Comptes Rendus
Structural dynamics probed by X-ray pulses from synchrotrons and XFELs
Comptes Rendus. Physique, Volume 22 (2021) no. S2, pp. 75-94.

This review focuses on how short X-ray pulses from synchrotrons and XFELs can be used to track light-induced structural changes in molecular complexes and proteins via the pump–probe method. The upgrade of the European Synchrotron Radiation Facility to a diffraction-limited storage ring, based on the seven-bend achromat lattice, and how it might boost future pump–probe experiments are described. We discuss some of the first X-ray experiments to achieve 100 ps time resolution, including the dissociation and in-cage recombination of diatomic molecules, as probed by wide-angle X-ray scattering, and the 3D filming of ligand transport in myoglobin, as probed by Laue diffraction. Finally, the use of femtosecond XFEL pulses to investigate primary chemical reactions, bond breakage and bond formation, isomerisation and electron transfer are discussed.

Première publication :
Publié le :
DOI : 10.5802/crphys.85
Mots clés : Structural dynamics, Synchroton radiation, Pump and probe, Single shot X-ray experiment, Photolysis, Dissociation dynamics
Matteo Levantino 1 ; Qingyu Kong 2 ; Marco Cammarata 1 ; Dmitry Khakhulin 3 ; Friedrich Schotte 4 ; Philip Anfinrud 4 ; Victoria Kabanova 5 ; Hyotcherl Ihee 6 ; Anton Plech 7 ; Savo Bratos 8 ; Michael Wulff 1

1 ESRF — The European Synchrotron, 71 Avenue des Martyrs, 30043 Grenoble Cedex, France
2 Soleil Synchrotron, L’Orme des Merisiers, 91190 Saint-Aubin, France
3 European XFEL, 22869 Schenefeld, Germany
4 National Institute of Health, Bethesda, MD 20892, USA
5 PSI, SwissFEL, 5232 Villigen, Switzerland
6 Department of Chemistry, KAIST, Daejeon, South Korea
7 Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
8 Université Pierre et Marie Curie, Paris 75252, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2021__22_S2_75_0,
     author = {Matteo Levantino and Qingyu Kong and Marco Cammarata and Dmitry Khakhulin and Friedrich Schotte and Philip Anfinrud and Victoria Kabanova and Hyotcherl Ihee and Anton Plech and Savo Bratos and Michael Wulff},
     title = {Structural dynamics probed by {X-ray} pulses from synchrotrons and {XFELs}},
     journal = {Comptes Rendus. Physique},
     pages = {75--94},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S2},
     year = {2021},
     doi = {10.5802/crphys.85},
     language = {en},
}
TY  - JOUR
AU  - Matteo Levantino
AU  - Qingyu Kong
AU  - Marco Cammarata
AU  - Dmitry Khakhulin
AU  - Friedrich Schotte
AU  - Philip Anfinrud
AU  - Victoria Kabanova
AU  - Hyotcherl Ihee
AU  - Anton Plech
AU  - Savo Bratos
AU  - Michael Wulff
TI  - Structural dynamics probed by X-ray pulses from synchrotrons and XFELs
JO  - Comptes Rendus. Physique
PY  - 2021
SP  - 75
EP  - 94
VL  - 22
IS  - S2
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.85
LA  - en
ID  - CRPHYS_2021__22_S2_75_0
ER  - 
%0 Journal Article
%A Matteo Levantino
%A Qingyu Kong
%A Marco Cammarata
%A Dmitry Khakhulin
%A Friedrich Schotte
%A Philip Anfinrud
%A Victoria Kabanova
%A Hyotcherl Ihee
%A Anton Plech
%A Savo Bratos
%A Michael Wulff
%T Structural dynamics probed by X-ray pulses from synchrotrons and XFELs
%J Comptes Rendus. Physique
%D 2021
%P 75-94
%V 22
%N S2
%I Académie des sciences, Paris
%R 10.5802/crphys.85
%G en
%F CRPHYS_2021__22_S2_75_0
Matteo Levantino; Qingyu Kong; Marco Cammarata; Dmitry Khakhulin; Friedrich Schotte; Philip Anfinrud; Victoria Kabanova; Hyotcherl Ihee; Anton Plech; Savo Bratos; Michael Wulff. Structural dynamics probed by X-ray pulses from synchrotrons and XFELs. Comptes Rendus. Physique, Volume 22 (2021) no. S2, pp. 75-94. doi : 10.5802/crphys.85. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.85/

[1] N. B. Slater Classical motion under a morse potential, Nature, Volume 180 (1957), pp. 1352-1353 | DOI | Zbl

[2] A. H. Zewail The birth of molecules, Sci. Am., Volume 263 (1990), pp. 76-82 | DOI

[3] A. H. Zewail Filming the invisible in 4-D, Sci. Am., Volume 303 (2010), pp. 75-81 | DOI

[4] G. A. Mourou; D. Umstadter Extreme light, Sci. Am., Volume 286 (2002), pp. 80-86 | DOI

[5] P. Raimondi The ESRF low emittance upgrade, IPAC 2016 – Proc. 7th Int. Part. Accel. Conf. (2016), pp. 2023-2027 (https://accelconf.web.cern.ch/IPAC2016/papers/wexa01.pdf)

[6] P. Raimondi ESRF-EBS: The extremely brilliant source project, Synchrotron Radiat. News, Volume 29 (2016), pp. 8-15 | DOI

[7] A. Plech; V. Kotaidis; M. Lorenc; J. Boneberg Femtosecond laser near-field ablation from gold nanoparticles, Nat. Phys., Volume 2 (2006), pp. 44-47 | DOI

[8] M. Cammarata; L. Eybert; F. Ewald; W. Reichenbach; M. Wulff; P. Anfinrud; F. Schotte; A. Plech; Q. Kong; M. Lorenc; B. Lindenau; J. Räbiger; S. Polachowski Chopper system for time resolved experiments with synchrotron radiation, Rev. Sci. Instrum., Volume 80 (2009), 015101 | DOI

[9] T. J. Chuang; G. W. Hoffman; K. B. Eisenthal Picosecond studies of the cage effect and collision induced predissociation of iodine in liquids, Chem. Phys. Lett., Volume 25 (1974), pp. 201-205 | DOI

[10] E. J. Baran Mean amplitudes of vibration of the halogen molecules, Z. Naturforsch. A, Volume 58 (2003), pp. 36-38

[11] A. Plech; M. Wulff; S. Bratos; F. Mirloup; R. Vuilleumier; F. Schotte; P. A. Anfinrud Visualizing chemical reactions in solution by picosecond X-ray diffraction, Phys. Rev. Lett., Volume 92 (2004), 125505 | DOI

[12] J. H. Lee; M. Wulff; S. Bratos; J. Petersen; L. Guerin; J. C. Leicknam; M. Cammarata; Q. Kong; J. Kim; K. B. Møller; H. Ihee Filming the birth of molecules and accompanying solvent rearrangement, J. Am. Chem. Soc., Volume 135 (2013), pp. 3255-3261 | DOI

[13] K. S. Kjær; T. B. Van Driel; J. Kehres; K. Haldrup; D. Khakhulin; K. Bechgaard; M. Cammarata; M. Wulff; T. J. Sørensen; M. M. Nielsen Introducing a standard method for experimental determination of the solvent response in laser pump, X-ray probe time-resolved wide-angle X-ray scattering experiments on systems in solution, Phys. Chem. Chem. Phys., Volume 15 (2013), pp. 15003-15016 | DOI

[14] M. Cammarata; M. Lorenc; T. K. Kim; J. H. Lee; Q. Y. Kong; E. Pontecorvo; M. Lo Russo; G. Schiró; A. Cupane; M. Wulff; H. Ihee Impulsive solvent heating probed by picosecond X-ray diffraction, J. Chem. Phys., Volume 124 (2006), 124504

[15] M. Wulff; S. Bratos; A. Plech; R. Vuilleumier; F. Mirloup; M. Lorenc; Q. Kong; H. Ihee Recombination of photodissociated iodine: A time-resolved X-ray-diffraction study, J. Chem. Phys., Volume 124 (2006), 034501

[16] B. E. Warren X-ray Diffraction, Dover Publications, New York, 1990

[17] F. Zernike; J. A. Prins Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der Molekülanordnung, Z. Phys., Volume 41 (1927), pp. 184-194

[18] J.-P. Hansen; I. R. McDonald Theory of Simple Liquids: with Applications to Soft Matter, Academic Press, 2013 | Zbl

[19] M. Cammarata; M. Levantino; F. Schotte; P. A. Anfinrud; F. Ewald; J. Choi; A. Cupane; M. Wulff; H. Ihee Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering, Nat. Methods, Volume 5 (2008), pp. 881-886 | DOI

[20] M. Cammarata; M. Levantino; M. Wulff; A. Cupane Unveiling the timescale of the R-T transition in human hemoglobin, J. Mol. Biol., Volume 400 (2010), pp. 951-962 | DOI

[21] M. Levantino; A. Spilotros; M. Cammarata; G. Schiro; C. Ardiccioni; B. Vallone; M. Brunori; A. Cupane The Monod–Wyman–Changeux allosteric model accounts for the quaternary transition dynamics in wild type and a recombinant mutant human hemoglobin, Proc. Natl. Acad. Sci. USA, Volume 109 (2012), pp. 14894-14899 | DOI

[22] M. Levantino; B. A. Yorke; D. C. F. Monteiro; M. Cammarata; A. R. Pearson Using synchrotrons and XFELs for time-resolved X-ray crystallography and solution scattering experiments on biomolecules, Curr. Opin. Struct. Biol., Volume 35 (2015), pp. 41-48 | DOI

[23] I. Josts; S. Niebling; Y. Gao; M. Levantino; H. Tidow; D. Monteiro Photocage-initiated time-resolved solution X-ray scattering investigation of protein dimerization, IUCrJ, Volume 5 (2018), pp. 667-672 | DOI

[24] T. W. Kim; S. J. Lee; J. Jo; J. G. Kim; H. Ki; C. W. Kim; K. H. Cho; J. Choi; J. H. Lee; M. Wulff; Y. M. Rhee; H. Ihee Protein folding from heterogeneous unfolded state revealed by time-resolved X-ray solution scattering, Proc. Natl. Acad. Sci. USA, Volume 117 (2020), pp. 14996-15005 | DOI

[25] A. Björling; O. Berntsson; H. Lehtivuori; H. Takala; A. J. Hughes; M. Panman; M. Hoernke; S. Niebling; L. Henry; R. Henning; I. Kosheleva; V. Chukharev; N. V. Tkachenko; A. Menzel; G. Newby; D. Khakhulin; M. Wulff; J. A. Ihalainen; S. Westenhoff Structural photoactivation of a full-length bacterial phytochrome, Sci. Adv., Volume 2 (2016), e1600920 | DOI

[26] H. Ravishankar; M. N. Pedersen; M. Eklund; A. Sitsel; C. Li; A. Duelli; M. Levantino; M. Wulff; A. Barth; C. Olesen; P. Nissen; M. Andersson Tracking Ca 2+ ATPase intermediates in real time by X-ray solution scattering, Sci. Adv., Volume 6 (2020), eaaz0981 | DOI

[27] J. C. Kendrew; G. Bodo; H. M. Dintzis; R. G. Parrish; H. Wyckoff; D. C. Phillips A three-dimensional model of the myoglobin molecule obtained by X-ray analysis, Nature, Volume 181 (1958), pp. 662-666 | DOI

[28] J. C. Brooks-Bartlett; E. F. Garman The nobel science: One hundred years of crystallography, Interdiscip. Sci. Rev., Volume 40 (2015), pp. 244-264 | DOI

[29] V. Srajer; T.-Y. Teng; T. Ursby; C. Pradervand; Z. Ren; S.-I. Adachi; W. Schildkamp; D. Bourgeois; M. Wulff; K. Moffat Photolysis of the carbon monoxide complex of myoglobin: Nanosecond time-resolved crystallography, Science, Volume 274 (1996), pp. 1726-1729 | DOI

[30] E. Antonini; M. Brunori Hemoglobin and Myoglobin in their Reactions with Ligands, North-Holl. Publ. Co., Amsterdam, Netherlands, 1972

[31] J. R. Helliwell Macromolecular Crystallography with Synchrotron Radiation, Cambridge University Press, Cambridge, 1992

[32] F. Schotte; M. Lim; T. A. Jackson; A. V. Smirnov; J. Soman; J. S. Olson; G. N. Phillips; M. Wulff; P. A. Anfinrud Watching a protein as it functions with 150-ps time-resolved X-ray crystallography, Science, Volume 300 (2003), pp. 1944-1947 | DOI

[33] D. Bourgeois; B. Vallone; F. Schotte; A. Arcovito; A. E. Miele; G. Sciara; M. Wulff; P. Anfinrud; M. Brunori Complex landscape of protein structural dynamics unveiled by nanosecond Laue crystallography, Proc. Natl. Acad. Sci. USA, Volume 100 (2003), pp. 8704-8709 | DOI

[34] G. Margaritondo; P. Rebernik Ribic A simplified description of X-ray free-electron lasers, J. Synchrotron Radiat., Volume 18 (2011), pp. 101-108 | DOI

[35] R. Neutzo; R. Wouts; D. Van Der Spoel; E. Weckert; J. Hajdu Potential for biomolecular imaging with femtosecond X-ray pulses, Nature, Volume 406 (2000), pp. 752-757 | DOI

[36] H. N. Chapman; P. Fromme; A. Barty; T. A. White; R. A. Kirian; A. Aquila; M. S. Hunter; J. Schulz; D. P. DePonte; U. Weierstall; R. B. Doak; F. R. N. C. Maia; A. V. Martin; I. Schlichting; L. Lomb; N. Coppola; R. L. Shoeman; S. W. Epp; R. Hartmann; D. Rolles; A. Rudenko; L. Foucar; N. Kimmel; G. Weidenspointner; P. Holl; M. Liang; M. Barthelmess; C. Caleman; S. Boutet; M. J. Bogan; J. Krzywinski; C. Bostedt; S. Bajt; L. Gumprecht; B. Rudek; B. Erk; C. Schmidt; A. Hömke; C. Reich; D. Pietschner; L. Strüder; G. Hauser; H. Gorke; J. Ullrich; S. Herrmann; G. Schaller; F. Schopper; H. Soltau; K.-U. Kühnel; M. Messerschmidt; J. D. Bozek; S. P. Hau-Riege; M. Frank; C. Y. Hampton; R. G. Sierra; D. Starodub; G. J. Williams; J. Hajdu; N. Timneanu; M. M. Seibert; J. Andreasson; A. Rocker; O. Jönsson; M. Svenda; S. Stern; K. Nass; R. Andritschke; C.-D. Schröter; F. Krasniqi; M. Bott; K. E. Schmidt; X. Wang; I. Grotjohann; J. M. Holton; T. R. M. Barends; R. Neutze; S. Marchesini; R. Fromme; S. Schorb; D. Rupp; M. Adolph; T. Gorkhover; I. Andersson; H. Hirsemann; G. Potdevin; H. Graafsma; B. Nilsson; J. C. H. Spence Femtosecond X-ray protein nanocrystallography, Nature, Volume 470 (2011), pp. 73-77 | DOI

[37] T. R. M. Barends; L. Foucar; A. Ardevol; K. Nass; A. Aquila; S. Botha; R. B. Doak; K. Falahati; E. Hartmann; M. Hilpert; M. Heinz; M. C. Hoffmann; J. Kofinger; J. E. Koglin; G. Kovacsova; M. Liang; D. Milathianaki; H. T. Lemke; J. Reinstein; C. M. Roome; R. L. Shoeman; G. J. Williams; I. Burghardt; G. Hummer; S. Boutet; I. Schlichting Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation, Science, Volume 350 (2015), pp. 445-450 | DOI

[38] M. Levantino; G. Schirò; H. T. Lemke; G. Cottone; J. M. Glownia; D. Zhu; M. Chollet; H. Ihee; A. Cupane; M. Cammarata Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser, Nat. Commun., Volume 6 (2015), 6772 | DOI

[39] K. H. Kim; J. G. Kim; S. Nozawa; T. Sato; K. Y. Oang; T. W. Kim; H. Ki; J. Jo; S. Park; C. Song; T. Sato; K. Ogawa; T. Togashi; K. Tono; M. Yabashi; T. Ishikawa; J. Kim; R. Ryoo; J. Kim; H. Ihee; S. I. Adachi Direct observation of bond formation in solution with femtosecond X-ray scattering, Nature, Volume 518 (2015), pp. 385-389 | DOI

[40] H. T. Lemke; C. Bressler; L. X. Chen; D. M. Fritz; K. J. Gaffney; A. Galler; W. Gawelda; K. Haldrup; R. W. Hartsock; H. Ihee; J. Kim; K. H. Kim; J. H. Lee; M. M. Nielsen; A. B. Stickrath; W. Zhang; D. Zhu; M. Cammarata Femtosecond X-ray absorption spectroscopy at a hard X-ray free electron laser: Application to spin crossover dynamics, J. Phys. Chem. A, Volume 117 (2013), pp. 735-740 | DOI

[41] M. Harmand; R. Coffee; M. R. Bionta; M. Chollet; D. French; D. Zhu; D. M. Fritz; H. T. Lemke; N. Medvedev; B. Ziaja; S. Toleikis; M. Cammarata Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers, Nat. Photonics, Volume 7 (2013), pp. 215-218 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Foreword: Ultrafast Phenomena in condensed matter physics

Eric Collet; Sylvain Ravy

C. R. Phys (2021)


X radiation sources based on accelerators

Marie-Emmanuelle Couprie; Jean-Marc Filhol

C. R. Phys (2008)


X-Ray Photon Correlation Spectroscopy at the European X-Ray Free-Electron Laser (XFEL) facility

Gerhard Grübel

C. R. Phys (2008)