Quantum material systems upon applying ultrashort laser pulses provide a rich platform to access excited material phases and their transformations that are not entirely like their equilibrium counterparts. The addressability and potential controls of metastable or long-trapped out-of-equilibrium phases have motivated interests both for the purposes of understanding the nonequilibrium physics and advancing the quantum technologies. Thus far, the dynamical spectroscopic probes eminently focus on microscopic electronic and phonon responses. For characterizing the long-range dynamics, such as order parameter fields and fluctuation effects, the ultrafast scattering probes offer direct sensitivity. Bridging the connections between the microscopic dynamics and macroscopic responses is central toward establishing the nonequilibrium physics behind the light-induced phases. Here, we present a path toward such understanding by cross-examining the structure factors associated with different dynamical states obtained from ultrafast electron scattering, imaging, and modeling. We give the basic theoretical framework on describing the non-equilibrium scattering problems and briefly describe how such framework relates to the out-of-equilibrium phenomena. We give effective models outlining the emergences of nonthermal critical points, hidden phases, and non-equilibrium relaxational responses from vacuum-suspended rare-earth tritellurides, tantalum disulfides thin films, and vanadium dioxide nanocrystalline materials upon light excitations.
@article{CRPHYS_2021__22_S2_15_0, author = {Xiaoyi Sun and Shuaishuai Sun and Chong-Yu Ruan}, title = {Toward nonthermal control of excited quantum materials: framework and investigations by ultrafast electron scattering and imaging}, journal = {Comptes Rendus. Physique}, pages = {15--73}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {S2}, year = {2021}, doi = {10.5802/crphys.86}, language = {en}, }
TY - JOUR AU - Xiaoyi Sun AU - Shuaishuai Sun AU - Chong-Yu Ruan TI - Toward nonthermal control of excited quantum materials: framework and investigations by ultrafast electron scattering and imaging JO - Comptes Rendus. Physique PY - 2021 SP - 15 EP - 73 VL - 22 IS - S2 PB - Académie des sciences, Paris DO - 10.5802/crphys.86 LA - en ID - CRPHYS_2021__22_S2_15_0 ER -
%0 Journal Article %A Xiaoyi Sun %A Shuaishuai Sun %A Chong-Yu Ruan %T Toward nonthermal control of excited quantum materials: framework and investigations by ultrafast electron scattering and imaging %J Comptes Rendus. Physique %D 2021 %P 15-73 %V 22 %N S2 %I Académie des sciences, Paris %R 10.5802/crphys.86 %G en %F CRPHYS_2021__22_S2_15_0
Xiaoyi Sun; Shuaishuai Sun; Chong-Yu Ruan. Toward nonthermal control of excited quantum materials: framework and investigations by ultrafast electron scattering and imaging. Comptes Rendus. Physique, Volume 22 (2021) no. S2, pp. 15-73. doi : 10.5802/crphys.86. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.86/
[1] Towards properties on demand in quantum materials, Nat. Mater., Volume 16 (2017), pp. 1077-1088 | DOI
[2] Emergent functions of quantum materials, Nat. Phys., Volume 13 (2017), pp. 1056-1068 | DOI
[3] Frontiers of Materials Research: A Decadal Survey, The National Academies, Washington, DC, 2019
[4] The physics of quantum materials, Nat. Phys., Volume 13 (2017), pp. 1045-1055 | DOI
[5] More is different, Science, Volume 177 (1972), pp. 393-396 | DOI
[6] On the theory of phase transitions, Zh. Eksp. Teor. Fiz, Volume 7 (1937), pp. 19-32
[7] On the theory of phase transitions. II, Zh. Eksp. Teor. Fiz., Volume 7 (1937), pp. 627-632
[8] Basic Notions of Condensed Matter Physics, The Benjamin-Cummings publishing company, Inc., Menlo park, CA, 1984
[9] An introduction to the Ginzburg–Landau theory of phase transitions and nonequilibrium patterns, Phys. Rep., Volume 572 (2015), pp. 1-42 | DOI | MR | Zbl
[10] Cosmological experiments in condensed matter systems, Phys. Rep., Volume 276 (1996), pp. 177-221 | DOI
[11] Ultrafast spectroscopy of quantum materials, Phys. Today, Volume 65 (2012), pp. 44-60 | DOI
[12] Probing dynamics in quantum materials with femtosecond X-rays, Nat. Rev. Mater., Volume 3 (2018), pp. 299-311 | DOI
[13] Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach, Adv. Phys., Volume 65 (2016), pp. 58-238 | DOI
[14] Dynamics and control in complex transition metal oxides, Annu. Rev. Mater. Res., Volume 44 (2014), pp. 19-43 | DOI
[15] Metastable ferroelectricity in optically strained SrTiO, Science, Volume 364 (2019), pp. 1075-1079 | DOI
[16] Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO, Science, Volume 364 (2019), pp. 1079-1082 | DOI
[17] Transient photoinduced “hidden” phase in a manganite, Nat. Mater., Volume 10 (2011), pp. 101-105 | DOI
[18] Ultrafast switching to a stable hidden quantum state in an electronic crystal, Science, Volume 344 (2014), pp. 177-180 | DOI
[19] Exploration of metastability and hidden phases in correlated electron crystals visualized by femtosecond optical doping and electron crystallography, Sci. Adv., Volume 1 (2015), e1400173
[20] Light-induced superconductivity in a stripe-ordered cuprate, Science, Volume 331 (2011), pp. 189-191 | DOI
[21] Pressure tuning of light-induced superconductivity in KC, Nat. Phys., Volume 14 (2018), pp. 837-841 | DOI
[22] Light-induced charge density wave in LaTe, Nat. Phys., Volume 16 (2020), pp. 159-163 | DOI
[23] Nonequilibrium dynamics of spontaneous symmetry breaking into a hidden state of charge-density wave, Nat. Commun., Volume 12 (2021), 566
[24] Quantum phases on demand, Nat. Phys., Volume 16 (2020), p. 1 | DOI
[25] Photoinduced Phase Transitions, World Scientific, Singapore, 2004 | Zbl
[26] Quantum many-body systems out of equilibrium, Nat. Phys., Volume 11 (2015), pp. 124-130 | DOI
[27] Critical Dynamics: A Field Theory Approach to Equilibrium and Non-equilibrium Scaling Behavior, Cambridge University Press, Cambridge, 2014
[28] Universality classes in nonequilibrium lattice systems, Rev. Mod. Phys., Volume 76 (2004), pp. 663-724 | DOI | MR | Zbl
[29] Colloquium: nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys., Volume 83 (2011), pp. 863-883 | DOI
[30] Nonequilibrium dynamical mean-field theory and its applications, Rev. Mod. Phys., Volume 86 (2014), pp. 779-837 | DOI
[31] Transient trapping into metastable states in systems with competing orders, Phys. Rev. X, Volume 10 (2020), 021028
[32] Quantum quenches and competing orders, Phys. Rev. B, Volume 90 (2014), 024506
[33] Adiabatic-impulse approximation for avoided level crossings: from phase-transition dynamics to Landau–Zener evolutions and back again, Phys. Rev. A, Volume 73 (2006), 063405 | DOI
[34] Nonthermal fixed points: effective weak coupling for strongly correlated systems far from equilibrium, Phys. Rev. Lett., Volume 101 (2008), 041603 | DOI
[35] Topology of cosmic domains and strings, J. Phys. A: Math. Gen., Volume 9 (1976), pp. 1387-1398 | DOI | Zbl
[36] Symmetry breaking and defects, Patterns of Symmetry Breaking (H. Arodz; J. Dziarmaga; W. H. Zurek, eds.), Springer, Dordrecht, Netherlands, 2003, pp. 3-36 | DOI
[37] Relaxation and prethermalization in an isolated quantum system, Science, Volume 337 (2012), pp. 1318-1322 | DOI
[38] A quantum Newton’s cradle, Nature, Volume 440 (2006), pp. 900-903 | DOI
[39] Thermalization near Integrability in a dipolar quantum Newton’s cradle, Phys. Rev. X, Volume 8 (2018), 021030
[40] Observation of universal dynamics in a spinor Bose gas far from equilibrium, Nature, Volume 563 (2018), pp. 217-220 | DOI
[41] Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium, Nature, Volume 563 (2018), pp. 225-229 | DOI
[42] Universal prethermal dynamics of Bose gases quenched to unitarity, Nature, Volume 563 (2018), pp. 221-224 | DOI
[43] Time dependence of correlation functions following a quantum quench, Phys. Rev. Lett., Volume 96 (2006), 136801 | DOI
[44] Quantum quench dynamics, Annu. Rev. Condens. Matter Phys., Volume 9 (2018), pp. 245-259 | DOI
[45] Thermalization after an interaction quench in the Hubbard model, Phys. Rev. Lett., Volume 103 (2009), 056403 | DOI
[46] Femtochemistry: Atomic-scale dynamics of the chemical bond, J. Phys. Chem. A, Volume 104 (2000), pp. 5660-5694 | DOI
[47] Microscopic model of charge-density waves in 2H–TaSe, Phys. Rev. B, Volume 16 (1977), pp. 643-650 | DOI
[48] Scattering of X-rays by crystals near the Curie point, Zh. Eksp. Teor. Fiz., Volume 7 (1937), pp. 1232-1241
[49] Fluctuation effects at a Peierls transition, Phys. Rev. Lett., Volume 31 (1973), pp. 462-465 | DOI
[50] Observability of charge-density waves by neutron diffraction, Phys. Rev. B, Volume 3 (1971), pp. 3173-3182 | DOI
[51] The dynamics of charge-density waves, Rev. Mod. Phys., Volume 60 (1988), pp. 1129-1182 | DOI
[52] Diffuse Scattering of X-ray and Neutrons by Fluctuations, Springer-Verlag, Berlin, Heidelberg, 1996
[53] Diffraction evidence for the Kohn anomaly in 1T-TaS, Philos. Mag.: A J. Theor. Exp. Appl. Phys., Volume 29 (1974), pp. 695-699 | DOI
[54] Kohn anomaly in the 1T phase of TaS, J. Phys. F: Met. Phys., Volume 7 (1977), pp. 1139-1143 | DOI
[55] Phason velocities in TaS by X-ray diffuse scattering, Phys. Rev. B, Volume 39 (1989), pp. 1360-1362 | DOI
[56] Observation of soft phonon modes in 1T-TaS by means of X-ray thermal diffuse scattering, J. Phys. Soc. Jpn., Volume 73 (2004), pp. 3064-3069 | DOI
[57] Fourier-transform inelastic X-ray scattering from time-and momentum-dependent phonon–phonon correlations, Nat. Phys., Volume 9 (2013), pp. 790-794 | DOI
[58] Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films, Appl. Phys. Lett., Volume 108 (2016), 041909 | DOI
[59] Time-and momentum-resolved phonon population dynamics with ultrafast electron diffuse scattering, Phys. Rev. B, Volume 100 (2019), 214115 | DOI
[60] Collective modes of a charge-density wave near the lock-in transition, Phys. Rev. B, Volume 16 (1977), pp. 4655-4658 | DOI
[61] Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions, CRC Press, Boca Raton, 1975
[62] Spin density waves in an electron gas, Phys. Rev., Volume 128 (1962), pp. 1437-1452 | DOI | Zbl
[63] The theory of structurally incommensurate systems. III. The fluctuation spectrum of incommensurate phases, J. Phys. C: Solid State Phys., Volume 11 (1978), pp. 3609-3630 | DOI
[64] Field-theory approaches to nonequilibrium dynamics, Ageing and the Glass Transition (M. Henkel; M. Pleimling; R. Sanctuary, eds.), Springer, Berlin, Heidelberg, 2007, pp. 295-348 | DOI
[65] Principles of Condensed Matter Physics, Cambridge University Press, Cambridge, 1995
[66] Theory of phase-ordering kinetics, Adv. Phys., Volume 43 (1994), pp. 357-459 | DOI | Zbl
[67] Intertwined vestigial order in quantum materials: Nematicity and beyond, Annu. Rev. Condens. Matter Phys., Volume 10 (2019), pp. 133-154 | DOI
[68] Colloquium: Theory of intertwined orders in high temperature superconductors, Rev. Mod. Phys., Volume 87 (2015), pp. 457-482 | DOI
[69] Complexity in strongly correlated electronic systems, Science, Volume 309 (2005), pp. 257-262 | DOI
[70] High-temperature superconductivity: Ineluctable complexity, Nat. Phys., Volume 8 (2012), pp. 864-866 | DOI
[71] Putting competing orders in their place near the Mott transition, Phys. Rev. B, Volume 71 (2005), 144508
[72] Theory of stripes in quasi-two-dimensional rare-earth tellurides, Phys. Rev. B, Volume 74 (2006), 245126
[73] X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies, Dover, New York, 1994, 245126
[74] Thermal diffuse scattering of X-rays and neutrons, International Tables for Crystallography Volume B: Reciprocal Space (U. Shmueli, ed.), Springer, Dordrecht, Netherlands, 2001, pp. 400-406
[75] Structure factor of a charge-density wave, Phys. Rev. B, Volume 23 (1981), pp. 3737-3743 | DOI
[76] Ultrafast diffraction and structural dynamics: The nature of complex molecules far from equilibrium, Proc. Natl Acad. Sci. USA, Volume 98 (2001), pp. 7117-7122 | DOI
[77] Universality of phase transition dynamics: Topological defects from symmetry breaking, Int. J. Mod. Phys. A, Volume 29 (2014), 1430018 | DOI
[78] Universal space–time scaling symmetry in the dynamics of bosons across a quantum phase transition, Science, Volume 354 (2016), 1430018, pp. 606-610 | DOI | MR | Zbl
[79] Causality in condensates: gray solitons as relics of BEC formation, Phys. Rev. Lett., Volume 102 (2009), 105702 | DOI
[80] Image of the Fermi surface in the vibration spectrum of a metal, Phys. Rev. Lett., Volume 2 (1959), 105702, pp. 393-394 | DOI
[81] Experimental demonstration of high quality MeV ultrafast electron diffraction, Rev. Sci. Instrum., Volume 80 (2009), 083303
[82] Transmission-electron diffraction by MeV electron pulses, Appl. Phys. Lett., Volume 98 (2011), 251903 | DOI
[83] An atomic-level view of melting using femtosecond electron diffraction, Science, Volume 302 (2003), 251903, pp. 1382-1385 | DOI
[84] Developemnt and applications for ultrafast electron nanocrystallography, Microsc. Microanal., Volume 15 (2009), pp. 323-337 | DOI
[85] Mega-electron-volt ultrafast electron diffraction at SLAC national accelerator laboratory, Rev. Sci. Instrum., Volume 86 (2015), 073702 | DOI
[86] High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun, Rev. Sci. Instrum., Volume 85 (2014), 083701
[87] High current table-top setup for femtosecond gas electron diffraction, Struct. Dyn., Volume 4 (2017), 044022 | DOI
[88] Ultrafast electron diffraction with radio-frequency compressed electron pulses, Appl. Phys. Lett., Volume 101 (2012), 081901 | DOI
[89] Ultrafast relativistic electron nanoprobes, Commun. Phys., Volume 2 (2019), 54
[90] Towards jitter-free ultrafast electron diffraction technology, Nat. Photonics, Volume 14 (2020), 54, pp. 245-249 | DOI
[91] Ultrafast electron diffraction from nanophotonic waveforms via dynamical Aharonov–Bohm phases, Sci. Adv., Volume 6 (2020), eabc8804 | DOI
[92] Active control of bright electron beams with RF optics for femtosecond microscopy, Struct. Dyn., Volume 4 (2017), 044035 | DOI
[93] The evolution of ultrafast electron microscope instrumentation, Microsc. Microanal., Volume 15 (2009), 044035, pp. 272-281 | DOI
[94] Ultrafast electron microscopy in materials science, biology, and chemistry, J. Appl. Phys., Volume 97 (2005), 111101
[95] 4D ultrafast electron diffraction, crystallography, and microscopy, Annu. Rev. Phys. Chem., Volume 57 (2006), 111101, pp. 65-103 | DOI
[96] Development of analytical ultrafast transmission electron microscopy based on laser-driven Schottky field emission, Ultramicroscopy, Volume 209 (2020), 112887
[97] Characterization of a time-resolved electron microscope with a Schottky field emission gun, Struct. Dyn., Volume 7 (2020), 054304 | DOI
[98] Imaging nanoscale spatial modulation of a relativistic electron beam with a MeV ultrafast electron microscope, Appl. Phys. Lett., Volume 112 (2018), 113102
[99] Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam, Ultramicroscopy, Volume 176 (2017), 113102, pp. 63-73 | DOI
[100] Ultrafast electron microscopy integrated with a direct electron detection camera, Struct. Dyn., Volume 4 (2017), 044023
[101] Development of a high brightness ultrafast transmission electron microscope based on a laser-driven cold field emission source, Ultramicroscopy, Volume 186 (2018), 044023, pp. 128-138 | DOI
[102] Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode, Ultramicroscopy, Volume 171 (2016), pp. 8-18 | DOI
[103] Influence of cathode geometry on electron dynamics in an ultrafast electron microscope, Struct. Dyn., Volume 4 (2017), 054303
[104] Spatiotemporal imaging of 2D polariton wave packet dynamics using free electrons, Science, Volume 372 (2021), 054303, pp. 1181-1186 | DOI
[105] Direct visualization of electromagnetic wave dynamics by laser-free ultrafast electron microscopy, Sci. Adv., Volume 6 (2020), eabc3456
[106] Holographic imaging of electromagnetic fields via electron-light quantum interference, Sci. Adv., Volume 5 (2019), eaav8358 | DOI
[107] Four-dimensional electron microscopy, Science, Volume 328 (2010), eaav8358, pp. 187-193 | DOI
[108] Direct imaging of plasma waves using ultrafast electron microscopy, Struct. Dyn., Volume 7 (2020), 064301
[109] Amplitude dynamics of the charge density wave in LaTe: Theoretical description of pump-probe experiments, Phys. Rev. B, Volume 101 (2020), 054203 | DOI
[110] Ultrafast electron relaxation in superconducting BiSrCaCuO by time-resolved photoelectron spectroscopy, Phys. Rev. Lett., Volume 99 (2007), 197001 | DOI
[111] Ultrafast transient response and electron–phonon coupling in the iron-pnictide superconductor Ba(FeCo)As, Phys. Rev. B, Volume 82 (2010), 024513 | DOI
[112] Watching ultrafast responses of structure and magnetism in condensed matter with momentum-resolved probes, Struct. Dyn., Volume 4 (2017), 061506 | DOI
[113] Order parameter fluctuations at a buried quantum critical point, Proc. Natl Acad. Sci. USA, Volume 109 (2012), 061506, pp. 7224-7229 | DOI
[114] Acoustic phonon instabilities and structural phase transitions, Phys. Rev. B, Volume 13 (1976), pp. 4877-4885 | DOI
[115] Quantum Phase Transitions, Cambridge University Press, Cambridge, 2011 | DOI | Zbl
[116] Dynamical quantum phase transitions: a review, Rep. Prog. Phys., Volume 81 (2018), 054001 | DOI | MR
[117] Universality In Nonequilibrium Lattice Systems: Theoretical Foundations, World Scientific, Singapore, SG, 2008, 054001 | Zbl
[118] Phase transitions and scaling in systems far from equilibrium, Annu. Rev. Condens. Matter Phys., Volume 8 (2017), pp. 185-210 | DOI
[119] Computational and experimental characterization of high-brightness beams for femtosecond electron imaging and spectroscopy, Appl. Phys. Lett., Volume 103 (2013), 253115 | DOI
[120] Does VO host a transient monoclinic metallic phase?, Phys. Rev. X, Volume 10 (2020), 031047
[121] Femtosecond electron spectroscopy in an electron microscope with high brightness beams, Chem. Phys. Lett., Volume 683 (2017), 031047, pp. 488-494 | DOI
[122] Ultrafast electron diffraction (UED)—A new development for the 4D determination of transient molecular structures, Helv. Chim. Acta, Volume 86 (2003), pp. 1763-1838 | DOI
[123] Ultrashort electron pulses for diffraction, crystallography and microscopy: theoretical and experimental resolutions, Phys. Chem. Chem. Phys., Volume 10 (2008), pp. 2894-2909 | DOI
[124] Space charge effects in ultrafast electron diffraction and imaging, J. Appl. Phys., Volume 111 (2012), 044316
[125] Ultrafast electron optics: Propagation dynamics of femtosecond electron packets, J. Appl. Phys., Volume 92 (2002), 044316, pp. 1643-1648 | DOI
[126] Femtosecond electron pulse propagation for ultrafast electron diffraction, J. Appl. Phys., Volume 100 (2006), 034916
[127] Dynamical bunching and density peaks in expanding Coulomb clouds, Phys. Rev. Accel. Beams, Volume 21 (2018), 064201 | DOI
[128] Coulomb interactions in high-coherence femtosecond electron pulses from tip emitters, Struct. Dyn., Volume 6 (2019), 014301 | DOI
[129] Electron pulse broadening due to space charge effects in a photoelectron gun for electron diffraction and streak camera systems, J. Appl. Phys., Volume 91 (2002), 014301, pp. 462-468 | DOI
[130] The fast multipole method in the differential algebra framework, Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip., Volume 645 (2011), pp. 338-344 | DOI
[131] Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction, Phys. Rev. Lett., Volume 105 (2010), 264801 | DOI
[132] Single shot time stamping of ultrabright radio frequency compressed electron pulses, Appl. Phys. Lett., Volume 103 (2013), 033503
[133] Effects of pulse-length and emitter area on virtual cathode formation in electron guns, Phys. Plasmas, Volume 9 (2002), 033503, pp. 2377-2382 | DOI
[134] 100 years of the physics of diodes, Appl. Phys. Rev., Volume 4 (2017), 011304 | DOI
[135] Development of RF-compressed high-throughput femtosecond electron microscope, Microsc. Microanal., Volume 26 (2020), 011304, pp. 1-4
[136] Photonics and plasmonics in 4D Ultrafast electron microscopy, ACS Photonics, Volume 2 (2015), pp. 1391-1402 | DOI
[137] High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics, Nat. Photonics, Volume 11 (2017), pp. 425-430 | DOI
[138] Biological imaging with 4D ultrafast electron microscopy, Proc. Natl Acad. Sci. USA, Volume 107 (2010), pp. 9933-9937 | DOI
[139] Subparticle ultrafast spectrum imaging in 4D electron microscopy, Science, Volume 335 (2012), pp. 59-64 | DOI
[140] Quantum coherent optical phase modulation in an ultrafast transmission electron microscope, Nature, Volume 521 (2015), pp. 200-203 | DOI
[141] Ultrafast core-loss spectroscopy in four-dimensional electron microscopy, Struct. Dyn., Volume 2 (2015), 024302 | DOI
[142] Ultrafast elemental and oxidation-state mapping of hematite by 4D electron microscopy, J. Am. Chem. Soc., Volume 139 (2017), 024302, pp. 4916-4922 | DOI
[143] Science of Microscopy, Springer, New York, 2007
[144] The near commensurate phase and effect of Harmonics on the successive phase transition in 1T-TaS, J. Phys. Soc. Jpn., Volume 43 (1977), pp. 1509-1517 | DOI
[145] Theory of 3-dimensional orderings of charge-density waves in 1T-TaS, IT–TaSe, J. Phys. Soc. Jpn., Volume 53 (1984), pp. 1103-1113 | DOI
[146] Thermal evidences for successive CDW phase transitions in 1T-TaS, Solid State Commun., Volume 53 (1985), pp. 201-203 | DOI
[147] X-ray crystal-structure refinement of the nearly commensurate phase of 1T-TaS in (3 + 2)-dimensional superspace, Phys. Rev. B, Volume 56 (1997), pp. 13757-13767 | DOI
[148] Electron microscopy of phase transformations in 1T-TaS, Phys. Rev. B, Volume 44 (1991), pp. 2046-2060 | DOI
[149] Local charge-density-wave structure in 1T-TaS determined by scanning tunneling microscopy, Phys. Rev. B, Volume 38 (1988), pp. 10734-10743 | DOI
[150] Scanning tunneling microscopy of the charge-density-wave structure in 1T-TaS, Phys. Rev. B, Volume 49 (1994), pp. 16899-16916 | DOI
[151] From Mott state to superconductivity in 1T-TaS, Nat. Mater., Volume 7 (2008), pp. 960-965 | DOI
[152] Controlling many-body states by the electric-field effect in a two-dimensional material, Nature, Volume 529 (2016), pp. 185-189 | DOI
[153] Divergence in the behavior of the charge density wave in RETe3 (RE = rare-earth element) with temperature and RE element, J. Am. Chem. Soc., Volume 128 (2006), pp. 12612-12613 | DOI
[154] Effect of chemical pressure on the charge density wave transition in rare-earth tritellurides RTe, Phys. Rev. B, Volume 77 (2008), 035114
[155] Angle-resolved photoemission study of the evolution of band structure and charge density wave properties in RTe (R = Y, La, Ce, Sm, Gd, Tb, and Dy), Phys. Rev. B, Volume 77 (2008), 235104 | DOI
[156] Competing soft phonon modes at the charge-density-wave transitions in DyTe, Phys. Rev. B, Volume 98 (2018), 094304 | DOI
[157] Alternative route to charge density wave formation in multiband systems, Proc. Natl Acad. Sci. USA, Volume 110 (2013), 094304, pp. 64-69 | DOI
[158] Classification of collective modes in a charge density wave by momentum-dependent modulation of the electronic band structure, Phys. Rev. B, Volume 91 (2015), 201106 | DOI
[159] Charge transfer and multiple density waves in the rare earth tellurides, Phys. Rev. B, Volume 87 (2013), 155131 | DOI
[160] Persistent order due to transiently enhanced nesting in an electronically excited charge density wave, Nat. Commun., Volume 7 (2016), 10459 | DOI
[161] Transient electronic structure and melting of a charge density wave in TbTe, Science, Volume 321 (2008), 10459, pp. 1649-1652 | DOI
[162] Ultrafast resonant soft X-ray diffraction dynamics of the charge density wave in TbTe, Phys. Rev. B, Volume 93 (2016), 024304
[163] Zurek–Kibble causality bounds in time-dependent Ginzburg–Landau theory and quantum field theory, J. Low Temp. Phys., Volume 124 (2001), 024304, pp. 41-83 | DOI
[164] Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides, Adv. Phys., Volume 24 (1975), pp. 117-201 | DOI
[165] 1T-TaS as a quantum spin liquid, Proc. Natl Acad. Sci. USA, Volume 114 (2017), pp. 6996-7000 | DOI
[166] On the origin of charge-density waves in select layered transition-metal dichalcogenides,, J. Phys. Condens. Matter, Volume 23 (2011), 213001 | DOI
[167] A time-domain phase diagram of metastable states in a charge ordered quantum material, Nat. Commun., Volume 12 (2021), 2323 | DOI
[168] Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS, Sci. Adv., Volume 1 (2015), e1500168 | DOI
[169] Intertwined chiral charge orders and topological stabilization of the light-induced state of a prototypical transition metal dichalcogenide, npj Quantum Mater., Volume 4 (2019), 32 | DOI
[170] A metallic mosaic phase and the origin of Mott-insulating state in 1T-TaS, Nat. Commun., Volume 7 (2016), 10956
[171] Nanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS, Nat. Commun., Volume 7 (2016), 10453
[172] Collapse of layer dimerization in the photo-induced hidden state of 1T-TaS, Nat. Commun., Volume 11 (2020), 1247 | DOI
[173] Hidden CDW states and insulator-to-metal transition after a pulsed femtosecond laser excitation in layered chalcogenide 1T-TaSSe, Sci. Adv., Volume 4 (2018), eaas9660
[174] Ultrafast electron calorimetry uncovers a new long-lived metastable state in 1T-TaSe mediated by mode-selective electron–phonon coupling, Sci. Adv., Volume 5 (2019), eaav4449
[175] Ultrafast switching to an insulating-like metastable state by amplitudon excitation of a charge density wave, Nat. Phys., Volume 17 (2021), eaav4449, pp. 909-914 | DOI
[176] Hidden in plain light, Nat. Phys., Volume 17 (2021), pp. 884-885 | DOI
[177] The role of charge density waves in structural transformations of 1T TaS, Philos. Mag.: A J. Theor. Exp. Appl. Phys., Volume 31 (1975), pp. 255-274 | DOI
[178] Theory of discommensurations and the commensurate-incommensurate charge-density-wave phase transition, Phys. Rev. B, Volume 14 (1976), pp. 1496-1502 | DOI
[179] Domain-like incommensurate charge-density-wave states and the first-order incommensurate–commensurate transitions in layered tantalum dichalcogenides. I. 1T-Polytype, J. Phys. Soc. Jpn., Volume 43 (1977), pp. 1839-1847 | DOI
[180] Itinerant density wave instabilities at classical and quantum critical points, Nat. Phys., Volume 11 (2015), pp. 865-871 | DOI
[181] Ising model with solitons, phasons, and “the devil’s staircase”, Phys. Rev. B, Volume 21 (1980), pp. 5297-5308 | DOI | MR
[182] X-ray study of charge density wave structure in 1T-TaS, J. Phys. Soc. Jpn., Volume 53 (1984), pp. 476-479 | DOI
[183] Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity, Proc. Natl Acad. Sci. USA, Volume 110 (2013), pp. 17623-17630 | DOI
[184] Breakdown of the Bardeen–Cooper–Schrieffer ground state at a quantum phase transition, Nature, Volume 459 (2009), pp. 405-409 | DOI
[185] Hexagonal domain-like charge density wave phase of TaS determined by scanning tunneling microscopy, Science, Volume 243 (1989), pp. 1703-1705
[186] Time evolution of the electronic structure of 1T-TaS through the insulator–metal transition, Phys. Rev. Lett., Volume 97 (2006), 067402 | DOI
[187] Time-domain classification of charge-density-wave insulators, Nat. Commun., Volume 3 (2012), 2078 | DOI
[188] Ultrafast melting of a charge-density wave in the Mott insulator 1T-TaS, Phys. Rev. Lett., Volume 105 (2010), 187401 | DOI
[189] Snapshots of cooperative atomic motions in the optical suppression of charge density waves, Nature, Volume 468 (2010), 187401, pp. 799-802 | DOI
[190] Ultrafast formation of a charge density wave state in 1T-TaS observation at nanometer scales using time-resolved X-ray diffraction, Phys. Rev. Lett., Volume 118 (2017), 247401 | DOI
[191] Ultrafast metamorphosis of a complex charge-density wave, Phys. Rev. Lett., Volume 116 (2016), 016402 | DOI
[192] Pressure dependence of the charge density wave in 1T-TaS and its relation to superconductivity, Phys. Rev. B, Volume 87 (2013), 125135
[193] Real-space coexistence of the melted mott state and superconductivity in Fe-substituted 1T-TaS, Phys. Rev. Lett., Volume 109 (2012), 176403
[194] Fe-doping-induced superconductivity in the charge-density-wave system 1T-TaS, Eur. Phys. Lett., Volume 97 (2012), 67005
[195] Orbital textures and charge density waves in transition metal dichalcogenides, Nat. Phys., Volume 11 (2015), 67005, pp. 328-331 | DOI
[196] Mottness versus unit-cell doubling as the driver of the insulating state in 1T-TaS, Nat. Commun., Volume 11 (2020), 2477 | DOI
[197] Band insulator to Mott insulator transition in 1T-TaS, Nat. Commun., Volume 11 (2020), 4215
[198] Distinguishing a mott insulator from a trivial insulator with atomic adsorbates, Phys. Rev. Lett., Volume 126 (2021), 196405
[199] Three-dimensional metallic and two-dimensional insulating behavior in octahedral tantalum dichalcogenides, Phys. Rev. B, Volume 90 (2014), 045134 | DOI
[200] Coherent dynamics of macroscopic electronic order through a symmetry breaking transition, Nat. Phys., Volume 6 (2010), 045134, pp. 681-684 | DOI
[201] Ultrafast formation of domain walls of a charge density wave in SmTe, Phys. Rev. B, Volume 103 (2021), 054109 | DOI
[202] Manipulating charge density wave order in monolayer 1T-TiSe by strain and charge doping: A first-principles investigation, Phys. Rev. B, Volume 96 (2017), 165404
[203] Photoexcitation induced quantum dynamics of charge density wave and emergence of a collective mode in 1T-TaS, Nano Lett., Volume 19 (2019), 165404, pp. 6027-6034 | DOI
[204] Creation of a novel inverted charge density wave state (2020) (https://arxiv.org/abs/2011.07623)
[205] Optical manipulation of electronic dimensionality in a quantum material (2021) (https://arxiv.org/abs/2101.08507v1)
[206] Coherent order parameter dynamics in SmTe, Phys. Rev. B, Volume 99 (2019), 104111 | DOI
[207] Cooperative photoinduced metastable phase control in strained manganite films, Nat. Mater., Volume 15 (2016), 104111, pp. 956-960 | DOI
[208] Kramers–Kronig analysis of the reflectivity spectra of 3R–WS and 2H–WSe, J. Phys. C: Solid State Phys., Volume 9 (1976), pp. 2449-2457 | DOI
[209] A method to extract absorption coefficient of thin films from transmission spectra of the films on thick substrates, J. Appl. Phys., Volume 111 (2012), 073109
[210] Applications of the theory of optical spectroscopy to numerical simulations, Appl. Spectrosc., Volume 47 (1993), 073109, pp. 566-574 | DOI
[211] Investigations on interfacial dynamics with ultrafast electron diffraction, Ph. D. Thesis, Michigan State University, USA (2009)
[212] Anisotropic electron–phonon coupling investigated by ultrafast electron crystallography: Three-temperature model, Phys. Rev. B, Volume 87 (2013), 235124
[213] Femtosecond dynamics of electronic states in the Mott insulator 1T-TaS by time resolved photoelectron spectroscopy, New J. Phys., Volume 10 (2008), 053019 | DOI
[214] ProQuest, Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM, Springer, New York, 2005, 053019
[215] Transmission Electron Microscopy: A Textbook for Materials Science, Springer, New York, 2009
[216] Mechanism of coherent acoustic phonon generation under nonequilibrium conditions, Phys. Rev. B,, Volume 72 (2005), 100301 | DOI
[217] 4D ultrafast electron microscopy: imaging of atomic motions, acoustic resonances, and moiré fringe dynamics, Ultramicroscopy, Volume 110 (2009), 100301, pp. 7-19 | DOI
[218] Coherent and incoherent electron–phonon coupling in graphite observed with radio-frequency compressed ultrafast electron diffraction, Phys. Rev. Lett., Volume 113 (2014), 235502 | DOI
[219] Dynamic diffraction effects and coherent breathing oscillations in ultrafast electron diffraction in layered 1T-TaSeTe, Struct. Dyn., Volume 4 (2017), 044012
[220] Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy, Struct. Dyn., Volume 5 (2018), 014302 | DOI
[221] Strongly coupled electron–phonon dynamics in few-layer TiSe exfoliates, ACS Photonics, Volume 5 (2018), 014302, pp. 1228-1234 | DOI
[222] Observation of anisotropic strain-wave dynamics and few-layer dephasing in MoS with ultrafast electron microscopy, Nano Lett., Volume 19 (2019), pp. 8216-8224 | DOI
[223] Nanoscale imaging of unusual photoacoustic waves in thin flake VTe, Nano Lett., Volume 20 (2020), pp. 4932-4938 | DOI
[224] The reflectivity spectra of some group VA transition metal dichalcogenides, J. Phys. C Solid State Phys., Volume 8 (1975), p. 4236 | DOI
[225] Thermal expansion of 1T-TaS and 2H–NbSe, Solid State Commun., Volume 36 (1980), pp. 737-740 | DOI
[226] Thermal expansion of NbSe and TaS, J. Phys. Chem. Solids, Volume 38 (1977), pp. 1363-1365 | DOI
[227] Velocity of ultrasonic waves in 2H–NbSe, 2H–TaS, and 1T-TaS, Phys. Rev. B, Volume 22 (1980), pp. 4907-4914 | DOI
[228] The metal–insulator transitions of VO: a band theoretical approach, Ann. Phys., Volume 11 (2002), pp. 650-702 | DOI | Zbl
[229] Basic aspects of the metal–insulator transition in vanadium dioxide VO: a critical review, C. R. Phys., Volume 22 (2021), pp. 37-87
[230] Correlated electron materials and field effect transistors for logic: a review, Crit. Rev. Solid State Mater. Sci., Volume 38 (2013), pp. 286-317 | DOI
[231] Recent progresses on physics and applications of vanadium dioxide, Mater. Today, Volume 21 (2018), pp. 875-896 | DOI
[232] Extended mapping and exploration of the vanadium dioxide stress–temperature phase diagram, Nano Lett., Volume 10 (2010), pp. 2667-2673 | DOI
[233] Measurement of a solid-state triple point at the metal–insulator transition in VO, Nature, Volume 500 (2013), pp. 431-434 | DOI
[234] Metal–insulator phase transition in VO, J. Phys. Colloq., Volume 37 (1976), p. C4-49–C4-57 | DOI
[235] Evidence for photo-induced monoclinic metallic VO under high pressure, Appl. Phys. Lett., Volume 104 (2014), 021917
[236] A photoinduced metal-like phase of monoclinic VO revealed by ultrafast electron diffraction, Science, Volume 346 (2014), 021917, pp. 445-448 | DOI
[237] Mechanism and observation of Mott transition in VO-based two- and three-terminal devices, New J. Phys., Volume 6 (2004), 52
[238] Direct observation of decoupled structural and electronic transitions and an ambient pressure monoclinic-like metallic phase of VO, Phys. Rev. Lett., Volume 113 (2014), 216402 | DOI
[239] Suppression of structural phase transition in VO by epitaxial strain in vicinity of metal–insulator transition, Sci. Rep., Volume 6 (2016), 23119
[240] Decoupling of structural and electronic phase transitions in VO, Phys. Rev. Lett., Volume 109 (2012), 166406
[241] Isostructural metal–insulator transition in VO, Science, Volume 362 (2018), 166406, pp. 1037-1040 | DOI
[242] The two components of the crystallographic transition in VO, J. Solid State Chem., Volume 3 (1971), pp. 490-500 | DOI
[243] Metal–Insulator Transitions, Taylor & Francis, London, New York, 1990
[244] Dynamical singlets and correlation-assisted Peierls transition in VO, Phys. Rev. Lett., Volume 94 (2005), 026404 | DOI
[245] Orbital-assisted metal–insulator transition in VO, Phys. Rev. Lett., Volume 95 (2005), 196404 | DOI
[246] Transfer of spectral weight and symmetry across the metal–insulator transition in VO, Phys. Rev. Lett., Volume 97 (2006), 116402 | DOI
[247] Metal–Insulator transition in VO: A DFT+DMFT perspective, Phys. Rev. Lett., Volume 117 (2016), 056402 | DOI
[248] Vanadium dioxide: a Peierls–Mott insulator stable against disorder, Phys. Rev. Lett., Volume 108 (2012), 256402 | DOI
[249] Symmetry relationship and strain-induced transitions between insulating M and M and Metallic R phases of vanadium dioxide, Nano Lett., Volume 10 (2010), 256402, pp. 4409-4416 | DOI
[250] The nature of photoinduced phase transition and metastable states in vanadium dioxide, Sci. Rep., Volume 6 (2016), 38514
[251] Metal–insulator transition in vanadium dioxide, Phys. Rev. B, Volume 11 (1975), 38514, pp. 4383-4395 | DOI
[252] Comment on VO: peierls or Mott–Hubbard? A view from band theory, Phys. Rev. Lett., Volume 73 (1994), p. 3042-3042 | DOI
[253] Evidence for a structurally-driven insulator-to-metal transition in VO: A view from the ultrafast timescale, Phys. Rev. B, Volume 70 (2004), 161102 | DOI
[254] Ultrafast changes in lattice symmetry probed by coherent phonons, Nat. Commun., Volume 3 (2012), 721 | DOI
[255] Doping-driven electronic and lattice dynamics in the phase-change material vanadium dioxide, Phys. Rev. B, Volume 102 (2020), 115148 | DOI
[256] Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO, Phys. Rev. Lett., Volume 99 (2007), 116401 | DOI
[257] Phase diagram of the ultrafast photoinduced insulator–metal transition in vanadium dioxide, Phys. Rev. B, Volume 85 (2012), 155120 | DOI
[258] Ultrafast insulator–metal phase transition in VO studied by multiterahertz spectroscopy, Phys. Rev. B, Volume 83 (2011), 195120 | DOI
[259] Instantaneous band gap collapse in photoexcited monoclinic VO due to photocarrier doping, Phys. Rev. Lett., Volume 113 (2014), 216401 | DOI
[260] Ultrafast dynamics during the photoinduced phase transition in VO, Progr. Surf. Sci., Volume 90 (2015), 216401, pp. 464-502 | DOI
[261] 4D visualization of transitional structures in phase transformations by electron diffraction, Science, Volume 318 (2007), pp. 788-792 | DOI
[262] How optical excitation controls the structure and properties of vanadium dioxide, Proc. Natl Acad. Sci. USA, Volume 116 (2019), pp. 450-455 | DOI
[263] Photoinduced strain release and phase transition dynamics of solid-supported ultrathin vanadium dioxide, Sci. Rep., Volume 7 (2017), 10045
[264] Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO, Nat. Commun., Volume 6 (2015), 6849 | DOI
[265] Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection, Nano Lett., Volume 14 (2014), 6849, pp. 1127-1133 | DOI
[266] Phase transition in bulk single crystals and thin films of VO by nanoscale infrared spectroscopy and imaging, Phys. Rev. B, Volume 91 (2015), 245155
[267] Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams, Nat. Nanotechnol., Volume 4 (2009), 245155, pp. 732-737 | DOI
[268] New aspects of the metal–insulator transition in single-domain vanadium dioxide nanobeams, Nat. Nanotechnol., Volume 4 (2009), pp. 420-424 | DOI
[269] Sub-picosecond response time of a hybrid VO: silicon waveguide at 1550 nm, Adv. Opt. Mater., Volume 9 (2021), 2001721 | DOI
[270] Ultrafast disordering of vanadium dimers in photoexcited VO, Science, Volume 362 (2018), 2001721, pp. 572-576 | DOI
[271] Non-equilibrium control of complex solids by nonlinear phononics, Rep. Progr. Phys., Volume 79 (2016), 064503 | DOI
[272] Floquet engineering of quantum materials, Annu. Rev. Condens. Matter Phys., Volume 10 (2019), 064503, pp. 387-408 | DOI
[273] Effect of quenched disorder on the quantum spin liquid state of the triangular-lattice antiferromagnet 1T-TaS, Phys. Rev. Res., Volume 2 (2020), 013099 | DOI
[274] Preferential out-of-plane conduction and quasi-one-dimensional electronic states in layered 1T-TaS, npj 2D Mater. Appl., Volume 4 (2020), 7 | DOI
[275] Electronic conduction in the commensurate charge density wave state of 1T-TaS, J. Phys. Soc. Jpn., Volume 53 (1984), 7, pp. 2332-2341 | DOI
[276] Thermal conductivity of 1T-TaS and 2H–TaSe, Phys. Rev. Lett., Volume 55 (1985), pp. 1931-1934 | DOI
Cited by Sources:
Foreword: Ultrafast Phenomena in condensed matter physics
Eric Collet; Sylvain Ravy
C. R. Phys (2021)
Photoinduced charge density wave phase in 1T-TaS: growth and coarsening mechanisms
Amélie Jarnac; Vincent L. R. Jacques; Laurent Cario; ...
C. R. Phys (2021)