logo CRAS
Comptes Rendus. Physique
Toward nonthermal control of excited quantum materials: framework and investigations by ultrafast electron scattering and imaging
Comptes Rendus. Physique, Volume 22 (2021) no. S2, pp. 15-73.

Part of the special issue: Physics of ultra-fast phenomena

Quantum material systems upon applying ultrashort laser pulses provide a rich platform to access excited material phases and their transformations that are not entirely like their equilibrium counterparts. The addressability and potential controls of metastable or long-trapped out-of-equilibrium phases have motivated interests both for the purposes of understanding the nonequilibrium physics and advancing the quantum technologies. Thus far, the dynamical spectroscopic probes eminently focus on microscopic electronic and phonon responses. For characterizing the long-range dynamics, such as order parameter fields and fluctuation effects, the ultrafast scattering probes offer direct sensitivity. Bridging the connections between the microscopic dynamics and macroscopic responses is central toward establishing the nonequilibrium physics behind the light-induced phases. Here, we present a path toward such understanding by cross-examining the structure factors associated with different dynamical states obtained from ultrafast electron scattering, imaging, and modeling. We give the basic theoretical framework on describing the non-equilibrium scattering problems and briefly describe how such framework relates to the out-of-equilibrium phenomena. We give effective models outlining the emergences of nonthermal critical points, hidden phases, and non-equilibrium relaxational responses from vacuum-suspended rare-earth tritellurides, tantalum disulfides thin films, and vanadium dioxide nanocrystalline materials upon light excitations.

Online First:
Published online:
DOI: 10.5802/crphys.86
Keywords: Photoinduced phase transitions, Interaction quench, Quantum materials nonequilibrium many-body systems, Ultrafast electron diffraction, Ultrafast electron microscopy
Xiaoyi Sun 1; Shuaishuai Sun 1; Chong-Yu Ruan 1

1 Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48825, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Xiaoyi Sun and Shuaishuai Sun and Chong-Yu Ruan},
     title = {Toward nonthermal control of excited quantum materials: framework and investigations by ultrafast electron scattering and imaging},
     journal = {Comptes Rendus. Physique},
     pages = {15--73},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S2},
     year = {2021},
     doi = {10.5802/crphys.86},
     language = {en},
TI  - Toward nonthermal control of excited quantum materials: framework and investigations by ultrafast electron scattering and imaging
JO  - Comptes Rendus. Physique
PY  - 2021
DA  - 2021///
SP  - 15
EP  - 73
VL  - 22
IS  - S2
PB  - Académie des sciences, Paris
UR  - https://doi.org/10.5802/crphys.86
DO  - 10.5802/crphys.86
LA  - en
ID  - CRPHYS_2021__22_S2_15_0
ER  - 
%0 Journal Article
%T Toward nonthermal control of excited quantum materials: framework and investigations by ultrafast electron scattering and imaging
%J Comptes Rendus. Physique
%D 2021
%P 15-73
%V 22
%N S2
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crphys.86
%R 10.5802/crphys.86
%G en
%F CRPHYS_2021__22_S2_15_0
Xiaoyi Sun; Shuaishuai Sun; Chong-Yu Ruan. Toward nonthermal control of excited quantum materials: framework and investigations by ultrafast electron scattering and imaging. Comptes Rendus. Physique, Volume 22 (2021) no. S2, pp. 15-73. doi : 10.5802/crphys.86. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.86/

[1] D. N. Basov; R. D. Averitt; D. Hsieh Towards properties on demand in quantum materials, Nat. Mater., Volume 16 (2017), pp. 1077-1088 | DOI

[2] Y. Tokura; M. Kawasaki; N. Nagaosa Emergent functions of quantum materials, Nat. Phys., Volume 13 (2017), pp. 1056-1068 | DOI

[3] National Academies of Sciences, Engineering Medicine Frontiers of Materials Research: A Decadal Survey, The National Academies, Washington, DC, 2019

[4] B. Keimer; J. E. Moore The physics of quantum materials, Nat. Phys., Volume 13 (2017), pp. 1045-1055 | DOI

[5] P. W. Anderson More is different, Science, Volume 177 (1972), pp. 393-396 | DOI

[6] L. D. Landau On the theory of phase transitions, Zh. Eksp. Teor. Fiz, Volume 7 (1937), pp. 19-32

[7] L. D. Landau On the theory of phase transitions. II, Zh. Eksp. Teor. Fiz., Volume 7 (1937), pp. 627-632

[8] P. W. Anderson Basic Notions of Condensed Matter Physics, The Benjamin-Cummings publishing company, Inc., Menlo park, CA, 1984

[9] P. C. Hohenberg; A. P. Krekhov An introduction to the Ginzburg–Landau theory of phase transitions and nonequilibrium patterns, Phys. Rep., Volume 572 (2015), pp. 1-42 | DOI | MR | Zbl

[10] W. H. Zurek Cosmological experiments in condensed matter systems, Phys. Rep., Volume 276 (1996), pp. 177-221 | DOI

[11] J. Orenstein Ultrafast spectroscopy of quantum materials, Phys. Today, Volume 65 (2012), pp. 44-60 | DOI

[12] M. Buzzi; M. Först; R. Mankowsky; A. Cavalleri Probing dynamics in quantum materials with femtosecond X-rays, Nat. Rev. Mater., Volume 3 (2018), pp. 299-311 | DOI

[13] C. Giannetti; M. Capone; D. Fausti; M. Fabrizio; F. Parmigiani; D. Mihailovic Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach, Adv. Phys., Volume 65 (2016), pp. 58-238 | DOI

[14] J. Zhang; R. D. Averitt Dynamics and control in complex transition metal oxides, Annu. Rev. Mater. Res., Volume 44 (2014), pp. 19-43 | DOI

[15] T. F. Nova; A. S. Disa; M. Fechner; A. Cavalleri Metastable ferroelectricity in optically strained SrTiO 3 , Science, Volume 364 (2019), pp. 1075-1079 | DOI

[16] X. Li; T. Qiu; J. Zhang; E. Baldini; J. Lu; A. M. Rappe; K. A. Nelson Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO 3 , Science, Volume 364 (2019), pp. 1079-1082 | DOI

[17] H. Ichikawa; S. Nozawa; T. Sato; A. Tomita; K. Ichiyanagi; M. Chollet; L. Guerin; N. Dean; A. Cavalleri; S.-i. Adachi; T.-h. Arima; H. Sawa; Y. Ogimoto; M. Nakamura; R. Tamaki; K. Miyano; S.-y. Koshihara Transient photoinduced “hidden” phase in a manganite, Nat. Mater., Volume 10 (2011), pp. 101-105 | DOI

[18] L. Stojchevska; I. Vaskivskyi; T. Mertelj; P. Kusar; D. Svetin; S. Brazovskii; D. Mihailovic Ultrafast switching to a stable hidden quantum state in an electronic crystal, Science, Volume 344 (2014), pp. 177-180 | DOI

[19] T.-R. T. Han; F. Zhou; C. D. Malliakas; P. M. Duxbury; S. D. Mahanti; M. G. Kanatzidis; C.-Y. Ruan Exploration of metastability and hidden phases in correlated electron crystals visualized by femtosecond optical doping and electron crystallography, Sci. Adv., Volume 1 (2015), e1400173

[20] D. Fausti; R. I. Tobey; N. Dean; S. Kaiser; A. Dienst; M. C. Hoffmann; S. Pyon; T. Takayama; H. Takagi; A. Cavalleri Light-induced superconductivity in a stripe-ordered cuprate, Science, Volume 331 (2011), pp. 189-191 | DOI

[21] A. Cantaluppi; M. Buzzi; G. Jotzu; D. Nicoletti; M. Mitrano; D. Pontiroli; M. Riccò; A. Perucchi; P. Di Pietro; A. Cavalleri Pressure tuning of light-induced superconductivity in K 3 C 60 , Nat. Phys., Volume 14 (2018), pp. 837-841 | DOI

[22] A. Kogar; A. Zong; P. E. Dolgirev; X. Shen; J. Straquadine; Y.-Q. Bie; X. Wang; T. Rohwer; I. C. Tung; Y. Yang; R. Li; J. Yang; S. Weathersby; S. Park; M. E. Kozina; E. J. Sie; H. Wen; P. Jarillo-Herrero; I. R. Fisher; X. Wang; N. Gedik Light-induced charge density wave in LaTe 3 , Nat. Phys., Volume 16 (2020), pp. 159-163 | DOI

[23] F. Zhou; J. Williams; S. Sun; C. D. Malliakas; M. G. Kanatzidis; A. F. Kemper; C.-Y. Ruan Nonequilibrium dynamics of spontaneous symmetry breaking into a hidden state of charge-density wave, Nat. Commun., Volume 12 (2021), 566

[24] Quantum phases on demand, Nat. Phys., Volume 16 (2020), p. 1 | DOI

[25] K. Nasu Photoinduced Phase Transitions, World Scientific, Singapore, 2004

[26] J. Eisert; M. Friesdorf; C. Gogolin Quantum many-body systems out of equilibrium, Nat. Phys., Volume 11 (2015), pp. 124-130 | DOI

[27] U. C. Tauber Critical Dynamics: A Field Theory Approach to Equilibrium and Non-equilibrium Scaling Behavior, Cambridge University Press, Cambridge, 2014

[28] G. Ódor Universality classes in nonequilibrium lattice systems, Rev. Mod. Phys., Volume 76 (2004), pp. 663-724 | DOI | MR | Zbl

[29] A. Polkovnikov; K. Sengupta; A. Silva; M. Vengalattore Colloquium: nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys., Volume 83 (2011), pp. 863-883 | DOI

[30] H. Aoki; N. Tsuji; M. Eckstein; M. Kollar; T. Oka; P. Werner Nonequilibrium dynamical mean-field theory and its applications, Rev. Mod. Phys., Volume 86 (2014), pp. 779-837 | DOI

[31] Z. Sun; A. J. Millis Transient trapping into metastable states in systems with competing orders, Phys. Rev. X, Volume 10 (2020), 021028

[32] W. Fu; L.-Y. Hung; S. Sachdev Quantum quenches and competing orders, Phys. Rev. B, Volume 90 (2014), 024506

[33] B. Damski; W. H. Zurek Adiabatic-impulse approximation for avoided level crossings: from phase-transition dynamics to Landau–Zener evolutions and back again, Phys. Rev. A, Volume 73 (2006), 063405 | DOI

[34] J. Berges; A. Rothkopf; J. Schmidt Nonthermal fixed points: effective weak coupling for strongly correlated systems far from equilibrium, Phys. Rev. Lett., Volume 101 (2008), 041603 | DOI

[35] T. W. B. Kibble Topology of cosmic domains and strings, J. Phys. A: Math. Gen., Volume 9 (1976), pp. 1387-1398 | DOI | Zbl

[36] T. W. B. Kibble Symmetry breaking and defects, Patterns of Symmetry Breaking (H. Arodz; J. Dziarmaga; W. H. Zurek, eds.), Springer, Dordrecht, Netherlands, 2003, pp. 3-36 | DOI

[37] M. Gring; M. Kuhnert; T. Langen; T. Kitagawa; B. Rauer; M. Schreitl; I. Mazets; D. A. Smith; E. Demler; J. Schmiedmayer Relaxation and prethermalization in an isolated quantum system, Science, Volume 337 (2012), pp. 1318-1322 | DOI

[38] T. Kinoshita; T. Wenger; D. S. Weiss A quantum Newton’s cradle, Nature, Volume 440 (2006), pp. 900-903 | DOI

[39] Y. Tang; W. Kao; K.-Y. Li; S. Seo; K. Mallayya; M. Rigol; S. Gopalakrishnan; B. L. Lev Thermalization near Integrability in a dipolar quantum Newton’s cradle, Phys. Rev. X, Volume 8 (2018), 021030

[40] M. Prüfer; P. Kunkel; H. Strobel; S. Lannig; D. Linnemann; C.-M. Schmied; J. Berges; T. Gasenzer; M. K. Oberthaler Observation of universal dynamics in a spinor Bose gas far from equilibrium, Nature, Volume 563 (2018), pp. 217-220 | DOI

[41] S. Erne; R. Bücker; T. Gasenzer; J. Berges; J. Schmiedmayer Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium, Nature, Volume 563 (2018), pp. 225-229 | DOI

[42] C. Eigen; J. A. P. Glidden; R. Lopes; E. A. Cornell; R. P. Smith; Z. Hadzibabic Universal prethermal dynamics of Bose gases quenched to unitarity, Nature, Volume 563 (2018), pp. 221-224 | DOI

[43] P. Calabrese; J. Cardy Time dependence of correlation functions following a quantum quench, Phys. Rev. Lett., Volume 96 (2006), 136801 | DOI

[44] A. Mitra Quantum quench dynamics, Annu. Rev. Condens. Matter Phys., Volume 9 (2018), pp. 245-259 | DOI

[45] M. Eckstein; M. Kollar; P. Werner Thermalization after an interaction quench in the Hubbard model, Phys. Rev. Lett., Volume 103 (2009), 056403 | DOI

[46] A. H. Zewail Femtochemistry: Atomic-scale dynamics of the chemical bond, J. Phys. Chem. A, Volume 104 (2000), pp. 5660-5694 | DOI

[47] W. L. McMillan Microscopic model of charge-density waves in 2H–TaSe 2 , Phys. Rev. B, Volume 16 (1977), pp. 643-650 | DOI

[48] L. D. Landau Scattering of X-rays by crystals near the Curie point, Zh. Eksp. Teor. Fiz., Volume 7 (1937), pp. 1232-1241

[49] P. A. Lee; T. M. Rice; P. W. Anderson Fluctuation effects at a Peierls transition, Phys. Rev. Lett., Volume 31 (1973), pp. 462-465 | DOI

[50] A. W. Overhauser Observability of charge-density waves by neutron diffraction, Phys. Rev. B, Volume 3 (1971), pp. 3173-3182 | DOI

[51] G. Gruner The dynamics of charge-density waves, Rev. Mod. Phys., Volume 60 (1988), pp. 1129-1182 | DOI

[52] M. A. Krivoglaz Diffuse Scattering of X-ray and Neutrons by Fluctuations, Springer-Verlag, Berlin, Heidelberg, 1996

[53] P. M. Williams; G. S. Parry; C. B. Scrub Diffraction evidence for the Kohn anomaly in 1T-TaS 2 , Philos. Mag.: A J. Theor. Exp. Appl. Phys., Volume 29 (1974), pp. 695-699 | DOI

[54] K. R. A. Ziebeck; B. Dorner; W. G. Stirling; R. Schollhorn Kohn anomaly in the 1T 2 phase of TaS 2 , J. Phys. F: Met. Phys., Volume 7 (1977), pp. 1139-1143 | DOI

[55] W. Minor; L. D. Chapman; S. N. Ehrlich; R. Colella Phason velocities in TaS 2 by X-ray diffuse scattering, Phys. Rev. B, Volume 39 (1989), pp. 1360-1362 | DOI

[56] Y. Machida; T. Hanashima; K. Ohkubo; K. Yamawaki; M. Tanaka; S. Sasaki Observation of soft phonon modes in 1T-TaS 2 by means of X-ray thermal diffuse scattering, J. Phys. Soc. Jpn., Volume 73 (2004), pp. 3064-3069 | DOI

[57] M. Trigo; M. Fuchs; J. Chen; M. P. Jiang; M. Cammarata; S. Fahy; D. M. Fritz; K. Gaffney; S. Ghimire; A. Higginbotham; S. L. Johnson; M. E. Kozina; J. Larsson; H. Lemke; A. M. Lindenberg; G. Ndabashimiye; F. Quirin; K. Sokolowski-Tinten; C. Uher; G. Wang; J. S. Wark; D. Zhu; D. A. Reis Fourier-transform inelastic X-ray scattering from time-and momentum-dependent phonon–phonon correlations, Nat. Phys., Volume 9 (2013), pp. 790-794 | DOI

[58] T. Chase; M. Trigo; A. H. Reid; R. Li; T. Vecchione; X. Shen; S. Weathersby; R. Coffee; N. Hartmann; D. A. Reis; X. J. Wang; H. A. Dürr Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films, Appl. Phys. Lett., Volume 108 (2016), 041909 | DOI

[59] L. P. René de Cotret; J.-H. Pöhls; M. J. Stern; M. R. Otto; M. Sutton; B. J. Siwick Time-and momentum-resolved phonon population dynamics with ultrafast electron diffuse scattering, Phys. Rev. B, Volume 100 (2019), 214115 | DOI

[60] W. L. McMillan Collective modes of a charge-density wave near the lock-in transition, Phys. Rev. B, Volume 16 (1977), pp. 4655-4658 | DOI

[61] D. Forster Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions, CRC Press, Boca Raton, 1975

[62] A. W. Overhauser Spin density waves in an electron gas, Phys. Rev., Volume 128 (1962), pp. 1437-1452 | DOI | Zbl

[63] A. D. Bruce; R. A. Cowley The theory of structurally incommensurate systems. III. The fluctuation spectrum of incommensurate phases, J. Phys. C: Solid State Phys., Volume 11 (1978), pp. 3609-3630 | DOI

[64] U. C. Täuber Field-theory approaches to nonequilibrium dynamics, Ageing and the Glass Transition (M. Henkel; M. Pleimling; R. Sanctuary, eds.), Springer, Berlin, Heidelberg, 2007, pp. 295-348 | DOI

[65] P. M. Chaikin; T. C. Lubensky Principles of Condensed Matter Physics, Cambridge University Press, Cambridge, 1995

[66] A. J. Bray Theory of phase-ordering kinetics, Adv. Phys., Volume 43 (1994), pp. 357-459 | DOI

[67] R. M. Fernandes; P. P. Orth; J. Schmalian Intertwined vestigial order in quantum materials: Nematicity and beyond, Annu. Rev. Condens. Matter Phys., Volume 10 (2019), pp. 133-154 | DOI

[68] E. Fradkin; S. A. Kivelson; J. M. Tranquada Colloquium: Theory of intertwined orders in high temperature superconductors, Rev. Mod. Phys., Volume 87 (2015), pp. 457-482 | DOI

[69] E. Dagotto Complexity in strongly correlated electronic systems, Science, Volume 309 (2005), pp. 257-262 | DOI

[70] E. Fradkin; S. A. Kivelson High-temperature superconductivity: Ineluctable complexity, Nat. Phys., Volume 8 (2012), pp. 864-866 | DOI

[71] L. Balents; L. Bartosch; A. Burkov; S. Sachdev; K. Sengupta Putting competing orders in their place near the Mott transition, Phys. Rev. B, Volume 71 (2005), 144508

[72] H. Yao; J. A. Robertson; E.-A. Kim; S. A. Kivelson Theory of stripes in quasi-two-dimensional rare-earth tellurides, Phys. Rev. B, Volume 74 (2006), 245126

[73] A. Guinier X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies, Dover, New York, 1994, 245126

[74] B. T. M. Willis Thermal diffuse scattering of X-rays and neutrons, International Tables for Crystallography Volume B: Reciprocal Space (U. Shmueli, ed.), Springer, Dordrecht, Netherlands, 2001, pp. 400-406

[75] G. F. Giuliani; A. W. Overhauser Structure factor of a charge-density wave, Phys. Rev. B, Volume 23 (1981), pp. 3737-3743 | DOI

[76] C.-Y. Ruan; V. A. Lobastov; R. Srinivasan; B. M. Goodson; H. Ihee; A. H. Zewail Ultrafast diffraction and structural dynamics: The nature of complex molecules far from equilibrium, Proc. Natl Acad. Sci. USA, Volume 98 (2001), pp. 7117-7122 | DOI

[77] A. del Campo; W. H. Zurek Universality of phase transition dynamics: Topological defects from symmetry breaking, Int. J. Mod. Phys. A, Volume 29 (2014), 1430018 | DOI

[78] L. W. Clark; L. Feng; C. Chin Universal space–time scaling symmetry in the dynamics of bosons across a quantum phase transition, Science, Volume 354 (2016), 1430018, pp. 606-610 | DOI | MR | Zbl

[79] W. H. Zurek Causality in condensates: gray solitons as relics of BEC formation, Phys. Rev. Lett., Volume 102 (2009), 105702 | DOI

[80] W. Kohn Image of the Fermi surface in the vibration spectrum of a metal, Phys. Rev. Lett., Volume 2 (1959), 105702, pp. 393-394 | DOI

[81] R. Li; C. Tang; Y. Du; W. Huang; Q. Du; J. Shi; L. Yan; X. Wang Experimental demonstration of high quality MeV ultrafast electron diffraction, Rev. Sci. Instrum., Volume 80 (2009), 083303

[82] Y. Murooka; N. Naruse; S. Sakakihara; M. Ishimaru; J. Yang; K. Tanimura Transmission-electron diffraction by MeV electron pulses, Appl. Phys. Lett., Volume 98 (2011), 251903 | DOI

[83] B. J. Siwick; J. R. Dwyer; R. E. Jordan; R. J. D. Miller An atomic-level view of melting using femtosecond electron diffraction, Science, Volume 302 (2003), 251903, pp. 1382-1385 | DOI

[84] C.-Y. Ruan; Y. Murooka; R. K. Raman; R. A. Murdick; R. Worhatch; A. Pell Developemnt and applications for ultrafast electron nanocrystallography, Microsc. Microanal., Volume 15 (2009), pp. 323-337 | DOI

[85] S. P. Weathersby; G. Brown; M. Centurion; T. F. Chase; R. Coffee; J. Corbett; J. P. Eichner; J. C. Frisch; A. R. Fry; M. Gühr; N. Hartmann; C. Hast; R. Hettel; R. K. Jobe; E. N. Jongewaard; J. R. Lewandowski; R. K. Li; A. M. Lindenberg; I. Makasyuk; J. E. May; D. McCormick; M. N. Nguyen; A. H. Reid; X. Shen; K. Sokolowski-Tinten; T. Vecchione; S. L. Vetter; J. Wu; J. Yang; H. A. Dürr; X. J. Wang Mega-electron-volt ultrafast electron diffraction at SLAC national accelerator laboratory, Rev. Sci. Instrum., Volume 86 (2015), 073702 | DOI

[86] F. Fu; S. Liu; P. Zhu; D. Xiang; J. Zhang; J. Cao High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun, Rev. Sci. Instrum., Volume 85 (2014), 083701

[87] O. Zandi; K. J. Wilkin; Y. Xiong; M. Centurion High current table-top setup for femtosecond gas electron diffraction, Struct. Dyn., Volume 4 (2017), 044022 | DOI

[88] R. P. Chatelain; V. R. Morrison; C. Godbout; B. J. Siwick Ultrafast electron diffraction with radio-frequency compressed electron pulses, Appl. Phys. Lett., Volume 101 (2012), 081901 | DOI

[89] F. Ji; D. B. Durham; A. M. Minor; P. Musumeci; J. G. Navarro; D. Filippetto Ultrafast relativistic electron nanoprobes, Commun. Phys., Volume 2 (2019), 54

[90] H. W. Kim; N. A. Vinokurov; I. H. Baek; K. Y. Oang; M. H. Kim; Y. C. Kim; K.-H. Jang; K. Lee; S. H. Park; S. Park; J. Shin; J. Kim; F. Rotermund; S. Cho; T. Feurer; Y. U. Jeong Towards jitter-free ultrafast electron diffraction technology, Nat. Photonics, Volume 14 (2020), 54, pp. 245-249 | DOI

[91] K. J. Mohler; D. Ehberger; I. Gronwald; C. Lange; R. Huber; P. Baum Ultrafast electron diffraction from nanophotonic waveforms via dynamical Aharonov–Bohm phases, Sci. Adv., Volume 6 (2020), eabc8804 | DOI

[92] J. Williams; F. Zhou; T. Sun; Z. Tao; K. Chang; K. Makino; M. Berz; P. M. Duxbury; C.-Y. Ruan Active control of bright electron beams with RF optics for femtosecond microscopy, Struct. Dyn., Volume 4 (2017), 044035 | DOI

[93] B. W. Reed; M. R. Armstrong; N. D. Browning; G. H. Campbell; J. E. Evans; T. LaGrange; D. J. Masiel The evolution of ultrafast electron microscope instrumentation, Microsc. Microanal., Volume 15 (2009), 044035, pp. 272-281 | DOI

[94] W. E. King; G. H. Campbell; A. Frank; B. Reed; J. F. Schmerge; B. J. Siwick; B. C. Stuart; P. M. Weber Ultrafast electron microscopy in materials science, biology, and chemistry, J. Appl. Phys., Volume 97 (2005), 111101

[95] A. H. Zewail 4D ultrafast electron diffraction, crystallography, and microscopy, Annu. Rev. Phys. Chem., Volume 57 (2006), 111101, pp. 65-103 | DOI

[96] C. Zhu; D. Zheng; H. Wang; M. Zhang; Z. Li; S. Sun; P. Xu; H. Tian; Z. Li; H. Yang; J. Li Development of analytical ultrafast transmission electron microscopy based on laser-driven Schottky field emission, Ultramicroscopy, Volume 209 (2020), 112887

[97] P. K. Olshin; M. Drabbels; U. J. Lorenz Characterization of a time-resolved electron microscope with a Schottky field emission gun, Struct. Dyn., Volume 7 (2020), 054304 | DOI

[98] C. Lu; T. Jiang; S. Liu; R. Wang; L. Zhao; P. Zhu; Y. Liu; J. Xu; D. Yu; W. Wan; Y. Zhu; D. Xiang; J. Zhang Imaging nanoscale spatial modulation of a relativistic electron beam with a MeV ultrafast electron microscope, Appl. Phys. Lett., Volume 112 (2018), 113102

[99] A. Feist; N. Bach; N. Rubiano da Silva; T. Danz; M. Möller; K. E. Priebe; T. Domröse; J. G. Gatzmann; S. Rost; J. Schauss; S. Strauch; R. Bormann; M. Sivis; S. Schäfer; C. Ropers Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam, Ultramicroscopy, Volume 176 (2017), 113102, pp. 63-73 | DOI

[100] Y. M. Lee; Y. J. Kim; Y.-J. Kim; O.-H. Kwon Ultrafast electron microscopy integrated with a direct electron detection camera, Struct. Dyn., Volume 4 (2017), 044023

[101] F. Houdellier; G. M. Caruso; S. Weber; M. Kociak; A. Arbouet Development of a high brightness ultrafast transmission electron microscope based on a laser-driven cold field emission source, Ultramicroscopy, Volume 186 (2018), 044023, pp. 128-138 | DOI

[102] K. Bücker; M. Picher; O. Crégut; T. LaGrange; B. W. Reed; S. T. Park; D. J. Masiel; F. Banhart Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode, Ultramicroscopy, Volume 171 (2016), pp. 8-18 | DOI

[103] S. Ji; L. Piazza; G. Cao; S. T. Park; B. W. Reed; D. J. Masiel; J. Weissenrieder Influence of cathode geometry on electron dynamics in an ultrafast electron microscope, Struct. Dyn., Volume 4 (2017), 054303

[104] Y. Kurman; R. Dahan; H. H. Sheinfux; K. Wang; M. Yannai; Y. Adiv; O. Reinhardt; L. H. G. Tizei; S. Y. Woo; J. Li; J. H. Edgar; M. Kociak; F. H. L. Koppens; I. Kaminer Spatiotemporal imaging of 2D polariton wave packet dynamics using free electrons, Science, Volume 372 (2021), 054303, pp. 1181-1186 | DOI

[105] X. Fu; E. Wang; Y. Zhao; A. Liu; E. Montgomery; V. J. Gokhale; J. J. Gorman; C. Jing; J. W. Lau; Y. Zhu Direct visualization of electromagnetic wave dynamics by laser-free ultrafast electron microscopy, Sci. Adv., Volume 6 (2020), eabc3456

[106] I. Madan; G. M. Vanacore; E. Pomarico; G. Berruto; R. J. Lamb; D. McGrouther; T. T. A. Lummen; T. Latychevskaia; F. J. García de Abajo; F. Carbone Holographic imaging of electromagnetic fields via electron-light quantum interference, Sci. Adv., Volume 5 (2019), eaav8358 | DOI

[107] A. H. Zewail Four-dimensional electron microscopy, Science, Volume 328 (2010), eaav8358, pp. 187-193 | DOI

[108] S. Sun; X. Sun; D. Bartles; E. Wozniak; J. Williams; P. Zhang; C.-Y. Ruan Direct imaging of plasma waves using ultrafast electron microscopy, Struct. Dyn., Volume 7 (2020), 064301

[109] P. E. Dolgirev; A. V. Rozhkov; A. Zong; A. Kogar; N. Gedik; B. V. Fine Amplitude dynamics of the charge density wave in LaTe 3 : Theoretical description of pump-probe experiments, Phys. Rev. B, Volume 101 (2020), 054203 | DOI

[110] L. Perfetti; P. A. Loukakos; M. Lisowski; U. Bovensiepen; H. Eisaki; M. Wolf Ultrafast electron relaxation in superconducting Bi 2 Sr 2 CaCu 2 O 8+δ by time-resolved photoelectron spectroscopy, Phys. Rev. Lett., Volume 99 (2007), 197001 | DOI

[111] B. Mansart; D. Boschetto; A. Savoia; F. Rullier-Albenque; F. Bouquet; E. Papalazarou; A. Forget; D. Colson; A. Rousse; M. Marsi Ultrafast transient response and electron–phonon coupling in the iron-pnictide superconductor Ba(Fe 1-x Co x ) 2 As 2 , Phys. Rev. B, Volume 82 (2010), 024513 | DOI

[112] S. L. Johnson; M. Savoini; P. Beaud; G. Ingold; U. Staub; F. Carbone; L. Castiglioni; M. Hengsberger; J. Osterwalder Watching ultrafast responses of structure and magnetism in condensed matter with momentum-resolved probes, Struct. Dyn., Volume 4 (2017), 061506 | DOI

[113] Y. J. Feng; J. Y. Wang; R. Jaramillo; J. van Wezel; S. Haravifard; G. Srajer; Y. Liu; Z. A. Xu; P. B. Littlewood; T. F. Rosenbaum Order parameter fluctuations at a buried quantum critical point, Proc. Natl Acad. Sci. USA, Volume 109 (2012), 061506, pp. 7224-7229 | DOI

[114] R. A. Cowley Acoustic phonon instabilities and structural phase transitions, Phys. Rev. B, Volume 13 (1976), pp. 4877-4885 | DOI

[115] S. Sachdev Quantum Phase Transitions, Cambridge University Press, Cambridge, 2011 | DOI | Zbl

[116] M. Heyl Dynamical quantum phase transitions: a review, Rep. Prog. Phys., Volume 81 (2018), 054001 | DOI | MR

[117] O. Geza Universality In Nonequilibrium Lattice Systems: Theoretical Foundations, World Scientific, Singapore, SG, 2008, 054001 | Zbl

[118] U. C. Täuber Phase transitions and scaling in systems far from equilibrium, Annu. Rev. Condens. Matter Phys., Volume 8 (2017), pp. 185-210 | DOI

[119] J. Portman; H. Zhang; Z. Tao; K. Makino; M. Berz; P. M. Duxbury; C. Y. Ruan Computational and experimental characterization of high-brightness beams for femtosecond electron imaging and spectroscopy, Appl. Phys. Lett., Volume 103 (2013), 253115 | DOI

[120] L. Vidas; D. Schick; E. Martínez; D. Perez-Salinas; A. Ramos-Álvarez; S. Cichy; S. Batlle-Porro; A. S. Johnson; K. A. Hallman; R. F. Haglund; S. Wall Does VO 2 host a transient monoclinic metallic phase?, Phys. Rev. X, Volume 10 (2020), 031047

[121] F. Zhou; J. Williams; C.-Y. Ruan Femtosecond electron spectroscopy in an electron microscope with high brightness beams, Chem. Phys. Lett., Volume 683 (2017), 031047, pp. 488-494 | DOI

[122] R. Srinivasan; V. A. Lobastov; C. Y. Ruan; A. H. Zewail Ultrafast electron diffraction (UED)—A new development for the 4D determination of transient molecular structures, Helv. Chim. Acta, Volume 86 (2003), pp. 1763-1838 | DOI

[123] A. Gahlmann; S. Tae Park; A. H. Zewail Ultrashort electron pulses for diffraction, crystallography and microscopy: theoretical and experimental resolutions, Phys. Chem. Chem. Phys., Volume 10 (2008), pp. 2894-2909 | DOI

[124] Z. S. Tao; H. Zhang; P. M. Duxbury; M. Berz; C. Y. Ruan Space charge effects in ultrafast electron diffraction and imaging, J. Appl. Phys., Volume 111 (2012), 044316

[125] B. J. Siwick; J. R. Dwyer; R. E. Jordan; R. J. D. Miller Ultrafast electron optics: Propagation dynamics of femtosecond electron packets, J. Appl. Phys., Volume 92 (2002), 044316, pp. 1643-1648 | DOI

[126] B. W. Reed Femtosecond electron pulse propagation for ultrafast electron diffraction, J. Appl. Phys., Volume 100 (2006), 034916

[127] B. S. Zerbe; X. Xiang; C. Y. Ruan; S. M. Lund; P. M. Duxbury Dynamical bunching and density peaks in expanding Coulomb clouds, Phys. Rev. Accel. Beams, Volume 21 (2018), 064201 | DOI

[128] N. Bach; T. Domröse; A. Feist; T. Rittmann; S. Strauch; C. Ropers; S. Schäfer Coulomb interactions in high-coherence femtosecond electron pulses from tip emitters, Struct. Dyn., Volume 6 (2019), 014301 | DOI

[129] B. L. Qian; H. E. Elsayed-Ali Electron pulse broadening due to space charge effects in a photoelectron gun for electron diffraction and streak camera systems, J. Appl. Phys., Volume 91 (2002), 014301, pp. 462-468 | DOI

[130] H. Zhang; M. Berz The fast multipole method in the differential algebra framework, Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip., Volume 645 (2011), pp. 338-344 | DOI

[131] T. van Oudheusden; P. L. E. M. Pasmans; S. B. van der Geer; M. J. de Loos; M. J. van der Wiel; O. J. Luiten Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction, Phys. Rev. Lett., Volume 105 (2010), 264801 | DOI

[132] M. Gao; Y. Jiang; G. H. Kassier; R. J. Dwayne Miller Single shot time stamping of ultrabright radio frequency compressed electron pulses, Appl. Phys. Lett., Volume 103 (2013), 033503

[133] A. Valfells; D. W. Feldman; M. Virgo; P. G. O’Shea; Y. Y. Lau Effects of pulse-length and emitter area on virtual cathode formation in electron guns, Phys. Plasmas, Volume 9 (2002), 033503, pp. 2377-2382 | DOI

[134] P. Zhang; A. Valfells; L. K. Ang; J. W. Luginsland; Y. Y. Lau 100 years of the physics of diodes, Appl. Phys. Rev., Volume 4 (2017), 011304 | DOI

[135] S. Sun; X. Sun; J. Williams; C.-Y. Ruan Development of RF-compressed high-throughput femtosecond electron microscope, Microsc. Microanal., Volume 26 (2020), 011304, pp. 1-4

[136] B. Barwick; A. H. Zewail Photonics and plasmonics in 4D Ultrafast electron microscopy, ACS Photonics, Volume 2 (2015), pp. 1391-1402 | DOI

[137] M. T. Hassan; J. S. Baskin; B. Liao; A. H. Zewail High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics, Nat. Photonics, Volume 11 (2017), pp. 425-430 | DOI

[138] D. J. Flannigan; B. Barwick; A. H. Zewail Biological imaging with 4D ultrafast electron microscopy, Proc. Natl Acad. Sci. USA, Volume 107 (2010), pp. 9933-9937 | DOI

[139] A. Yurtsever; R. M. van der Veen; A. H. Zewail Subparticle ultrafast spectrum imaging in 4D electron microscopy, Science, Volume 335 (2012), pp. 59-64 | DOI

[140] A. Feist; K. E. Echternkamp; J. Schauss; S. V. Yalunin; S. Schafer; C. Ropers Quantum coherent optical phase modulation in an ultrafast transmission electron microscope, Nature, Volume 521 (2015), pp. 200-203 | DOI

[141] R. M. van der Veen; T. J. Penfold; A. H. Zewail Ultrafast core-loss spectroscopy in four-dimensional electron microscopy, Struct. Dyn., Volume 2 (2015), 024302 | DOI

[142] Z. Su; J. S. Baskin; W. Zhou; J. M. Thomas; A. H. Zewail Ultrafast elemental and oxidation-state mapping of hematite by 4D electron microscopy, J. Am. Chem. Soc., Volume 139 (2017), 024302, pp. 4916-4922 | DOI

[143] P. W. Hawkes; J. C. H. Spence Science of Microscopy, Springer, New York, 2007

[144] K. Nakanishi; H. Takatera; H. Yamada; H. Shiba The near commensurate phase and effect of Harmonics on the successive phase transition in 1T-TaS 2 , J. Phys. Soc. Jpn., Volume 43 (1977), pp. 1509-1517 | DOI

[145] K. Nakanishi; H. Shiba Theory of 3-dimensional orderings of charge-density waves in 1T-TaS 2 , IT–TaSe 2 , J. Phys. Soc. Jpn., Volume 53 (1984), pp. 1103-1113 | DOI

[146] A. Suzuki; M. Koizumi; M. Doyama Thermal evidences for successive CDW phase transitions in 1T-TaS 2 , Solid State Commun., Volume 53 (1985), pp. 201-203 | DOI

[147] A. Spijkerman; J. L. de Boer; A. Meetsma; G. A. Wiegers; S. van Smaalen X-ray crystal-structure refinement of the nearly commensurate phase of 1T-TaS 2 in (3 + 2)-dimensional superspace, Phys. Rev. B, Volume 56 (1997), pp. 13757-13767 | DOI

[148] T. Ishiguro; H. Sato Electron microscopy of phase transformations in 1T-TaS 2 , Phys. Rev. B, Volume 44 (1991), pp. 2046-2060 | DOI

[149] R. E. Thomson; U. Walter; E. Ganz; J. Clarke; A. Zettl; P. Rauch; F. J. DiSalvo Local charge-density-wave structure in 1T-TaS 2 determined by scanning tunneling microscopy, Phys. Rev. B, Volume 38 (1988), pp. 10734-10743 | DOI

[150] R. E. Thomson; B. Burk; A. Zettl; J. Clarke Scanning tunneling microscopy of the charge-density-wave structure in 1T-TaS 2 , Phys. Rev. B, Volume 49 (1994), pp. 16899-16916 | DOI

[151] B. Sipos; A. F. Kusmartseva; A. Akrap; H. Berger; L. Forro; E. Tutis From Mott state to superconductivity in 1T-TaS 2 , Nat. Mater., Volume 7 (2008), pp. 960-965 | DOI

[152] L. J. Li; E. C. T. O’Farrell; K. P. Loh; G. Eda; B. Ozyilmaz; A. H. C. Neto Controlling many-body states by the electric-field effect in a two-dimensional material, Nature, Volume 529 (2016), pp. 185-189 | DOI

[153] C. D. Malliakas; M. G. Kanatzidis Divergence in the behavior of the charge density wave in RETe3 (RE = rare-earth element) with temperature and RE element, J. Am. Chem. Soc., Volume 128 (2006), pp. 12612-12613 | DOI

[154] N. Ru; C. L. Condron; G. Y. Margulis; K. Y. Shin; J. Laverock; S. B. Dugdale; M. F. Toney; I. R. Fisher Effect of chemical pressure on the charge density wave transition in rare-earth tritellurides RTe 3 , Phys. Rev. B, Volume 77 (2008), 035114

[155] V. Brouet; W. L. Yang; X. J. Zhou; Z. Hussain; R. G. Moore; R. He; D. H. Lu; Z. X. Shen; J. Laverock; S. B. Dugdale; N. Ru; I. R. Fisher Angle-resolved photoemission study of the evolution of band structure and charge density wave properties in RTe 3 (R = Y, La, Ce, Sm, Gd, Tb, and Dy), Phys. Rev. B, Volume 77 (2008), 235104 | DOI

[156] M. Maschek; D. A. Zocco; S. Rosenkranz; R. Heid; A. H. Said; A. Alatas; P. Walmsley; I. R. Fisher; F. Weber Competing soft phonon modes at the charge-density-wave transitions in DyTe 3 , Phys. Rev. B, Volume 98 (2018), 094304 | DOI

[157] H.-M. Eiter; M. Lavagnini; R. Hackl; E. A. Nowadnick; A. F. Kemper; T. P. Devereaux; J.-H. Chu; J. G. Analytis; I. R. Fisher; L. Degiorgi Alternative route to charge density wave formation in multiband systems, Proc. Natl Acad. Sci. USA, Volume 110 (2013), 094304, pp. 64-69 | DOI

[158] D. Leuenberger; J. A. Sobota; S. L. Yang; A. F. Kemper; P. Giraldo-Gallo; R. G. Moore; I. R. Fisher; P. S. Kirchmann; T. P. Devereaux; Z. X. Shen Classification of collective modes in a charge density wave by momentum-dependent modulation of the electronic band structure, Phys. Rev. B, Volume 91 (2015), 201106 | DOI

[159] A. Banerjee; Y. Feng; D. M. Silevitch; J. Wang; J. C. Lang; H. H. Kuo; I. R. Fisher; T. F. Rosenbaum Charge transfer and multiple density waves in the rare earth tellurides, Phys. Rev. B, Volume 87 (2013), 155131 | DOI

[160] L. Rettig; R. Cortés; J. H. Chu; I. R. Fisher; F. Schmitt; R. G. Moore; Z. X. Shen; P. S. Kirchmann; M. Wolf; U. Bovensiepen Persistent order due to transiently enhanced nesting in an electronically excited charge density wave, Nat. Commun., Volume 7 (2016), 10459 | DOI

[161] F. Schmitt; P. S. Kirchmann; U. Bovensiepen; R. G. Moore; L. Rettig; M. Krenz; J. H. Chu; N. Ru; L. Perfetti; D. H. Lu; M. Wolf; I. R. Fisher; Z. X. Shen Transient electronic structure and melting of a charge density wave in TbTe 3 , Science, Volume 321 (2008), 10459, pp. 1649-1652 | DOI

[162] W. S. Lee; P. S. Kirchman; Y. D. Chuang; A. F. Kemper; M. Trigo; L. Patthey; D. H. Lu; O. Krupin; M. Yi; D. A. Reis; D. Doering; P. Denes; W. F. Schlotter; J. J. Turner; G. Hays; P. Hering; T. Benson; J. H. Chu; T. P. Devereaux; I. R. Fisher; Z. Hussain; Z. X. Shen Ultrafast resonant soft X-ray diffraction dynamics of the charge density wave in TbTe 3 , Phys. Rev. B, Volume 93 (2016), 024304

[163] R. J. Rivers Zurek–Kibble causality bounds in time-dependent Ginzburg–Landau theory and quantum field theory, J. Low Temp. Phys., Volume 124 (2001), 024304, pp. 41-83 | DOI

[164] J. A. Wilson; F. J. Di Salvo; S. Mahajan Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides, Adv. Phys., Volume 24 (1975), pp. 117-201 | DOI

[165] K. T. Law; P. A. Lee 1T-TaS 2 as a quantum spin liquid, Proc. Natl Acad. Sci. USA, Volume 114 (2017), pp. 6996-7000 | DOI

[166] K. Rossnagel On the origin of charge-density waves in select layered transition-metal dichalcogenides,, J. Phys. Condens. Matter, Volume 23 (2011), 213001 | DOI

[167] J. Ravnik; M. Diego; Y. Gerasimenko; Y. Vaskivskyi; I. Vaskivskyi; T. Mertelj; J. Vodeb; D. Mihailovic A time-domain phase diagram of metastable states in a charge ordered quantum material, Nat. Commun., Volume 12 (2021), 2323 | DOI

[168] I. Vaskivskyi; J. Gospodaric; S. Brazovskii; D. Svetin; P. Sutar; E. Goreshnik; I. A. Mihailovic; T. Mertelj; D. Mihailovic Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS 2 , Sci. Adv., Volume 1 (2015), e1500168 | DOI

[169] Y. A. Gerasimenko; P. Karpov; I. Vaskivskyi; S. Brazovskii; D. Mihailovic Intertwined chiral charge orders and topological stabilization of the light-induced state of a prototypical transition metal dichalcogenide, npj Quantum Mater., Volume 4 (2019), 32 | DOI

[170] L. Ma; C. Ye; Y. Yu; X. F. Lu; X. Niu; S. Kim; D. Feng; D. Tomanek; Y.-W. Son; X. H. Chen; Y. Zhang A metallic mosaic phase and the origin of Mott-insulating state in 1T-TaS 2 , Nat. Commun., Volume 7 (2016), 10956

[171] D. Cho; S. Cheon; K.-S. Kim; S.-H. Lee; Y.-H. Cho; S.-W. Cheong; H. W. Yeom Nanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS 2 , Nat. Commun., Volume 7 (2016), 10453

[172] Q. Stahl; M. Kusch; F. Heinsch; G. Garbarino; N. Kretzschmar; K. Hanff; K. Rossnagel; J. Geck; T. Ritschel Collapse of layer dimerization in the photo-induced hidden state of 1T-TaS 2 , Nat. Commun., Volume 11 (2020), 1247 | DOI

[173] K. Sun; S. Sun; C. Zhu; H. Tian; H. Yang; J. Li Hidden CDW states and insulator-to-metal transition after a pulsed femtosecond laser excitation in layered chalcogenide 1T-TaS 2-x Se x , Sci. Adv., Volume 4 (2018), eaas9660

[174] X. Shi; W. You; Y. Zhang; Z. Tao; P. M. Oppeneer; X. Wu; R. Thomale; K. Rossnagel; M. Bauer; H. Kapteyn; M. Murnane Ultrafast electron calorimetry uncovers a new long-lived metastable state in 1T-TaSe 2 mediated by mode-selective electron–phonon coupling, Sci. Adv., Volume 5 (2019), eaav4449

[175] N. Yoshikawa; H. Suganuma; H. Matsuoka; Y. Tanaka; P. Hemme; M. Cazayous; Y. Gallais; M. Nakano; Y. Iwasa; R. Shimano Ultrafast switching to an insulating-like metastable state by amplitudon excitation of a charge density wave, Nat. Phys., Volume 17 (2021), eaav4449, pp. 909-914 | DOI

[176] C.-Y. Ruan Hidden in plain light, Nat. Phys., Volume 17 (2021), pp. 884-885 | DOI

[177] C. B. Scruby; P. M. Williams; G. S. Parry The role of charge density waves in structural transformations of 1T TaS 2 , Philos. Mag.: A J. Theor. Exp. Appl. Phys., Volume 31 (1975), pp. 255-274 | DOI

[178] W. L. McMillan Theory of discommensurations and the commensurate-incommensurate charge-density-wave phase transition, Phys. Rev. B, Volume 14 (1976), pp. 1496-1502 | DOI

[179] K. Nakanishi; H. Shiba Domain-like incommensurate charge-density-wave states and the first-order incommensurate–commensurate transitions in layered tantalum dichalcogenides. I. 1T-Polytype, J. Phys. Soc. Jpn., Volume 43 (1977), pp. 1839-1847 | DOI

[180] Y. J. Feng; J. van Wezel; J. Y. Wang; F. Flicker; D. M. Silevitch; P. B. Littlewood; T. F. Rosenbaum Itinerant density wave instabilities at classical and quantum critical points, Nat. Phys., Volume 11 (2015), pp. 865-871 | DOI

[181] P. Bak; J. von Boehm Ising model with solitons, phasons, and “the devil’s staircase”, Phys. Rev. B, Volume 21 (1980), pp. 5297-5308 | DOI | MR

[182] S. Tanda; T. Sambongi; T. Tani; S. Tanaka X-ray study of charge density wave structure in 1T-TaS 2 , J. Phys. Soc. Jpn., Volume 53 (1984), pp. 476-479 | DOI

[183] J. C. S. Davis; D.-H. Lee Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity, Proc. Natl Acad. Sci. USA, Volume 110 (2013), pp. 17623-17630 | DOI

[184] R. Jaramillo; Y. Feng; J. C. Lang; Z. Islam; G. Srajer; P. B. Littlewood; D. B. McWhan; T. F. Rosenbaum Breakdown of the Bardeen–Cooper–Schrieffer ground state at a quantum phase transition, Nature, Volume 459 (2009), pp. 405-409 | DOI

[185] X. L. Wu; C. M. Lieber Hexagonal domain-like charge density wave phase of TaS 2 determined by scanning tunneling microscopy, Science, Volume 243 (1989), pp. 1703-1705

[186] L. Perfetti; P. A. Loukakos; M. Lisowski; U. Bovensiepen; H. Berger; S. Biermann; P. S. Cornaglia; A. Georges; M. Wolf Time evolution of the electronic structure of 1T-TaS 2 through the insulator–metal transition, Phys. Rev. Lett., Volume 97 (2006), 067402 | DOI

[187] S. Hellmann; T. Rohwer; M. Kallane; K. Hanff; C. Sohrt; A. Stange; A. Carr; M. M. Murnane; H. C. Kapteyn; L. Kipp; M. Bauer; K. Rossnagel Time-domain classification of charge-density-wave insulators, Nat. Commun., Volume 3 (2012), 2078 | DOI

[188] S. Hellmann; M. Beye; C. Sohrt; T. Rohwer; F. Sorgenfrei; H. Redlin; M. Kallaene; M. Marczynski-Buehlow; F. Hennies; M. Bauer; A. Foehlisch; L. Kipp; W. Wurth; K. Rossnagel Ultrafast melting of a charge-density wave in the Mott insulator 1T-TaS 2 , Phys. Rev. Lett., Volume 105 (2010), 187401 | DOI

[189] M. Eichberger; H. Schaefer; M. Krumova; M. Beyer; J. Demsar; H. Berger; G. Moriena; G. Sciaini; R. J. D. Miller Snapshots of cooperative atomic motions in the optical suppression of charge density waves, Nature, Volume 468 (2010), 187401, pp. 799-802 | DOI

[190] C. Laulhé; T. Huber; G. Lantz; A. Ferrer; S. O. Mariager; S. Grübel; J. Rittmann; J. A. Johnson; V. Esposito; A. Lübcke; L. Huber; M. Kubli; M. Savoini; V. L. R. Jacques; L. Cario; B. Corraze; E. Janod; G. Ingold; P. Beaud; S. L. Johnson; S. Ravy Ultrafast formation of a charge density wave state in 1T-TaS 2 observation at nanometer scales using time-resolved X-ray diffraction, Phys. Rev. Lett., Volume 118 (2017), 247401 | DOI

[191] K. Haupt; M. Eichberger; N. Erasmus; A. Rohwer; J. Demsar; K. Rossnagel; H. Schwoerer Ultrafast metamorphosis of a complex charge-density wave, Phys. Rev. Lett., Volume 116 (2016), 016402 | DOI

[192] T. Ritschel; J. Trinckauf; G. Garbarino; M. Hanfland; M. V. von Zimmermann; H. Berger; B. Buchner; J. Geck Pressure dependence of the charge density wave in 1T-TaS 2 and its relation to superconductivity, Phys. Rev. B, Volume 87 (2013), 125135

[193] R. Ang; Y. Tanaka; E. Ieki; K. Nakayama; T. Sato; L. J. Li; W. J. Lu; Y. P. Sun; T. Takahashi Real-space coexistence of the melted mott state and superconductivity in Fe-substituted 1T-TaS 2 , Phys. Rev. Lett., Volume 109 (2012), 176403

[194] L. J. Li; W. J. Lu; X. D. Zhu; L. S. Ling; Z. Qu; Y. P. Sun Fe-doping-induced superconductivity in the charge-density-wave system 1T-TaS 2 , Eur. Phys. Lett., Volume 97 (2012), 67005

[195] T. Ritschel; J. Trinckauf; K. Koepernik; B. Buchner; M. v. Zimmermann; H. Berger; Y. I. Joe; P. Abbamonte; J. Geck Orbital textures and charge density waves in transition metal dichalcogenides, Nat. Phys., Volume 11 (2015), 67005, pp. 328-331 | DOI

[196] C. J. Butler; M. Yoshida; T. Hanaguri; Y. Iwasa Mottness versus unit-cell doubling as the driver of the insulating state in 1T-TaS 2 , Nat. Commun., Volume 11 (2020), 2477 | DOI

[197] Y. D. Wang; W. L. Yao; Z. M. Xin; T. T. Han; Z. G. Wang; L. Chen; C. Cai; Y. Li; Y. Zhang Band insulator to Mott insulator transition in 1T-TaS 2 , Nat. Commun., Volume 11 (2020), 4215

[198] J. Lee; K.-H. Jin; H. W. Yeom Distinguishing a mott insulator from a trivial insulator with atomic adsorbates, Phys. Rev. Lett., Volume 126 (2021), 196405

[199] P. Darancet; A. J. Millis; C. A. Marianetti Three-dimensional metallic and two-dimensional insulating behavior in octahedral tantalum dichalcogenides, Phys. Rev. B, Volume 90 (2014), 045134 | DOI

[200] R. Yusupov; T. Mertelj; V. V. Kabanov; S. Brazovskii; P. Kusar; J. H. Chu; I. R. Fisher; D. Mihailovic Coherent dynamics of macroscopic electronic order through a symmetry breaking transition, Nat. Phys., Volume 6 (2010), 045134, pp. 681-684 | DOI

[201] M. Trigo; P. Giraldo-Gallo; J. N. Clark; M. E. Kozina; T. Henighan; M. P. Jiang; M. Chollet; I. R. Fisher; J. M. Glownia; T. Katayama; P. S. Kirchmann; D. Leuenberger; H. Liu; D. A. Reis; Z. X. Shen; D. Zhu Ultrafast formation of domain walls of a charge density wave in SmTe 3 , Phys. Rev. B, Volume 103 (2021), 054109 | DOI

[202] M. J. Wei; W. J. Lu; R. C. Xiao; H. Y. Lv; P. Tong; W. H. Song; Y. P. Sun Manipulating charge density wave order in monolayer 1T-TiSe 2 by strain and charge doping: A first-principles investigation, Phys. Rev. B, Volume 96 (2017), 165404

[203] J. Zhang; C. Lian; M. Guan; W. Ma; H. Fu; H. Guo; S. Meng Photoexcitation induced quantum dynamics of charge density wave and emergence of a collective mode in 1T-TaS 2 , Nano Lett., Volume 19 (2019), 165404, pp. 6027-6034 | DOI

[204] Y. Zhang; X. Shi; M. Guan; W. You; Y. Zhong; T. R. Kafle; Y. Huang; H. Ding; M. Bauer; K. Rossnagel; S. Meng; H. C. Kapteyn; M. M. Murnane Creation of a novel inverted charge density wave state (2020) (https://arxiv.org/abs/2011.07623)

[205] S. Duan; Y. Cheng; W. Xia; Y. Yang; F. Qi; T. Tang; Y. Guo; D. Qian; D. Xiang; J. Zhang; W. Zhang Optical manipulation of electronic dimensionality in a quantum material (2021) (https://arxiv.org/abs/2101.08507v1)

[206] M. Trigo; P. Giraldo-Gallo; M. E. Kozina; T. Henighan; M. P. Jiang; H. Liu; J. N. Clark; M. Chollet; J. M. Glownia; D. Zhu; T. Katayama; D. Leuenberger; P. S. Kirchmann; I. R. Fisher; Z. X. Shen; D. A. Reis Coherent order parameter dynamics in SmTe 3 , Phys. Rev. B, Volume 99 (2019), 104111 | DOI

[207] J. Zhang; X. Tan; M. Liu; S. W. Teitelbaum; K. W. Post; F. Jin; K. A. Nelson; D. N. Basov; W. Wu; R. D. Averitt Cooperative photoinduced metastable phase control in strained manganite films, Nat. Mater., Volume 15 (2016), 104111, pp. 956-960 | DOI

[208] A. R. Beal; W. Y. Liang; H. P. Hughes Kramers–Kronig analysis of the reflectivity spectra of 3R–WS 2 and 2H–WSe 2 , J. Phys. C: Solid State Phys., Volume 9 (1976), pp. 2449-2457 | DOI

[209] S. W. King; M. Milosevic A method to extract absorption coefficient of thin films from transmission spectra of the films on thick substrates, J. Appl. Phys., Volume 111 (2012), 073109

[210] M. Milosevic; S. L. Berets Applications of the theory of optical spectroscopy to numerical simulations, Appl. Spectrosc., Volume 47 (1993), 073109, pp. 566-574 | DOI

[211] R. A. Murdick Investigations on interfacial dynamics with ultrafast electron diffraction (2009) (Ph. D. Thesis)

[212] Z. S. Tao; T. R. T. Han; C. Y. Ruan Anisotropic electron–phonon coupling investigated by ultrafast electron crystallography: Three-temperature model, Phys. Rev. B, Volume 87 (2013), 235124

[213] L. Perfetti; P. A. Loukakos; M. Lisowski; U. Bovensiepen; M. Wolf; H. Berger; S. Biermann; A. Georges Femtosecond dynamics of electronic states in the Mott insulator 1T-TaS 2 by time resolved photoelectron spectroscopy, New J. Phys., Volume 10 (2008), 053019 | DOI

[214] R. F. Egerton ProQuest, Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM, Springer, New York, 2005, 053019

[215] D. B. Williams; C. B. Carter Transmission Electron Microscopy: A Textbook for Materials Science, Springer, New York, 2009

[216] H. Park; X. Wang; S. Nie; R. Clinite; J. Cao Mechanism of coherent acoustic phonon generation under nonequilibrium conditions, Phys. Rev. B,, Volume 72 (2005), 100301 | DOI

[217] H. S. Park; J. S. Baskin; B. Barwick; O. H. Kwon; A. H. Zewail 4D ultrafast electron microscopy: imaging of atomic motions, acoustic resonances, and moiré fringe dynamics, Ultramicroscopy, Volume 110 (2009), 100301, pp. 7-19 | DOI

[218] R. P. Chatelain; V. R. Morrison; B. L. M. Klarenaar; B. J. Siwick Coherent and incoherent electron–phonon coupling in graphite observed with radio-frequency compressed ultrafast electron diffraction, Phys. Rev. Lett., Volume 113 (2014), 235502 | DOI

[219] L. Wei; S. Sun; C. Guo; Z. Li; K. Sun; Y. Liu; W. Lu; Y. Sun; H. Tian; H. Yang; J. Li Dynamic diffraction effects and coherent breathing oscillations in ultrafast electron diffraction in layered 1T-TaSeTe, Struct. Dyn., Volume 4 (2017), 044012

[220] A. Feist; N. Rubiano da Silva; W. Liang; C. Ropers; S. Schäfer Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy, Struct. Dyn., Volume 5 (2018), 014302 | DOI

[221] T. E. Karam; J. Hu; G. A. Blake Strongly coupled electron–phonon dynamics in few-layer TiSe 2 exfoliates, ACS Photonics, Volume 5 (2018), 014302, pp. 1228-1234 | DOI

[222] Y. Zhang; D. J. Flannigan Observation of anisotropic strain-wave dynamics and few-layer dephasing in MoS 2 with ultrafast electron microscopy, Nano Lett., Volume 19 (2019), pp. 8216-8224 | DOI

[223] A. Nakamura; T. Shimojima; Y. Chiashi; M. Kamitani; H. Sakai; S. Ishiwata; H. Li; K. Ishizaka Nanoscale imaging of unusual photoacoustic waves in thin flake VTe 2 , Nano Lett., Volume 20 (2020), pp. 4932-4938 | DOI

[224] A. R. Beal; H. Hughes; W. Y. Liang The reflectivity spectra of some group VA transition metal dichalcogenides, J. Phys. C Solid State Phys., Volume 8 (1975), p. 4236 | DOI

[225] O. Sezerman; A. M. Simpson; M. H. Jericho Thermal expansion of 1T-TaS 2 and 2H–NbSe 2 , Solid State Commun., Volume 36 (1980), pp. 737-740 | DOI

[226] F. L. Givens; G. E. Fredericks Thermal expansion of NbSe 2 and TaS 2 , J. Phys. Chem. Solids, Volume 38 (1977), pp. 1363-1365 | DOI

[227] M. H. Jericho; A. M. Simpson; R. F. Frindt Velocity of ultrasonic waves in 2H–NbSe 2 , 2H–TaS 2 , and 1T-TaS 2 , Phys. Rev. B, Volume 22 (1980), pp. 4907-4914 | DOI

[228] V. Eyert The metal–insulator transitions of VO 2 : a band theoretical approach, Ann. Phys., Volume 11 (2002), pp. 650-702 | DOI | Zbl

[229] J. P. Pouget Basic aspects of the metal–insulator transition in vanadium dioxide VO 2 : a critical review, C. R. Phys., Volume 22 (2021), pp. 37-87

[230] Y. Zhou; S. Ramanathan Correlated electron materials and field effect transistors for logic: a review, Crit. Rev. Solid State Mater. Sci., Volume 38 (2013), pp. 286-317 | DOI

[231] K. Liu; S. Lee; S. Yang; O. Delaire; J. Wu Recent progresses on physics and applications of vanadium dioxide, Mater. Today, Volume 21 (2018), pp. 875-896 | DOI

[232] J. Cao; Y. Gu; W. Fan; L. Q. Chen; D. F. Ogletree; K. Chen; N. Tamura; M. Kunz; C. Barrett; J. Seidel; J. Wu Extended mapping and exploration of the vanadium dioxide stress–temperature phase diagram, Nano Lett., Volume 10 (2010), pp. 2667-2673 | DOI

[233] J. H. Park; J. M. Coy; T. S. Kasirga; C. Huang; Z. Fei; S. Hunter; D. H. Cobden Measurement of a solid-state triple point at the metal–insulator transition in VO 2 , Nature, Volume 500 (2013), pp. 431-434 | DOI

[234] J. P. Pouget; H. Launois Metal–insulator phase transition in VO 2 , J. Phys. Colloq., Volume 37 (1976), p. C4-49–C4-57 | DOI

[235] W.-P. Hsieh; M. Trigo; D. A. Reis; G. Andrea Artioli; L. Malavasi; W. L. Mao Evidence for photo-induced monoclinic metallic VO 2 under high pressure, Appl. Phys. Lett., Volume 104 (2014), 021917

[236] V. R. Morrison; R. P. Chatelain; K. L. Tiwari; A. Hendaoui; A. Bruhács; M. Chaker; B. J. Siwick A photoinduced metal-like phase of monoclinic VO 2 revealed by ultrafast electron diffraction, Science, Volume 346 (2014), 021917, pp. 445-448 | DOI

[237] H. T. Kim; B. G. Chae; D. H. Youn; S. L. Maeng; G. Kim; K. Y. Kang; Y. S. Lim Mechanism and observation of Mott transition in VO 2 -based two- and three-terminal devices, New J. Phys., Volume 6 (2004), 52

[238] J. Laverock; S. Kittiwatanakul; A. A. Zakharov; Y. R. Niu; B. Chen; S. A. Wolf; J. W. Lu; K. E. Smith Direct observation of decoupled structural and electronic transitions and an ambient pressure monoclinic-like metallic phase of VO 2 , Phys. Rev. Lett., Volume 113 (2014), 216402 | DOI

[239] M. Yang; Y. Yang; H. Bin; L. Wang; K. Hu; Y. Dong; H. Xu; H. Huang; J. Zhao; H. Chen; L. Song; H. Ju; J. Zhu; J. Bao; X. Li; Y. Gu; T. Yang; X. Gao; Z. Luo; C. Gao Suppression of structural phase transition in VO 2 by epitaxial strain in vicinity of metal–insulator transition, Sci. Rep., Volume 6 (2016), 23119

[240] Z. S. Tao; T. R. T. Han; S. D. Mahanti; P. M. Duxbury; F. Yuan; C. Y. Ruan; K. Wang; J. Q. Wu Decoupling of structural and electronic phase transitions in VO 2 , Phys. Rev. Lett., Volume 109 (2012), 166406

[241] D. Lee; B. Chung; Y. Shi; G.-Y. Kim; N. Campbell; F. Xue; K. Song; S.-Y. Choi; J. P. Podkaminer; T. H. Kim; P. J. Ryan; J.-W. Kim; T. R. Paudel; J.-H. Kang; J. W. Spinuzzi; D. A. Tenne; E. Y. Tsymbal; M. S. Rzchowski; L. Q. Chen; J. Lee; C. B. Eom Isostructural metal–insulator transition in VO 2 , Science, Volume 362 (2018), 166406, pp. 1037-1040 | DOI

[242] J. B. Goodenough The two components of the crystallographic transition in VO 2 , J. Solid State Chem., Volume 3 (1971), pp. 490-500 | DOI

[243] N. F. Mott Metal–Insulator Transitions, Taylor & Francis, London, New York, 1990

[244] S. Biermann; A. Poteryaev; A. I. Lichtenstein; A. Georges Dynamical singlets and correlation-assisted Peierls transition in VO 2 , Phys. Rev. Lett., Volume 94 (2005), 026404 | DOI

[245] M. W. Haverkort; Z. Hu; A. Tanaka; W. Reichelt; S. V. Streltsov; M. A. Korotin; V. I. Anisimov; H. H. Hsieh; H. J. Lin; C. T. Chen; D. I. Khomskii; L. H. Tjeng Orbital-assisted metal–insulator transition in VO 2 , Phys. Rev. Lett., Volume 95 (2005), 196404 | DOI

[246] T. C. Koethe; Z. Hu; M. W. Haverkort; C. Schüßler-Langeheine; F. Venturini; N. B. Brookes; O. Tjernberg; W. Reichelt; H. H. Hsieh; H. J. Lin; C. T. Chen; L. H. Tjeng Transfer of spectral weight and symmetry across the metal–insulator transition in VO 2 , Phys. Rev. Lett., Volume 97 (2006), 116402 | DOI

[247] W. H. Brito; M. C. O. Aguiar; K. Haule; G. Kotliar Metal–Insulator transition in VO 2 : A DFT+DMFT perspective, Phys. Rev. Lett., Volume 117 (2016), 056402 | DOI

[248] C. Weber; D. D. O’Regan; N. D.M. Hine; M. C. Payne; G. Kotliar; P. B. Littlewood Vanadium dioxide: a Peierls–Mott insulator stable against disorder, Phys. Rev. Lett., Volume 108 (2012), 256402 | DOI

[249] A. Tselev; I. A. Luk’yanchuk; I. N. Ivanov; J. D. Budai; J. Z. Tischler; E. Strelcov; A. Kolmakov; S. V. Kalinin Symmetry relationship and strain-induced transitions between insulating M 1 and M 2 and Metallic R phases of vanadium dioxide, Nano Lett., Volume 10 (2010), 256402, pp. 4409-4416 | DOI

[250] Z. Tao; F. Zhou; T.-R. T. Han; D. Torres; T. Wang; N. Sepulveda; K. Chang; M. Young; R. R. Lunt; C.-Y. Ruan The nature of photoinduced phase transition and metastable states in vanadium dioxide, Sci. Rep., Volume 6 (2016), 38514

[251] A. Zylbersztejn; N. F. Mott Metal–insulator transition in vanadium dioxide, Phys. Rev. B, Volume 11 (1975), 38514, pp. 4383-4395 | DOI

[252] T. M. Rice; H. Launois; J. P. Pouget Comment on VO 2 : peierls or Mott–Hubbard? A view from band theory, Phys. Rev. Lett., Volume 73 (1994), p. 3042-3042 | DOI

[253] A. Cavalleri; T. Dekorsy; H. H. W. Chong; J. C. Kieffer; R. W. Schoenlein Evidence for a structurally-driven insulator-to-metal transition in VO 2 : A view from the ultrafast timescale, Phys. Rev. B, Volume 70 (2004), 161102 | DOI

[254] S. Wall; D. Wegkamp; L. Foglia; K. Appavoo; J. Nag; R. F. Haglund; J. Stähler; M. Wolf Ultrafast changes in lattice symmetry probed by coherent phonons, Nat. Commun., Volume 3 (2012), 721 | DOI

[255] K. Appavoo; J. Nag; B. Wang; W. Luo; G. Duscher; E. A. Payzant; M. Y. Sfeir; S. T. Pantelides; R. F. Haglund Doping-driven electronic and lattice dynamics in the phase-change material vanadium dioxide, Phys. Rev. B, Volume 102 (2020), 115148 | DOI

[256] C. Kubler; H. Ehrke; R. Huber; R. Lopez; A. Halabica; R. F. Haglund; A. Leitenstorfer Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO 2 , Phys. Rev. Lett., Volume 99 (2007), 116401 | DOI

[257] T. L. Cocker; L. V. Titova; S. Fourmaux; G. Holloway; H. C. Bandulet; D. Brassard; J. C. Kieffer; M. A. El Khakani; F. A. Hegmann Phase diagram of the ultrafast photoinduced insulator–metal transition in vanadium dioxide, Phys. Rev. B, Volume 85 (2012), 155120 | DOI

[258] A. Pashkin; C. Kubler; H. Ehrke; R. Lopez; A. Halabica; R. F. Haglund; R. Huber; A. Leitenstorfer Ultrafast insulator–metal phase transition in VO 2 studied by multiterahertz spectroscopy, Phys. Rev. B, Volume 83 (2011), 195120 | DOI

[259] D. Wegkamp; M. Herzog; L. Xian; M. Gatti; P. Cudazzo; C. L. McGahan; R. E. Marvel; R. F. Haglund; A. Rubio; M. Wolf; J. Stähler Instantaneous band gap collapse in photoexcited monoclinic VO 2 due to photocarrier doping, Phys. Rev. Lett., Volume 113 (2014), 216401 | DOI

[260] D. Wegkamp; J. Stahler Ultrafast dynamics during the photoinduced phase transition in VO 2 , Progr. Surf. Sci., Volume 90 (2015), 216401, pp. 464-502 | DOI

[261] P. Baum; D.-S. Yang; A. H. Zewail 4D visualization of transitional structures in phase transformations by electron diffraction, Science, Volume 318 (2007), pp. 788-792 | DOI

[262] M. R. Otto; L. P. René de Cotret; D. A. Valverde-Chavez; K. L. Tiwari; N. Émond; M. Chaker; D. G. Cooke; B. J. Siwick How optical excitation controls the structure and properties of vanadium dioxide, Proc. Natl Acad. Sci. USA, Volume 116 (2019), pp. 450-455 | DOI

[263] X. He; N. Punpongjareorn; W. Liang; Y. Lin; C. Chen; A. J. Jacobson; D.-S. Yang Photoinduced strain release and phase transition dynamics of solid-supported ultrathin vanadium dioxide, Sci. Rep., Volume 7 (2017), 10045

[264] B. T. O’Callahan; A. C. Jones; J. Hyung Park; D. H. Cobden; J. M. Atkin; M. B. Raschke Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO 2 , Nat. Commun., Volume 6 (2015), 6849 | DOI

[265] K. Appavoo; B. Wang; N. F. Brady; M. Seo; J. Nag; R. P. Prasankumar; D. J. Hilton; S. T. Pantelides; R. F. Haglund Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection, Nano Lett., Volume 14 (2014), 6849, pp. 1127-1133 | DOI

[266] M. Liu; A. J. Sternbach; M. Wagner; T. V. Slusar; T. Kong; S. L. Bud’ko; S. Kittiwatanakul; M. M. Qazilbash; A. McLeod; Z. Fei; E. Abreu; J. Zhang; M. Goldflam; S. Dai; G.-X. Ni; J. Lu; H. A. Bechtel; M. C. Martin; M. B. Raschke; R. D. Averitt; S. A. Wolf; H.-T. Kim; P. C. Canfield; D. N. Basov Phase transition in bulk single crystals and thin films of VO 2 by nanoscale infrared spectroscopy and imaging, Phys. Rev. B, Volume 91 (2015), 245155

[267] J. Cao; E. Ertekin; V. Srinivasan; W. Fan; S. Huang; H. Zheng; J. W. L. Yim; D. R. Khanal; D. F. Ogletree; J. C. Grossmanan; J. Wu Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams, Nat. Nanotechnol., Volume 4 (2009), 245155, pp. 732-737 | DOI

[268] J. Wei; Z. H. Wang; W. Chen; D. H. Cobden New aspects of the metal–insulator transition in single-domain vanadium dioxide nanobeams, Nat. Nanotechnol., Volume 4 (2009), pp. 420-424 | DOI

[269] K. A. Hallman; K. J. Miller; A. Baydin; S. M. Weiss; R. F. Haglund Sub-picosecond response time of a hybrid VO 2 : silicon waveguide at 1550 nm, Adv. Opt. Mater., Volume 9 (2021), 2001721 | DOI

[270] S. Wall; S. Yang; L. Vidas; M. Chollet; J. M. Glownia; M. Kozina; T. Katayama; T. Henighan; M. Jiang; T. A. Miller; D. A. Reis; L. A. Boatner; O. Delaire; M. Trigo Ultrafast disordering of vanadium dimers in photoexcited VO 2 , Science, Volume 362 (2018), 2001721, pp. 572-576 | DOI

[271] R. Mankowsky; M. Först; A. Cavalleri Non-equilibrium control of complex solids by nonlinear phononics, Rep. Progr. Phys., Volume 79 (2016), 064503 | DOI

[272] T. Oka; S. Kitamura Floquet engineering of quantum materials, Annu. Rev. Condens. Matter Phys., Volume 10 (2019), 064503, pp. 387-408 | DOI

[273] H. Murayama; Y. Sato; T. Taniguchi; R. Kurihara; X. Z. Xing; W. Huang; S. Kasahara; Y. Kasahara; I. Kimchi; M. Yoshida; Y. Iwasa; Y. Mizukami; T. Shibauchi; M. Konczykowski; Y. Matsuda Effect of quenched disorder on the quantum spin liquid state of the triangular-lattice antiferromagnet 1T-TaS 2 , Phys. Rev. Res., Volume 2 (2020), 013099 | DOI

[274] E. Martino; A. Pisoni; L. Ćirić; A. Arakcheeva; H. Berger; A. Akrap; C. Putzke; P. J. W. Moll; I. Batistić; E. Tutiš; L. Forró; K. Semeniuk Preferential out-of-plane conduction and quasi-one-dimensional electronic states in layered 1T-TaS 2 , npj 2D Mater. Appl., Volume 4 (2020), 7 | DOI

[275] K. Okajima; S. Tanaka Electronic conduction in the commensurate charge density wave state of 1T-TaS 2 , J. Phys. Soc. Jpn., Volume 53 (1984), 7, pp. 2332-2341 | DOI

[276] M. D. Núñez-Regueiro; J. M. Lopez-Castillo; C. Ayache Thermal conductivity of 1T-TaS 2 and 2H–TaSe 2 , Phys. Rev. Lett., Volume 55 (1985), pp. 1931-1934 | DOI

Cited by Sources: