) no. 4, pp. 2700-2704 | DOI

[7] Y. J. Noori; Y. Cao; J. Roberts; C. Woodhead; R. Bernardo-Gavito; P. Tovee; R. J. Young Photonic crystals for enhanced light extraction from 2D materials, ACS Photonics, Volume 3 (2016) no. 12, pp. 2515-2520 | DOI

[8] N. Lundt; A. Maryński; E. Cherotchenko; A. Pant; X. Fan; S. Tongay; G. Sek et al. Monolayered MoSe2: A candidate for room temperature polaritonics, 2D Mater., Volume 4 (2016) no. 1, 015006 | DOI

[9] X. Liu; T. Galfsky; Z. Sun; F. Xia; E. C. Lin; Y. H. Lee; S. Kéna-Cohen; V. M. Menon Strong light-matter coupling in two-dimensional atomic crystals, Nat. Photonics, Volume 9 (2014) no. 1, pp. 30-34 | DOI

[10] Q. Wang; L. Sun; B. Zhang; C. Chen; X. Shen; W. Lu Direct observation of strong light-exciton coupling in thin WS2 flakes, Opt. Express, Volume 24 (2016) no. 7, pp. 7151-7157 | DOI

[11] C. Schneider; M. M. Glazov; T. Korn; S. Höfling; B. Urbaszek Two-dimensional semiconductors in the regime of strong light-matter coupling, Nat. Commun., Volume 9 (2018) no. 1, 2695 | DOI

[12] H. Knopf; N. Lundt; T. Bucher; S. Höfling; S. Tongay; T. Taniguchi; K. Watanabe; I. Staude et al. Integration of atomically thin layers of transition metal dichalcogenides into high-Q, monolithic Bragg-cavities: an experimental platform for the enhancement of the optical interaction in 2D-materials, Opt. Mater. Express, Volume 9 (2019) no. 2, pp. 598-610 | DOI

[13] S. Schwarz; S. Dufferwiel; P. M. Walker; F. Withers; A. A. Trichet; M. Sich; F. Li et al. Two-dimensional metal-chalcogenide films in tunable optical microcavities, Nano Lett., Volume 14 (2014) no. 12, pp. 7003-7008 | DOI

[14] N. Lundt; Ł. Dusanowski; E. Sedov; P. Stepanov; M. M. Glazov; S. Klembt; M. Klaas; J. Beierlein et al. Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor, Nat. Nanotechnol., Volume 14 (2019) no. 8, pp. 770-775 | DOI

[15] C. Rupprecht; N. Lundt; M. Wurdack; P. Stepanov; E. Estrecho; M. Richard; E. A. Ostrovskaya et al. Micro-mechanical assembly and characterization of high-quality Fabry–Pérot microcavities for the integration of two-dimensional materials, Appl. Phys. Lett., Volume 118 (2021) no. 10, 103103 | DOI

[16] S. Wu; S. Buckley; A. M. Jones; J. S. Ross; N. J. Ghimire; J. Yan; D. G. Mandrus; W. Yao et al. Control of two-dimensional excitonic light emission via photonic crystal, 2D Mater., Volume 1 (2014) no. 1, 011001

[17] L. Zhang; R. Gogna; W. Burg; E. Tutuc; H. Deng Photonic-crystal exciton-polaritons in monolayer semiconductors, Nat. Commun., Volume 9 (2018) no. 1, 713

[18] S. Ates; L. Sapienza; M. Davanco; A. Badolato; K. Srinivasan Bright single-photon emission from a quantum dot in a circular bragg grating microcavity, IEEE J. Sel. Top. Quantum Electron., Volume 18 (2012) no. 6, pp. 1711-1721 | DOI

[19] J. Liu; R. Su; Y. Wei; B. Yao; S. F. C. da Silva; Y. Yu; J. Iles-Smith; K. Srinivasan et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability, Nat. Nanotechnol., Volume 14 (2019) no. 6, pp. 586-593 | DOI

[20] N. M. H. Duong; Z. Q. Xu; M. Kianinia; R. Su; Z. Liu; S. Kim; C. Bradac; T. T. Tran et al. Enhanced emission from WSe2 monolayers coupled to circular bragg gratings, ACS Photonics, Volume 5 (2018) no. 10, pp. 3950-3955 | DOI

[21] A. M. Jones; H. Yu; N. J. Ghimire; S. Wu; G. Aivazian; J. S. Ross; B. Zhao; J. Yan et al. Optical generation of excitonic valley coherence in monolayer WSe2, Nat. Nanotechnol., Volume 8 (2013) no. 9, pp. 634-638 | DOI

[22] O. Iff; Y.-M. He; N. Lundt; S. Stoll; V. Baumann; S. Höfling; C. Schneider Substrate engineering for high-quality emission of free and localized excitons from atomic monolayers in hybrid architectures, Optica, Volume 4 (2017) no. 6, pp. 669-673 | DOI

[23] O. Iff; Q. Buchinger; M. Moczaa-Dusanowska; M. Kamp; S. Betzold; M. Davanco; K. Srinivasan; S. Tongay et al. Purcell-enhanced single photon source based on a deterministically placed WSe2 monolayer quantum dot in a circular Bragg grating cavity, Nano Lett. (2021) | DOI

[24] F. Cadiz; E. Courtade; C. Robert; G. Wang; Y. Shen; H. Cai; T. Taniguchi; K. Watanabe; H. Carrere et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures, Phys. Rev. X, Volume 7 (2017) no. 2, pp. 1-12

[25] L. N. Tripathi; O. Iff; S. Betzold; M. Emmerling; K. Moon; Y. J. Lee; S.-H. Kwon; S. Höfling; C. Schneider Spontaneous emission enhancement in strain-induced WSe2 monolayer based quantum light sources on metallic surfaces, ACS Photonics, Volume 5 (2018) no. 5, pp. 1919-1926 | DOI

[26] J. M. Yi; V. Smirnov; X. Piao; J. Hong; H. Kollmann; M. Silies; W. Wang; P. Grob et al. Suppression of radiative damping and enhancement of second harmonic generation in bull’s eye nanoresonators, ACS Nano, Volume 10 (2016) no. 1, pp. 475-483

[27] A. Castellanos-Gomez; M. Buscema; R. Molenaar; V. Singh; L. Janssen; H. S. J. van der Zant; G. a. Steele Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping, 2D Mater., Volume 1 (2014) no. 1, 011002 | DOI

Cité par Sources :

Commentaires - Politique