Comptes Rendus
Elasto-plastic behavior of amorphous materials: a brief review
Comptes Rendus. Physique, Volume 22 (2021) no. S3, pp. 117-133.

Disordered materials, like metallic glasses or silicate glasses, have an atomistic amorphous structure preventing the formation of extended defects such as dislocations. Irreversible deformation in these materials is thus localized, but can organize along shear bands. In this brief review, based on recent publications, we will see if local plasticity can be measured and predicted in disordered atomic assemblies, and in what conditions it can be related to preexisting structural defects. We will then draw a general picture of the plastic mechanical behaviour within the theoretical framework of mechanical instabilities. Finally, we will focus our attention on different scenarii for shear banding in glasses.

Online First:
Published online:
DOI: 10.5802/crphys.49
Keywords: Plasticity, Constitutive laws, Amorphous materials, Glasses, Eshelby inclusions, Shear bands

Anne Tanguy 1, 2

1 LaMCos, INSA-Lyon, CNRS UMR5259, Université de Lyon, F-69621 Villeurbanne Cedex, France
2 ONERA, University Paris-Saclay, Chemin de la Huniére, BP 80100, 92123 Palaiseau, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2021__22_S3_117_0,
     author = {Anne Tanguy},
     title = {Elasto-plastic behavior of amorphous materials: a brief review},
     journal = {Comptes Rendus. Physique},
     pages = {117--133},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S3},
     year = {2021},
     doi = {10.5802/crphys.49},
     language = {en},
}
TY  - JOUR
AU  - Anne Tanguy
TI  - Elasto-plastic behavior of amorphous materials: a brief review
JO  - Comptes Rendus. Physique
PY  - 2021
SP  - 117
EP  - 133
VL  - 22
IS  - S3
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.49
LA  - en
ID  - CRPHYS_2021__22_S3_117_0
ER  - 
%0 Journal Article
%A Anne Tanguy
%T Elasto-plastic behavior of amorphous materials: a brief review
%J Comptes Rendus. Physique
%D 2021
%P 117-133
%V 22
%N S3
%I Académie des sciences, Paris
%R 10.5802/crphys.49
%G en
%F CRPHYS_2021__22_S3_117_0
Anne Tanguy. Elasto-plastic behavior of amorphous materials: a brief review. Comptes Rendus. Physique, Volume 22 (2021) no. S3, pp. 117-133. doi : 10.5802/crphys.49. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.49/

[1] P. Y. Huang et al. Imaging atomic rearrangements in two-dimensional silica glass: Watching silica’s dance, Science, Volume 342 (2013), pp. 224-227 | DOI

[2] C. Buchner et al. Ultrathin silica films: The atomic structure of two-dimensional crystals and glasses, Chem. Eur. J., Volume 20 (2014) no. 30, pp. 9176-9183 | DOI

[3] J. Li; Z. L. Wang; T. C. Hufnagel Characterization of nanometer-scale defects in metallic glasses by quantitative high-resolution transmission electron microscopy, Phys. Rev. B, Volume 65 (2002), 144201

[4] H. F. Poulsen; J. A. Wert; F. Neuefeind; V. Honkimaki; M. Daymond Measuring strain distributions in amorphous materials, Nat. Mater., Volume 4 (2005), pp. 33-36 | DOI

[5] T. C. Hufnagel; R. T. Ott; J. Almer Structural aspects of elastic deformation of a metallic glass, Phys. Rev. B, Volume 73 (2006), 064204 | DOI

[6] C. Fusco; T. Albaret; A. Tanguy Role of local order in the small-scale plasticity of model amorphous materials, Phys. Rev. E, Volume 82 (2010), 066116 | DOI

[7] C. A. Schuh; A. C. Lund Atomistic basis for the plastic yield criterion of metallic glasses, Nat. Mater., Volume 2 (2003), pp. 449-452 | DOI

[8] C. Maloney; A. Lemaitre Subextensive scaling in the athermal, quasistatic limit of amorphous matter in plastic shear flow, Phys. Rev. Lett., Volume 93 (2004), 016001 | DOI

[9] J. Rottler; M. O. Robbins Unified description of aging and rate effects in yield of glassy solids, Phys. Rev. Lett., Volume 95 (2005), 225504 | DOI

[10] F. Albano; M. L. Falk Shear softening and structure in a simulated three-dimensional binary glass, J. Chem. Phys., Volume 122 (2005), 154508

[11] A. Tanguy; F. Leonforte; J. L. Barrat Plastic response of a 2D Lennard–Jones amorphous solid: Detailed analyses of the local rearrangements at very slow strain rate, Eur. Phys. J. E, Volume 20 (2006), pp. 355-364 | DOI

[12] I. Procaccia Physics of amorphous solids: Their creation and their mechanical properties, Eur. Phys. J.: Spec. Top., Volume 178 (2009), pp. 81-122

[13] D. Rodney; A. Tanguy; D. Vandembroucq Modeling the mechanics of amorphous solids at different length scale and time scale, Model. Simul. Mat. Sci. Eng., Volume 19 (2011), 083001 | DOI

[14] D. Richard et al. Predicting plasticity in disordered solids from structural indicators, Phys. Rev. Mater., Volume 4 (2020), 113609

[15] F. Spaepen A microscopic mechanism for steady state inhomogeneous flow in metallic glasses, Acta Metall., Volume 25 (1977), pp. 407-415 | DOI

[16] A. S. Argon Plastic deformation in metallic glasses, Acta Metall., Volume 27 (1979), pp. 47-58 | DOI

[17] T. M. Gross; M. Tomozawa; A. Koike A glass with high crack initiation load: Role of fictive temperature-independent mechanical properties, J. Non-Cryst. Solids, Volume 355 (2009), pp. 563-568 | DOI

[18] G. Molnár; P. Ganster; J. Török; A. Tanguy Sodium effect on static mechanical behavior of MD-modeled sodium silicate glasses, J. Non-Cryst. Solids, Volume 440 (2016), pp. 12-25 | DOI

[19] W. Li; Y. Gao; H. Bei On the correlation between microscopic structural heterogeneity and embrittlement behavior in metallic glasses, Sci. Rep., Volume 5 (2015), 14786

[20] T. M. Gross; M. Tomozawa Fictive temperature-independent density and minimum indentation size effect in calcium aluminosilicate glass, J. Appl. Phys., Volume 104 (2008), 063529 | DOI

[21] C. Martinet; M. Heili; V. Martinez; G. Kermouche; G. Molnar; N. Shcheblanov; E. Barthel; A. Tanguy Highlighting the impact of shear strain on the SiO 2 glass structure: From experiments to atomistic simulations, J. Non-Cryst. Solids, Volume 533 (2020), 119898 | DOI

[22] J. Mackenzie High-pressure effects on oxide glasses: I, densification in rigid state, J. Amer. Ceram. Soc., Volume 6 (1963), pp. 461-470 | DOI

[23] R. Lacroix; G. Kermouche; J. Teisseire; E. Barthel Plastic deformation and residual stresses in amorphous silica pillars under uniaxial loading, Acta Mater., Volume 60 (2012), pp. 5555-5566 | DOI

[24] G. Kermouche; G. Guillonneau; J. Michler; J. Teisseire; E. Barthel Perfectly plastic flow in silica glass, Acta Mater., Volume 114 (2016), pp. 146-153 | DOI

[25] G. Molnár; G. Kermouche; E. Barthel Plastic response of amorphous silicates, from atomistic simulations to experiments — a general constitutive relation, Mech. Solids, Volume 114 (2017), pp. 1-8 | DOI

[26] Y. H. Liu; G. Wang; R. J. Wang; D. Q. Zhao; M. X. Pan; W. H. Wang Super plastic bulk metallic glasses at room temperature, Science, Volume 315 (2007), pp. 1385-1388 | DOI

[27] X. Li et al. Ultrasonic plasticity of metallic glass near room temperature, Appl. Mater. Today, Volume 21 (2020), 100866

[28] J. Schroers; W. L. Johnson Ductile bulk metallic glass, Phys. Rev. Lett., Volume 93 (2004), 255506 | DOI

[29] W. Song; X. Meng; Y. Wu; D. Cao; H. Wang; X. Liu; X. Wang; Z. Lu Improving plasticity of the Zr 46 Cu 46 Al 8 bulk metallic glass via thermal rejuvenation, Sci. Bull., Volume 63 (2018), pp. 840-844 | DOI

[30] A. I. Salimon; M. F. Ashby; Y. Bréchet; A. L. Greer Bulk metallic glasses: What are they good for?, Mater. Sci. Eng. A, Volume 375–377 (2004), pp. 385-388 | DOI

[31] W. A. Phillips Amorphous Solids – Low Temperature Properties, Springer, 1981

[32] G. Molnár; P. Ganster; A. Tanguy; E. Barthel; G. Kermouche Densification dependent yield criteria for sodium silicate glasses: An atomistic simulation approach, Acta Mater., Volume 111 (2016), pp. 129-137 | DOI

[33] J.-L. Barrat; A. Lemaitre Heterogeneities in Amorphous Systems Under Shear, Oxford University Press, 2010

[34] P. Sollich Rheological constitutive equation for a model of soft glassy materials, Phys. Rev. E, Volume 58 (1998), pp. 738-759 | DOI

[35] D. Pan et al. Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses, Proc. Natl Acad. Sci. USA, Volume 105 (2008), pp. 14769-14772 | DOI

[36] C. A. Angell et al. Vibrational dynamics and thermodynamics, ideal glass transitions and folding transitions, in liquids and biopolymers, AIP Conf. Proc., Volume 708 (2004), pp. 473-482 | DOI

[37] C. A. Angell Energy landscapes for cooperative processes: nearly ideal glass transitions, liquid–liquid transitions and folding transitions, Philos. Trans. Royal Soc. A, Volume 363 (2005), pp. 415-432 | DOI

[38] M. Tsamados; A. Tanguy; F. Léonforte; J. L. Barrat On the study of local-stress rearrangements during quasi-static plastic shear of a model glass: Do local-stress components contain enough information?, Eur. Phys. J. E, Volume 26 (2008), pp. 283-293 | DOI

[39] I. M. Robertson; P. J. Ferreira; G. Dehm; R. Hull; E. A. Stach Visualizing the behavior of dislocations—seeing is believing, MRS Bull., Volume 33 (2008), pp. 122-131 | DOI

[40] S. Yamasaki; M. Mitsuhara; K. Ikeda; S. Hata; H. Nakashima 3D visualization of dislocation arrangement using scanning electron microscope serial sectioning method, Scr. Mater., Volume 101 (2015), pp. 80-83 | DOI

[41] M. F. Ashby; A. L. Greer Metallic glasses as structural materials, Scr. Mater., Volume 54 (2006), pp. 321-326 | DOI

[42] A. Lemaitre Structural relaxation in a scale-free process, Phys. Rev. Lett., Volume 113 (2014), 245702 | DOI

[43] R. De Borst Encyclopedia of Computational Mechanics, John Wiley and Sons, New York, 2017 (ch 10)

[44] M. Tsamados; A. Tanguy; C. Goldenberg; J. L. Barrat Local elasticity map and plasticity in a model Lennard-Jones glass, Phys. Rev. E, Volume 80 (2009), 026112 | DOI

[45] A. Tanguy; B. Mantisi; M. Tsamados Vibrational modes as a predictor for plasticity in a model glass, Europhys. Lett., Volume 90 (2010), 16004 | DOI

[46] E. Lerner; S. Karmakar; I. Procaccia Athermal nonlinear elastic constants of amorphous solids, Phys. Rev. E, Volume 82 (2010), 026105

[47] G. T. Barkema; N. Mousseau Event-based relaxation of continuous disordered systems, Phys. Rev. Lett., Volume 77 (1996), pp. 4358-4362 | DOI

[48] C. Maloney; A. Lemaitre Universal breakdown of elasticity at the onset of material failure, Phys. Rev. Lett., Volume 93 (2004), 195501 | DOI

[49] F. Barra; R. Espinoza-Gonzalez; H. Fernandez; F. Lund; A. Maurel; V. Pagneux The use of ultrasound to measure dislocation density, JOM, Volume 67 (2015), pp. 1856-1863 | DOI

[50] H. Luo; A. Gravouil; V. Giordano; A. Tanguy Thermal transport in a 2D nanophononic solid: Role of bi-phasic materials properties on acoustic attenuation and thermal diffusivity, Nanomaterials, Volume 9 (2019), 1471

[51] T. Albaret; A. Tanguy; F. Boioli; D. Rodney Mapping between atomistic simulations and Eshelby inclusions in the shear deformation of an amorphous silicon model, Phys. Rev. E, Volume 93 (2016), 053002 | DOI

[52] K. Albe; Y. Ritter; D. Sopu Enhancing the plasticity of metallic glasses: Shear band formation, nanocomposites and nanoglasses investigated by molecular dynamics simulations, Mech. Mater., Volume 67 (2013), pp. 94-103 | DOI

[53] J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. A, Volume 241 (1957) no. 1226, pp. 376-396

[54] Y. Shi; M. L. Falk Strain localization and percolation of stable structure in amorphous solids, Phys. Rev. Lett., Volume 95 (2005), 095502

[55] C. Maloney; A. Lemaitre Amorphous systems in athermal, quasistatic shear, Phys. Rev. E, Volume 74 (2006), 016118 | DOI

[56] Y. Shi; M. B. Katz; H. Li; M. L. Falk Evaluation of the disorder temperature and free-volume formalisms via simulations of shear banding in amorphous solids, Phys. Rev. Lett., Volume 98 (2007), 185505

[57] K.-W. Park; C.-M. Lee; M.-R. Lee; E. Fleur; M.L. Falk; J.-C. Lee Paradoxal phenomena between the homogeneous and inhomogeneous deformations of metallic glasses, Appl. Phys. Lett., Volume 94 (2009), 021907

[58] M. L. Falk; C. E. Maloney Simulating the mechanical response of amorphous solids using atomistic methods, Eur. Phys. J. B, Volume 75 (2010), pp. 405-413 | DOI

[59] C. Fusco; T. Albaret; A. Tanguy Rheological properties versus local dynamics in model disordered materials at low temperature, Eur. Phys. J. E, Volume 37 (2014), 43

[60] S. Patinet; D. Vandembroucq; M. L. Falk Connecting local yield stresses with plastic activity in amorphous solids, Phys. Rev. Lett., Volume 117 (2016), 045501 | DOI

[61] F. Boioli; T. Albaret; D. Rodney Shear transformation distribution and activation in glasses at the atomic scale, Phys. Rev. E, Volume 95 (2017), 033005 | DOI

[62] A. Zaoui; D. Pineau; D. François Comportement Mécanique des Matériaux, Hermes, Paris, 1995

[63] L. Huang; J. Kieffer Molecular dynamics study of cristobalite silica using a charge transfer three-body potential: phase transformation and structural disorder, J. Chem. Phys., Volume 118 (2003), pp. 1487-1498 | DOI

[64] C. J. Brown The elastic stability of square perforated plates under combinations of bending, shear and direct load, Thin-Walled Struct., Volume 4 (1986) no. 3, pp. 239-246 | DOI

[65] J. C. Lambropoulos; S. Xu; T. Fang Constitutive law for the densification of fused silica, with applications on polishing and microgrinding, J. Am. Ceram. Soc., Volume 79 (1996), pp. 1441-1452 | DOI

[66] A. Shorey; K. Xin; K. H. Chen; J. C. Lambropoulos Deformation of fused silica: nanoindentation and densification, Proc. SPIE, Volume 3424 (1998), pp. 72-81 | DOI

[67] B. Mantisi; G. Kermouche; E. Barthel; A. Tanguy Impact of pressure on plastic yield in amorphous solids with open structure, Phys. Rev. E, Volume 93 (2016), 033001 | DOI

[68] F. Leonforte; R. Boissiere; A. Tanguy; J. P. Wittmer; J.-L. Barrat Continuum limit of amorphous elastic bodies iii: three-dimensional systems, Phys. Rev. B, Volume 72 (2005), 224206 | DOI

[69] B. Mantisi; A. Tanguy; G. Kermouche; E. Barthel Atomistic response of a model silica glass under shear and pressure, Eur. Phys. J. E, Volume 85 (2012), 304

[70] G. Molnár; P. Ganster; A. Tanguy Effect of composition and pressure on the shear strength of sodium silicate glasses: An atomic scale simulation study, Phys. Rev. E, Volume 95 (2017), 043001 | DOI

[71] C. J. McMahon Microplasticity, Interscience Publishers, New-York, 1968

[72] S. Hau et al. Brillouin scattering of vitreous silica under high pressure, Ann. Phys., Volume 4 (1995), pp. 91-98

[73] B. Rufflé; G. Guimbretiere; E. Courtens; R. Vacher Glass specific behavior in the damping of acoustic-like vibrations, Phys. Rev. Lett., Volume 96 (2006), 045502 | DOI

[74] E. R. Homer; C. A. Schuh Mesoscale modeling of amorphous metals by shear transformation zone dynamics, Acta Mater., Volume 57 (2009), pp. 2823-2833 | DOI

[75] E. R. Homer; C. A. Schuh Three-dimensional shear transformation zone dynamics model for amorphous metals, Model. Simul. Mat. Sci. Eng., Volume 18 (2010), 065009 | DOI

[76] T. Poston; I. Stewart Catastrophe Theory and its Application, Pitman, London, 1978

[77] Y.-C. Lu Singularity Theory and an Introduction to Catastrophe Theory, Springer-Verlag, 1976 | DOI

[78] J. Guckenheimer; P. Homes Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, Springer-Verlag, New-York, 1997

[79] H. J. Jensen; Y. Bréchet; B. Douçot Instabilities and correlations of an elastic lattice in a random potential, Europhys. Lett., Volume 23 (1993) no. 9, pp. 623-628 | DOI

[80] R. Hill The Mathematical Theory of Plasticity, Clarendon Press, Oxford, 1950

[81] R. E. Miller; D. Rodney On the nonlocal nature of dislocation nucleation during nanoindentation, J. Mech. Phys. Solids, Volume 56 (2008), pp. 1203-1223 | DOI

[82] M. L. Manning; A. Liu Vibrational modes identify soft spots in a sheared disordered packing, Phys. Rev. Lett., Volume 107 (2011), 108302 | DOI

[83] A. Ghosh; V. Chikkadi; P. Schall; D. Bonn Connecting structural relaxation with the low frequency modes in a hard-sphere colloidal glass, Phys. Rev. Lett., Volume 107 (2011), 188303 | DOI

[84] J. Ding et al. Soft spots and their structural signature in a metallic glass, Proc. Natl Acad. Sci. USA, Volume 111 (2014), pp. 14052-14056 | DOI

[85] M. L. Falk; J. S. Langer Dynamics of viscoplastic deformation in amorphous solids, Phys. Rev. E, Volume 57 (1998), pp. 7192-7205 | DOI

[86] M. L. Falk; J. S. Langer Deformation and failure of amorphous solidlike materials, Condens. Matter Phys., Volume 2 (2011), pp. 353-373

[87] A. Ghosh; Z. Budrikis; V. Chikkadi; A. L. Sellerio; S. Zapperi; P. Schall Direct observation of percolation in the yielding transition of colloidal glasses, Phys. Rev. Lett., Volume 118 (2017), 148001 | DOI

[88] R. Vacher; E. Courtens; M. Foret Anharmonic versus relaxational sound damping in glasses. ii. Vitreous silica, Phys. Rev. B, Volume 72 (2005), 214205 | DOI

[89] F. López Jiménez; N. Triantafyllidis Buckling of rectangular and hexagonal honeycomb under combined axial compression and transverse shear, Int. J. Solids Struct., Volume 50 (2013), pp. 3934-3946 | DOI

[90] Q.-S. Nguyen Stabilité et mécanique non-linéaire, Hermes Science Publications, 2000

[91] R. Tounsi et al. Numerical investigation, experimental validation and macroscopic yield criterion of al5056 honeycombs under mixed shear-compression loading, J. Impact Eng., Volume 108 (2017), pp. 348-360 | DOI

[92] B. Coasne et al. Poroelastic theory applied to the adsorption-induced deformation of vitreous silica, J. Phys. Chem. B, Volume 118 (2014), pp. 14519-14525 | DOI

[93] Z. Budrikis; S. Zapperi Avalanche localization and crossover scaling in amorphous plasticity, Phys. Rev. E, Volume 88 (2013), 062403 | DOI

[94] E. Lerner; S. Karmakar; I. Procaccia Statistical physics of the yielding transition in amorphous solids, Phys. Rev. E, Volume 82 (2010), 055103(R)

[95] I. Regev; J. Weber; C. Reichhardt; K. A. Dahmen; T. Lookman Reversibility and criticality in amorphous solids, Nat. Commun., Volume 6 (2015), 8805 | DOI

[96] G. P. Shrivastav; P. Chaudhuri; J. Horbach Yielding of glass under shear: A directed percolation transition precedes shear-band formation, Phys. Rev. E, Volume 94 (2016), 042605 | DOI

[97] S. Roux; A. Hansen Perfect plasticity in a random medium, J. Phys. II France, Volume 2 (1992), pp. 1007-1021 | DOI

[98] J. D. Eshelby The elastic field outside an ellipsoidal inclusion, Proc. R. Soc. Lond. A, Volume 252 (1959) no. 1271, pp. 561-569

[99] B. Tyukodi; D. Vandembroucq; C. E. Maloney Avalanches, thresholds, and diffusion in mesoscale amorphous plasticity, Phys. Rev. E, Volume 100 (2019), 043003 | DOI

[100] A. Nicolas; E. E. Ferrero; K. Martens; J.-L. Barrat Deformation and flow of amorphous solids: a review of mesoscale elastoplastic models, Rev. Mod. Phys., Volume 90 (2018), 045006 | DOI

[101] J.-C. Baret; D. Vandembroucq; S. Roux An extremal model of amorphous plasticity, Phys. Rev. Lett., Volume 89 (2002), 195506

[102] K. Martens; L. Bocquet; J.-L. Barrat Spontaneous formation of permanent shear bands in a mesoscopic model of flowing disordered matter, Soft Matter, Volume 8 (2012), pp. 4197-4205 | DOI

[103] Z. Budrikis; D. Fernandez Castellanos; S. Sandfeld; M. Zaiser; S. Zapperi Universal features of amorphous plasticity, Nat. Commun., Volume 8 (2017), 15928 | DOI

[104] M. Seleznev; A. Vinogradov Shear bands topology in the deformed bulk metallic glasses, Metals, Volume 10 (2020), 374 | DOI

[105] A. D. S. Parmar; S. Kumar; S. Sastry Strain localization above the yielding point in cyclically deformed glasses, Phys. Rev. X, Volume 9 (2019), 021018

[106] W.-T. Yeh et al. Glass stability changes the nature of yielding under oscillatory shear, Phys. Rev. Lett., Volume 124 (2020), 225502

[107] A. Le Bouil; A. Amon; S. McNamara; J. Crassous Emergence of cooperativity in plasticity of soft glassy materials, Phys. Rev. Lett., Volume 112 (2014), 246001 | DOI

[108] C. A. Schuh; T. C. Hufnagel; U. Ramamurty Mechanical behavior of amorphous alloys, Acta Mater., Volume 55 (2007), pp. 4067-4109 | DOI

[109] P. Thamburaja Length scale effects on the shear localization process in metallic glasses: A theoretical and computational study, J. Mech. Phys. Solids, Volume 59 (2011) no. 8, pp. 1552-1575 | DOI

[110] L. Li; E. R. Homer; C. A. Schuh Shear transformation zone dynamics model for metallic glasses incorporating free volume as a state variable, Acta Mater., Volume 61 (2013), pp. 3347-3359 | DOI

[111] D. Vandembroucq; S. Roux Mechanical noise dependent aging and shear banding behavior of a mesoscopic model of amorphous plasticity, Phys. Rev. B, Volume 84 (2011), 134210 | DOI

[112] M. Popović; T. W. J. de Geus; M. Wyart Elasto-plastic description of brittel failure in athermal amorphous materials during quasistatic loading, Phys. Rev. E, Volume 98 (2018), 040901 | DOI

[113] M. Ozawa et al. Random critical point separates brittle and ductile yielding transitions in amorphous materials, Proc. Natl Acad. Sci. USA, Volume 115 (2018), pp. 6656-6661 | DOI

[114] A. Barbot; M. Lerbinger; A. Lemaître; D. Vandembroucq; S. Patinet Rejuvenation and shear banding in model amorphous solids, Phys. Rev. E, Volume 101 (2020), 033001 | DOI

[115] K. A. Dahmen; Y. Ben-Zion; J. T. Uhl Micromechanical model for deformation in solids with universal predictions for stress–strain curves and slip avalanches, Phys. Rev. Lett., Volume 102 (2009), 175501

[116] F. Varnik; L. Bocquet; J.-L. Barrat A study of the static yield stress in a binary Lennard–Jones glass, J. Chem. Phys., Volume 120 (2004), pp. 2788-2801 | DOI

[117] L. Berthier; J.-L. Barrat Nonequilibrium dynamics and fluctuation–dissipation relation in a sheared fluid, J. Chem. Phys., Volume 116 (2002), 6228 | DOI

[118] M. Ozawa; M. Singh; L. Berthier Brittle yielding of amorphous solids at finite shear rates, Phys. Rev. Mater., Volume 4 (2020), 025603

[119] F. F. Wua; Z. F. Zhang; S. X. Mao Size-dependent shear fracture and global tensile plasticity of metallic glasses, Acta Mater., Volume 57 (2009), pp. 257-266

[120] Y. M. Beltukov; D. A. Parshin; V. M. Giordano; A. Tanguy Propagative and diffusive regimes of acoustic damping in bulk amorphous material, Phys. Rev. E, Volume 98 (2018), 023005

[121] A. Tanguy; P. Chen; T. Chaise; D. Nélias Shear banding in a contact problem between metallic glasses, Metals, Volume 11 (2021), 257 | DOI

[122] S. M. Fielding; M. E. Cates; P. Sollich Shear banding, aging and noise dynamics in soft glassy materials, Soft Matter, Volume 5 (2009), pp. 2378-2382 | DOI

[123] J. Luo; P. J. Lezzi; K. Deenamma Vargheese; A. Tandia; J. T. Harris; T. M. Gross; J. C. Mauro Competing indentation deformation mechanisms in glass using different strengthening methods, Front. Mater., Volume 3 (2016), 52

[124] C. Su; L. Anand Plane strain indentation of a Zr-based metallic glass: Experiments and numerical simulation, Acta Mater., Volume 54 (2006), pp. 179-180 | DOI

[125] Y. Shi; M. L. Falk Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass, Acta Mater., Volume 55 (2007), pp. 4317-4324 | DOI

[126] E. Agoritsas; R. García-García; V. Lecomte; L. Truskinovsky; D. Vandembroucq Driven interfaces: From flow to creep through model reduction, J. Stat. Phys., Volume 164 (2016), pp. 1394-1428 | DOI

[127] A. Tanguy; T. Vettorel From weak to strong pinning: A finite-size study, Eur. Phys. J. B, Volume 38 (2004), pp. 71-82 | DOI

[128] F. R. N. Nabarro Theory of Crystal Dislocations, Clarendon Press, Oxford, 1967

[129] L. Zhao et al. Simultaneous improvement of plasticity and strength of metallic glasses by tailoring residual stress: Role of stress gradient on shear banding, Mater. Des., Volume 197 (2021), 109246 | DOI

[130] R. T. Qu et al. Macroscopic tensile plasticity of bulk metallic glass through designed artificial defects, Mater. Sci. Eng. A, Volume 534 (2012), pp. 365-373

[131] E. Lerner; S. Karmakar; I. Procaccia Plasticity-induced anisotropy in amorphous solids: The bauschinger effect, Phys. Rev. E, Volume 82 (2010), 026104

[132] S. Patinet; A. Barbot; M. Lerbinger; A. Vandembroucq; A. Lemaître Origin of the Bauschinger effect in amorphous solids, Phys. Rev. Lett., Volume 124 (2020), 205503 | DOI

[133] E. R. Homer; D. Rodney; C. A. Schuh Kinetic Monte Carlo study of activated states and correlated shear-transformation-zone activity during the deformation of an amorphous metal, Phys. Rev. B, Volume 81 (2010), 064204 | DOI

[134] P. Cao; M. P. Short; S. Yip Potential energy landscape activations governing plastic flows in glass rheology, Proc. Natl Acad. Sci. USA, Volume 17 (2019), pp. 18790-18797 | DOI

[135] N. S. Shcheblanov; B. Mantisi; P. Umari; A. Tanguy Detailed analysis of plastic shear in the Raman spectra of SiO 2 glass, J. Non-Cryst. Solids, Volume 6 (2015), pp. 6-19 | DOI

[136] G. Kapteijns; D. Richard; E. Lerner Nonlinear quasilocalized excitations in glasses: True representatives of soft spots, Phys. Rev. E, Volume 101 (2020), 032130 | DOI

[137] H. Luo High frequency thermomechanical study of heterogeneous materials with interfaces, Ph. D. Thesis, Université de Lyon (2020)

Cited by Sources:

Comments - Policy