Comptes Rendus
Screw dislocations in BCC transition metals: from ab initio modeling to yield criterion
Comptes Rendus. Physique, Volume 22 (2021) no. S3, pp. 83-116.

We show here how density functional theory calculations can be used to predict the temperature- and orientation-dependence of the yield stress of body-centered cubic (BCC) metals in the thermally-activated regime where plasticity is governed by the glide of screw dislocations with a 1/2111 Burgers vector. Our numerical model incorporates non-Schmid effects, both the twinning/antitwinning asymmetry and non-glide effects, characterized through ab initio calculations on straight dislocations. The model uses the stress-dependence of the kink-pair nucleation enthalpy predicted by a line tension model also fully parameterized on ab initio calculations. The methodology is illustrated here on BCC tungsten but is applicable to all BCC metals. Comparison with experimental data allows to highlight both the successes and remaining limitations of our modeling approach.

Première publication :
Publié le :
DOI : 10.5802/crphys.75
Mots clés : Dislocations, Plasticity, Density functional theory, Body-centered cubic metals, Tungsten
Emmanuel Clouet 1 ; Baptiste Bienvenu 1 ; Lucile Dezerald 2 ; David Rodney 3

1 Université Paris-Saclay, CEA, Service de Recherches de Métallurgie Physique, 91191, Gif-sur-Yvette, France
2 Institut Jean Lamour, CNRS UMR 7198, Université de Lorraine, F-54000 Nancy, France
3 Institut Lumière Matière, Université Lyon 1 - CNRS, Villeurbanne F-69622, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2021__22_S3_83_0,
     author = {Emmanuel Clouet and Baptiste Bienvenu and Lucile Dezerald and David Rodney},
     title = {Screw dislocations in {BCC} transition metals: from \protect\emph{ab initio} modeling to yield criterion},
     journal = {Comptes Rendus. Physique},
     pages = {83--116},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S3},
     year = {2021},
     doi = {10.5802/crphys.75},
     language = {en},
}
TY  - JOUR
AU  - Emmanuel Clouet
AU  - Baptiste Bienvenu
AU  - Lucile Dezerald
AU  - David Rodney
TI  - Screw dislocations in BCC transition metals: from ab initio modeling to yield criterion
JO  - Comptes Rendus. Physique
PY  - 2021
SP  - 83
EP  - 116
VL  - 22
IS  - S3
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.75
LA  - en
ID  - CRPHYS_2021__22_S3_83_0
ER  - 
%0 Journal Article
%A Emmanuel Clouet
%A Baptiste Bienvenu
%A Lucile Dezerald
%A David Rodney
%T Screw dislocations in BCC transition metals: from ab initio modeling to yield criterion
%J Comptes Rendus. Physique
%D 2021
%P 83-116
%V 22
%N S3
%I Académie des sciences, Paris
%R 10.5802/crphys.75
%G en
%F CRPHYS_2021__22_S3_83_0
Emmanuel Clouet; Baptiste Bienvenu; Lucile Dezerald; David Rodney. Screw dislocations in BCC transition metals: from ab initio modeling to yield criterion. Comptes Rendus. Physique, Volume 22 (2021) no. S3, pp. 83-116. doi : 10.5802/crphys.75. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.75/

[1] M. F. Ashby; H. Shercliff; D. Cebon Materials: Engineering, Science, Processing and Design, Butterworth–Heinemann, Oxford, UK, 2018

[2] M. Rieth et al. Recent progress in research on tungsten materials for nuclear fusion applications in Europe, J. Nucl. Mater., Volume 432 (2013), pp. 482-500 | DOI

[3] P. Hirsch Proceedings of the Fifth International Conference on Crystallography (1960)

[4] J. W. Christian Some surprising features of the plastic deformation of body-centered cubic metals and alloys, Metall. Trans. A, Volume 14 (1983), pp. 1237-1256 | DOI

[5] V. Vitek; R. C. Perrin; D. K. Bowen The core structure of 1/2(111) screw dislocations in BCC crystals, Philos. Mag. A, Volume 21 (1970), pp. 1049-1073 | DOI

[6] F. Louchet; L. Kubin; D. Vesely In situ deformation of BCC crystals at low temperatures in a high-voltage electron microscope Dislocation mechanisms and strain-rate equation, Philos. Mag. A, Volume 39 (1979) no. 4, pp. 433-454 | DOI

[7] D. Caillard Kinetics of dislocations in pure Fe. Part II. In situ straining experiments at low temperature, Acta Mater., Volume 58 (2010), pp. 3504-3515 | DOI

[8] A. S. Argon; S. R. Maloof Plastic deformation of tungsten single crystals at low temperatures, Acta Metall., Volume 14 (1966), pp. 1449-1462 | DOI

[9] W. A. Spitzig; A. S. Keh The effect of orientation and temperature on the plastic flow properties of iron single crystals, Acta Metall., Volume 18 (1970), pp. 611-622 | DOI

[10] D. Caillard Geometry and kinetics of glide of screw dislocations in tungsten between 95 K and 573 K, Acta Mater., Volume 161 (2018), pp. 21-34 | DOI

[11] D. Caillard; J.-L. Martin Thermally Activated Mechanisms in Crystal Plasticity, Pergamon, Amsterdam, Netherlands, 2003

[12] R. Gröger; V. Vitek Explanation of the discrepancy between the measured and atomistically calculated yield stresses in body-centred cubic metals, Philos. Mag. Lett., Volume 87 (2007), pp. 113-120 | DOI

[13] L. Proville; D. Rodney; M. C. Marinica Quantum effect on thermally activated glide of dislocations, Nat. Mater., Volume 11 (2012), pp. 845-849 | DOI

[14] R. Freitas; M. Asta; V. V. Bulatov Quantum effects on dislocation motion from ring-polymer molecular dynamics, NPJ Comput. Mater., Volume 4 (2018), pp. 1-6 | DOI

[15] E. Schmid Proceedings of the First International Congress of Applied Mechanics, Delft (1924), pp. 342-353

[16] M. Duesbery; V. Vitek Plastic anisotropy in BCC transition metals, Acta Mater., Volume 46 (1998), pp. 1481-1492 | DOI

[17] S. Ismail-Beigi; T. A. Arias Ab initio study of screw dislocations in Mo and Ta: a new picture of plasticity in BCC transition metals, Phys. Rev. Lett., Volume 84 (2000), pp. 1499-1502 | DOI

[18] C. Woodward; S. I. Rao Flexible ab initio boundary conditions: simulating isolated dislocations in BCC Mo and Ta, Phys. Rev. Lett., Volume 88 (2002), 216402 | DOI

[19] S. L. Frederiksen; K. W. Jacobsen Density functional theory studies of screw dislocation core structures in BCC metals, Philos. Mag., Volume 83 (2003) no. 3, pp. 365-375 | DOI

[20] L. Ventelon; F. Willaime Core structure and Peierls potential of screw dislocations in α-Fe from first principles: cluster versus dipole approaches, J. Comput. Aided Mater. Design, Volume 14 (2007), pp. 85-94 | DOI

[21] L. Dezerald; D. Rodney; E. Clouet; L. Ventelon; F. Willaime Plastic anisotropy and dislocation trajectory in BCC metals, Nat. Commun., Volume 7 (2016), 11695 | DOI

[22] A. Kraych; E. Clouet; L. Dezerald; L. Ventelon; F. Willaime; D. Rodney Non-glide effects and dislocation core fields in BCC metals, NPJ Comput. Mater., Volume 5 (2019), 109 | DOI

[23] C. Domain; G. Monnet Simulation of screw dislocation motion in iron by molecular dynamics simulations, Phys. Rev. Lett., Volume 95 (2005), 215506 | DOI

[24] J. Chaussidon; M. Fivel; D. Rodney The glide of screw dislocations in BCC Fe: atomistic static and dynamic simulations, Acta Mater., Volume 54 (2006), pp. 3407-3416 | DOI

[25] M. Gilbert; S. Queyreau; J. Marian Stress and temperature dependence of screw dislocation mobility in α-Fe by molecular dynamics, Phys. Rev. B, Volume 84 (2011), 174103 | DOI

[26] G. Po; Y. Cui; D. Rivera; D. Cereceda; T. D. Swinburne; J. Marian; N. Ghoniem A phenomenological dislocation mobility law for BCC metals, Acta Mater., Volume 119 (2016), pp. 123-135 | DOI

[27] M. Itakura; H. Kaburaki; M. Yamaguchi First-principles study on the mobility of screw dislocations in BCC iron, Acta Mater., Volume 60 (2012), pp. 3698-3710 | DOI

[28] L. Proville; L. Ventelon; D. Rodney Prediction of the kink-pair formation enthalpy on screw dislocations in α-iron by a line tension model parametrized on empirical potentials and first-principles calculations, Phys. Rev. B, Volume 87 (2013), 144106 | DOI

[29] L. Dezerald; L. Proville; L. Ventelon; F. Willaime; D. Rodney First-principles prediction of kink-pair activation enthalpy on screw dislocations in BCC transition metals: V, Nb, Ta, Mo, W, and Fe, Phys. Rev. B, Volume 91 (2015), 094105. | DOI

[30] S. He; E. Overly; V. Bulatov; J. Marian; D. Cereceda Coupling 2D atomistic information to 3D kink-pair enthalpy models of screw dislocations in BCC metals, Phys. Rev. Mater., Volume 3 (2019), 103603

[31] J. Chaussidon; C. Robertson; D. Rodney; M. Fivel Dislocation dynamics simulations of plasticity in Fe laths at low temperature, Acta Mater., Volume 56 (2008), pp. 5466-5476 | DOI

[32] R. Gröger; V. Racherla; J. L. Bassani; V. Vitek Multiscale modeling of plastic deformation of molybdenum and tungsten: II. Yield criterion for single crystals based on atomistic studies of glide of 1/2111 screw dislocations, Acta Mater., Volume 56 (2008), pp. 5412-5425 | DOI

[33] P. Hohenberg; W. Kohn Inhomogeneous electron gas, Phys. Rev., Volume 136 (1964), p. B864-B871 | DOI | MR

[34] W. Kohn; L. J. Sham Self-consistent equations including exchange and correlations effects, Phys. Rev., Volume 140 (1965), p. A1133-A1138 | DOI | MR

[35] C. Woodward First-principles simulations of dislocation cores, Mater. Sci. Eng. A, Volume 400–401 (2005), pp. 59-67 | DOI

[36] D. Rodney; L. Ventelon; E. Clouet; L. Pizzagalli; F. Willaime Ab initio modeling of dislocation core properties in metals and semiconductors, Acta Mater., Volume 124 (2017), pp. 633-659 | DOI

[37] E. Clouet Ab initio models of dislocations, Handbook of Materials Modeling (W. Andreoni; S. Yip, eds.), Springer International Publishing, New York, USA, 2018, pp. 1-22

[38] J. E. Sinclair; P. C. Gehlen; R. G. Hoagland; J. P. Hirth Flexible boundary conditions and nonlinear geometric effects in atomic dislocation modeling, J. Appl. Phys., Volume 49 (1978), pp. 3890-3897 | DOI

[39] E. Clouet; L. Ventelon; F. Willaime Dislocation core energies and core fields from first principles, Phys. Rev. Lett., Volume 102 (2009) no. 5, 055502 | DOI

[40] W. Cai; V. V. Bulatov; J. Chang; J. Li; S. Yip Periodic image effects in dislocation modelling, Philos. Mag., Volume 83 (2003), pp. 539-567 | DOI

[41] M. S. Daw Elasticity effects in electronic structure calculations with periodic boundary conditions, Comput. Mater. Sci., Volume 38 (2006), pp. 293-297 | DOI

[42] N. Chaari; E. Clouet; D. Rodney First-principles study of secondary slip in zirconium, Phys. Rev. Lett., Volume 112 (2014), 075504 | DOI

[43] L. Dezerald; L. Ventelon; E. Clouet; C. Denoual; D. Rodney; F. Willaime Ab initio modeling of the two-dimensional energy landscape of screw dislocations in BCC transition metals, Phys. Rev. B, Volume 89 (2014), 024104 | DOI

[44] K. Edagawa; T. Suzuki; S. Takeuchi Motion of a screw dislocation in a two-dimensional Peierls potential, Phys. Rev. B, Volume 55 (1997) no. 10, pp. 6180-6187 | DOI

[45] K. Edagawa; T. Suzuki; S. Takeuchi Plastic anisotropy in BCC transition metals, Mater. Sci. Eng. A, Volume 234 (1997), pp. 1103-1105 | DOI

[46] C. R. Weinberger; G. J. Tucker; S. M. Foiles Peierls potential of screw dislocations in BCC transition metals: Predictions from density functional theory, Phys. Rev. B, Volume 87 (2013), 054114

[47] S. Takeuchi Core structure of a screw dislocation in the BCC lattice and its relation to slip behaviour of α-iron, Philos. Mag. A, Volume 39 (1979) no. 5, pp. 661-671 | DOI

[48] G. Henkelman; H. Jónsson Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys., Volume 113 (2000), pp. 9978-9985 | DOI

[49] H. Suzuki Effect of zero-point motion on Peierls stress, Fundamental Aspects of Dislocation Theory (J. A. Simmons; R. de Wit; R. Bullough, eds.), Volume 317, National Bureau of Standards, Washington DC, USA, 1970

[50] Z. S. Basinski; M. S. Duesbery; R. Taylor Influence of shear stress on screw dislocations in a model sodium lattice, Can. J. Phys., Volume 49 (1971), pp. 2160-2180 | DOI

[51] C. Woodward; S. I. Rao Ab-initio simulation of isolated screw dislocations in BCC Mo and Ta, Philos. Mag. A, Volume 81 (2001), pp. 1305-1316 | DOI

[52] L. Romaner; C. Ambrosch-Draxl; R. Pippan Effect of Rhenium on the dislocation core structure in Tungsten, Phys. Rev. Lett., Volume 104 (2010), 195503 | DOI

[53] L. Ventelon; F. Willaime; E. Clouet; D. Rodney Ab initio investigation of the Peierls potential of screw dislocations in BCC Fe and W, Acta Mater., Volume 61 (2013), pp. 3973-3985 | DOI

[54] V. V. Bulatov; W. Cai Nodal effects in dislocation mobility, Phys. Rev. Lett., Volume 89 (2002), 115501

[55] B. Barvinschi; L. Proville; D. Rodney Quantum Peierls stress of straight and kinked dislocations and effect of non-glide stresses, Modell. Simul. Mater. Sci. Eng., Volume 22 (2014), 025006 | DOI

[56] D. Rodney; L. Proville Stress-dependent Peierls potential: influence on Kink–Pair activation, Phys. Rev. B, Volume 79 (2009), 094108 | DOI

[57] R. M. Rose; D. P. Ferris; J. Wulff Yielding and plastic flow in single crystals of tungsten, Trans. Met. Soc. AIME, Volume 224 (1962), pp. 981-989

[58] P. Beardmore; D. Hull Deformation and fracture of tungsten single crystals, J. Less Common Met., Volume 9 (1965), pp. 168-180 | DOI

[59] C. Crussard; F. Aubertin Nouvelle méthode de précision pour la mesure de la maille individuelle des grains. Application à l’étude de l’écrouissage et de la recristallisation, Rev. Met. Paris, Volume 46 (1949), pp. 354-359 | DOI

[60] P. C. Gehlen; J. P. Hirth; R. G. Hoagland; M. F. Kanninen A new representation of the strain field associated with the cube-edge dislocation in a model of a α-iron, J. Appl. Phys., Volume 43 (1972), pp. 3921-3933 | DOI

[61] J. P. Hirth; J. Lothe Anisotropic elastic solutions for line defects in high-symmetry cases, J. Appl. Phys., Volume 44 (1973), pp. 1029-1032 | DOI

[62] E. Clouet Dislocation core field. I. Modeling in anisotropic linear elasticity theory, Phys. Rev. B, Volume 84 (2011), 224111 | DOI

[63] E. Clouet; L. Ventelon; F. Willaime Dislocation core field. II. Screw dislocation in iron, Phys. Rev. B, Volume 84 (2011), 224107 | DOI

[64] J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. A, Volume 241 (1957), pp. 376-396 | MR | Zbl

[65] J. D. Eshelby The elastic field outside an ellipsoidal inclusion, Proc. R. Soc. Lond. A, Volume 252 (1959), pp. 561-569 | MR | Zbl

[66] E. Clouet; C. Varvenne; T. Jourdan Elastic modeling of point-defects and their interaction, Comput. Mater. Sci., Volume 147 (2018), pp. 49-63 | DOI

[67] V. Vitek; M. Mrovec; J. L. Bassani Influence of non-glide stresses on plastic flow: from atomistic to continuum modeling, Mater. Sci. Eng. A, Volume 365 (2004), pp. 31-37 | DOI

[68] R. Gröger; A. Bailey; V. Vitek Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2111 screw dislocations at 0 K, Acta Mater., Volume 56 (2008), pp. 5401-5411 | DOI

[69] Z. M. Chen; M. Mrovec; P. Gumbsch Atomistic aspects of 1 2111 screw dislocation behavior in α-iron and the derivation of microscopic yield criterion, Modell. Simul. Mater. Sci. Eng., Volume 21 (2013), 055023

[70] R. Gröger Which stresses affect the glide of screw dislocations in BCC metals?, Philos. Mag., Volume 94 (2014), pp. 1-10 | DOI

[71] L. M. Hale; H. Lim; J. A. Zimmerman; C. C. Battaile; C. R. Weinberger Insights on activation enthalpy for non-Schmid slip in body-centered cubic metals, Scr. Mater., Volume 99 (2015), pp. 89-92 | DOI

[72] M. S. Duesbery; Z. S. Basinski On non-glide stresses and their influence on the screw dislocation core in body-centred cubic metals I. The Peierls stress, Proc. R. Soc. Lond. A, Volume 392 (1984) no. 1802, pp. 145-173

[73] J. F. Byron; D. Hull Plastic deformation of tantalum single crystals: I. The surface morphology of yield, J. Less Common Met., Volume 13 (1967) no. 1, pp. 71-84 | DOI

[74] G. C. Liu; S. S. Lau; J. E. Dorn The plastic deformation behavior of Mo single crystals under compression, Phys. Status Solidi A, Volume 11 (1972) no. 2, pp. 645-651 | DOI

[75] S. Takeuchi; E. Kuramoto; T. Suzuki Orientation dependence of slip in tantalum single crystals, Acta Metall., Volume 20 (1972) no. 7, pp. 909-915 | DOI

[76] M. H. A. Nawaz; B. L. Mordike Slip geometry of tantalum and tantalum alloys, Phys. Status Solidi A, Volume 32 (1975) no. 2, pp. 449-458 | DOI

[77] U. F. Kocks; A. S. Argon; M. F. Ashby Progress in materials science, Thermodynamics and Kinetics of Slip, Volume 19, Pergamon Press, Oxford, UK, 1975

[78] C. Kittel Introduction to Solid State Physics, Wiley, New York, USA, 1966

[79] T. D. Swinburne; M.-C. Marinica Unsupervised calculation of free energy barriers in large crystalline systems, Phys. Rev. Lett., Volume 120 (2018), 135503

[80] W. Meyer; H. Neldel Relation between the energy constant and the quantity constant in the conductivity–temperature formula of oxide semiconductors, Z. Tech. Phys., Volume 18 (1937), pp. 588-593

[81] L. Proville; D. Rodney Modeling the thermally activated mobility of dislocations at the atomic scale, Handbook of Materials Modeling (W. Andreoni; S. Yip, eds.), Springer International Publishing, New York, USA, 2020, pp. 1525-1544 | DOI

[82] M. R. Gilbert; P. Schuck; B. Sadigh; J. Marian Free Energy Generalization of the Peierls Potential in Iron, Phys. Rev. Lett., Volume 111 (2013), 095502

[83] Y. Sato; T. Swinburne; S. Ogata; D. Rodney Anharmonic effect on the thermally activated migration of 101 ¯2 twin interfaces in magnesium, Mater. Res. Lett., Volume 9 (2021), pp. 231-238 | DOI

[84] K. Edagawa; T. Suzuki; S. Takeuchi Motion of a screw dislocation in a two-dimensional Peierls potential, Phys. Rev. B, Volume 55 (1997) no. 10, pp. 6180-6187 | DOI

[85] D. Brunner; V. Glebovsky The plastic properties of high-purity W single crystals, Mater. Lett., Volume 42 (2000), pp. 290-296 | DOI

[86] D. Brunner Temperature dependence of the plastic flow of high-purity tungsten single crystals, Int. J. Mater. Res., Volume 101 (2010) no. 8, pp. 1003-1013 | DOI

[87] A. Stukowski; D. Cereceda; T. D. Swinburne; J. Marian Thermally-activated non-Schmid glide of screw dislocations in W using atomistically-informed kinetic Monte Carlo simulations, Int. J. Plast., Volume 65 (2015), pp. 108-130 | DOI

[88] D. Cereceda; M. Diehl; F. Roters; D. Raabe; J. M. Perlado; J. Marian Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations, Int. J. Plast., Volume 78 (2016), pp. 242-265 | DOI

[89] K. Srivastava; D. Weygand; D. Caillard; P. Gumbsch Repulsion leads to coupled dislocation motion and extended work hardening in BCC metals, Nat. Commun., Volume 11 (2020), 5098 | DOI

[90] M. I. Mendelev; S. Han; D. J. Srolovitz; G. J. Ackland; D. Y. Sun; M. Asta Development of new interatomic potentials appropriate for crystalline and liquid iron, Philos. Mag., Volume 83 (2003), pp. 3977-3994 | DOI

[91] M.-C. Marinica; L. Ventelon; M. R. Gilbert; L. Proville; S. L. Dudarev; J. Marian; G. Bencteux; F. Willaime Interatomic potentials for modelling radiation defects and dislocations in tungsten, J. Phys.: Condens. Matter, Volume 25 (2013), 395502

[92] M. Mrovec; D. Nguyen-Manh; C. Elsässer; P. Gumbsch Magnetic bond-order potential for iron, Phys. Rev. Lett., Volume 106 (2011), 246402 | DOI

[93] F. Maresca; D. Dragoni; G. Csányi; N. Marzari; W. A. Curtin Screw dislocation structure and mobility in body centered cubic Fe predicted by a Gaussian Approximation Potential, NPJ Comput. Mater., Volume 4 (2018), 69 | DOI

[94] H. Mori; T. Ozaki Neural network atomic potential to investigate the dislocation dynamics in BCC iron, Phys. Rev. Mater., Volume 4 (2020), 040601(R)

[95] L. Casillas-Trujillo; D. Gambino; L. Ventelon; B. Alling Screw dislocation core structure in the paramagnetic state of BCC iron from first-principles calculations, Phys. Rev. B, Volume 102 (2020), 094420 | DOI

[96] B. Bienvenu; C. C. Fu; E. Clouet Impact of magnetism on screw dislocations in body-centered cubic chromium, Acta Mater., Volume 200 (2020), pp. 570-580 | DOI

[97] D. R. Trinkle; C. Woodward The chemistry of deformation: how solutes soften pure metals, Science, Volume 310 (2005), pp. 1665-1667 | DOI

[98] M. Itakura; H. Kaburaki; M. Yamaguchi; T. Okita The effect of hydrogen atoms on the screw dislocation mobility in BCC iron: A first-principles study, Acta Mater., Volume 61 (2013), pp. 6857-6867 | DOI

[99] T. Tsuru; M. Wakeda; T. Suzudo; M. Itakura; S. Ogata Anomalous solution softening by unique energy balance mediated by kink mechanism in tungsten-rhenium alloys, J. Appl. Phys., Volume 127 (2020), 025101 | DOI

[100] S. Yin; J. Ding; M. Asta; R. O. Ritchie Ab initio modeling of the energy landscape for screw dislocations in body-centered cubic high-entropy alloys, NPJ Comput. Mater., Volume 6 (2020), 110

[101] H. Li; S. Wurster; C. Motz; L. Romaner; C. Ambrosch-Draxl; R. Pippan Dislocation-core symmetry and slip planes in tungsten alloys: Ab initio calculations and microcantilever bending experiments, Acta Mater., Volume 60 (2012), pp. 748-758 | DOI

[102] L. Romaner; V. Razumovskiy; R. Pippan Core polarity of screw dislocations in Fe–Co alloys, Philos. Mag. Lett., Volume 94 (2014), pp. 334-341 | DOI

[103] G. D. Samolyuk; Y. N. Osetsky; R. E. Stoller The influence of transition metal solutes on the dislocation core structure and values of the Peierls stress and barrier in tungsten, J. Phys.: Condens. Matter, Volume 25 (2013), 025403

[104] P. Grigorev; T. D. Swinburne; J. R. Kermode Hybrid quantum/classical study of hydrogen-decorated screw dislocations in tungsten: Ultrafast pipe diffusion, core reconstruction, and effects on glide mechanism, Phys. Rev. Mater., Volume 4 (2020), 023601

[105] L. Ventelon; B. Lüthi; E. Clouet; L. Proville; B. Legrand; D. Rodney; F. Willaime Dislocation core reconstruction induced by carbon segregation in BCC iron, Phys. Rev. B, Volume 91 (2015), 220102 | DOI

[106] B. Lüthi; L. Ventelon; C. Elsässer; D. Rodney; F. Willaime First principles investigation of carbon-screw dislocation interactions in body-centered cubic metals, Modell. Simul. Mater. Sci. Eng., Volume 25 (2017), 084001 | DOI

[107] B. Lüthi; L. Ventelon; D. Rodney; F. Willaime Attractive interaction between interstitial solutes and screw dislocations in BCC iron from first principles, Comput. Mater. Sci., Volume 148 (2018), pp. 21-26 | DOI

[108] B. Lüthi; F. Berthier; L. Ventelon; B. Legrand; D. Rodney; F. Willaime Ab initio thermodynamics of carbon segregation on dislocation cores in BCC iron, Modell. Simul. Mater. Sci. Eng., Volume 27 (2019), 074002 | DOI

[109] A. Bakaev; A. Zinovev; D. Terentyev; G. Bonny; C. Yin; N. Castin; Y. A. Mastrikov; E. E. Zhurkin Interaction of carbon with microstructural defects in a W-Re matrix: An ab initio assessment, J. Appl. Phys., Volume 126 (2019), 075110 | DOI

[110] G. Hachet; L. Ventelon; F. Willaime; E. Clouet Screw dislocation-carbon interaction in BCC tungsten: an ab initio study, Acta Mater., Volume 200 (2020), pp. 481-489 | DOI

[111] Y. Zhao; L. Dezerald; M. Pozuelo; X. Zhou; J. Marian Simulating the mechanisms of serrated flow in interstitial alloys with atomic resolution over diffusive timescales, Nat. Commun., Volume 11 (2020), 1227

[112] D. Caillard; J. Bonneville Dynamic strain aging caused by a new Peierls mechanism at high-temperature in iron, Scr. Mater., Volume 95 (2015), pp. 15-18 | DOI

[113] D. Caillard Dynamic strain ageing in iron alloys: the shielding effect of carbon, Acta Mater., Volume 112 (2016), pp. 273-284 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

The core structure of screw dislocations with [001] Burgers vector in Mg 2 SiO 4 olivine

Srinivasan Mahendran; Philippe Carrez; Patrick Cordier

C. R. Phys (2021)


Atomic modeling of irradiation-induced hardening

David Rodney

C. R. Phys (2008)


Multiscale modeling of the effective viscoplastic behavior of Mg 2 SiO 4 wadsleyite: bridging atomic and polycrystal scales

O. Castelnau; K. Derrien; S. Ritterbex; ...

C. R. Méca (2020)