Comptes Rendus
Interface enhanced superconductivity in FeSe/SrTiO3 and the hidden nature
Comptes Rendus. Physique, Recent advances in 2D material physics, Volume 22 (2021) no. S4, pp. 163-182.

The superconductivity confined in a two-dimensional interface exhibits many exotic phenomena that have certain counterparts in layered cuprates and iron-based superconductors, and thus provides rare opportunities to reveal the mystery of high temperature superconductivity therein. By constructing and tailoring hybrid heterostructures such as FeSe/SrTiO3 (FeSe/STO), interface-enhanced superconductivity arouses, and the substrate has been demonstrated to provide the phonons and enhance the strong electron–phonon coupling (EPC) within monolayer FeSe. More research and reporting systems uncover that the band-bending induced charge transfer at the interface could become a unified microscopic picture to design the new interface superconductors. With re-examination of the experimental research in LaAlO3/STO (LAO/STO) and unconventional superconductors, the common characteristics such as band bending and rigid band shift are perceived in the FeSe/STO, LAO/STO and cuprate superconductors. This review may provide important information to inspect the mechanism of high-Tc superconductivity from a different view.

Première publication :
Publié le :
DOI : 10.5802/crphys.87
Mots-clés : Interface superconductivity, FeSe/SrTiO3, Band bending, Rigid shift, Electron–phonon coupling, High-Tc superconductivity

Sha Han 1, 2 ; Can-Li Song 3, 2 ; Xu-Cun Ma 3, 2 ; Qi-Kun Xue 4, 3, 5, 2

1 CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Suzhou 215123, China
2 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
3 Frontier Science Center for Quantum Information, Beijing 100084, China
4 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
5 Southern University of Science and Technology, Shenzhen 518055, China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2021__22_S4_163_0,
     author = {Sha Han and Can-Li Song and Xu-Cun Ma and Qi-Kun Xue},
     title = {Interface enhanced superconductivity in {FeSe/SrTiO}$_{3}$ and the hidden nature},
     journal = {Comptes Rendus. Physique},
     pages = {163--182},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S4},
     year = {2021},
     doi = {10.5802/crphys.87},
     language = {en},
}
TY  - JOUR
AU  - Sha Han
AU  - Can-Li Song
AU  - Xu-Cun Ma
AU  - Qi-Kun Xue
TI  - Interface enhanced superconductivity in FeSe/SrTiO$_{3}$ and the hidden nature
JO  - Comptes Rendus. Physique
PY  - 2021
SP  - 163
EP  - 182
VL  - 22
IS  - S4
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.87
LA  - en
ID  - CRPHYS_2021__22_S4_163_0
ER  - 
%0 Journal Article
%A Sha Han
%A Can-Li Song
%A Xu-Cun Ma
%A Qi-Kun Xue
%T Interface enhanced superconductivity in FeSe/SrTiO$_{3}$ and the hidden nature
%J Comptes Rendus. Physique
%D 2021
%P 163-182
%V 22
%N S4
%I Académie des sciences, Paris
%R 10.5802/crphys.87
%G en
%F CRPHYS_2021__22_S4_163_0
Sha Han; Can-Li Song; Xu-Cun Ma; Qi-Kun Xue. Interface enhanced superconductivity in FeSe/SrTiO$_{3}$ and the hidden nature. Comptes Rendus. Physique, Recent advances in 2D material physics, Volume 22 (2021) no. S4, pp. 163-182. doi : 10.5802/crphys.87. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.87/

[1] Q.-Y. Wang; Z. Li; W.-H. Zhang; Z.-C. Zhang; J.-S. Zhang; W. Li; H. Ding; Y.-B. Ou; P. Deng; K. Chang et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3, Chin. Phys. Lett., Volume 29 (2012) no. 3, 037402

[2] D.-F. Liu; W.-H. Zhang; D.-X. Mou; J.-F. He; Y.-B. Ou; Q.-Y. Wang; Z. Li; L.-L. Wang; L. Zhao; S.-L. He et al. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor, Nat. Commun., Volume 3 (2012), 931

[3] S.-L. He; J.-F. He; W.-H. Zhang; L. Zhao; D.-F. Liu; X. Liu; D.-X. Mou; Y.-B. Ou; Q.-Y. Wang; Z. Li et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films, Nat. Mater., Volume 12 (2013) no. 7, pp. 605-610

[4] S.-Y. Tan; Y. Zhang; M. Xia; Z.-R. Ye; F. Chen; X. Xie; R. Peng; D.-F. Xu; Q. Fan; H.-C. Xu et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films, Nat. Mater., Volume 12 (2013) no. 7, pp. 634-640 | DOI

[5] J. J. Lee; F. T. Schmitt; R. G. Moore; S. Johnston; Y.-T. Cui; W. Li; M. Yi; Z. K. Liu; M. Hashimoto; Y. Zhang et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3, Nature, Volume 515 (2014) no. 7526, pp. 245-248 | DOI

[6] L. Z. Deng; B. Lv; Z. Wu; Y. Y. Xue; W. H. Zhang; F. S. Li; L. L. Wang; X. C. Ma; Q. K. Xue; C. W. Chu Meissner and mesoscopic superconducting states in 1–4 unit-cell FeSe films, Phys. Rev. B, Volume 90 (2014) no. 21, 214513

[7] J.-F. Ge; Z.-L. Liu; C.-H. Liu; C.-L. Gao; D. Qian; Q.-K. Xue; Y. Liu; J.-. Jia Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3, Nat. Mater., Volume 14 (2015) no. 3, pp. 285-289

[8] A. K. Pedersen; S. Ichinokura; T. Tanaka; R. Shimizu; T. Hitosugi; T. Hirahara Interfacial superconductivity in FeSe ultrathin films on SrTiO3 probed by in situ independently driven four-point-probe measurements, Phys. Rev. Lett., Volume 124 (2020), 227002

[9] D. Huang; J. E. Hoffman Monolayer FeSe on SrTiO3, Annu. Rev. Condens. Matter Phys., Volume 8 (2017), pp. 311-336

[10] Z. Wang; C. Liu; Y. Liu; J. Wang High-temperature superconductivity in one-unit-cell FeSe films, J. Phys.: Condens. Matter, Volume 29 (2017) no. 15, 153001

[11] D.-H. Lee Routes to high-temperature superconductivity: A lesson from FeSe/SrTiO3, Annu. Rev. Condens. Matter Phys., Volume 9 (2018), pp. 261-282

[12] P. A. Lee; N. Nagaosa; X.-G. Wen Doping a Mott insulator: physics of high-temperature superconductivity, Rev. Mod. Phys., Volume 78 (2006), pp. 17-85

[13] I. Božović; C. Ahn A new frontier for superconductivity, Nat. Phys., Volume 10 (2014) no. 12, pp. 892-895

[14] A. Gozar; G. Logvenov; L. F. Kourkoutis; A. T. Bollinger; L. A. Giannuzzi; D. A. Muller; I. Božović High-temperature interface superconductivity between metallic and insulating copper oxides, Nature, Volume 455 (2008) no. 7214, pp. 782-785

[15] G. Logvenov; A. Gozar; I. Božović High-temperature superconductivity in a single copper–oxygen plane, Science, Volume 326 (2009) no. 5953, pp. 699-702

[16] M. Bendele; A. Amato; K. Conder; M. Elender; H. Keller; H.-H. Klauss; H. Luetkens; E. Pomjakushina; A. Raselli; R. Khasanov Pressure induced static magnetic order in superconducting FeSe1-x, Phys. Rev. Lett., Volume 104 (2010), 087003

[17] I. I. Mazin; D. J. Singh; M. D. Johannes; M. H. Du Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-xFx, Phys. Rev. Lett., Volume 101 (2008), 057003

[18] L. Benfatto; B. Valenzuela; L. Fanfarillo Nematic pairing from orbital-selective spin fluctuations in FeSe, NPJ Quantum Mater., Volume 3 (2018) no. 1, 56

[19] B. Li; Z. W. Xing; G. Q. Huang; D. Y. Xing Electron–phonon coupling enhanced by the FeSe/SrTiO3 interface, J. Appl. Phys., Volume 115 (2014) no. 19, 193907

[20] Y. Wang; A. Linscheid; T. Berlijn; S. Johnston Ab initio study of cross-interface electron–phonon couplings in FeSe thin films on SrTiO3 and BaTiO3, Phys. Rev. B, Volume 93 (2016), 134513

[21] T. P. Devereaux; A. Virosztek; A. Zawadowski Neutron scattering and the B1g phonon in the cuprates, Phys. Rev. B, Volume 59 (1999), pp. 14618-14623

[22] Z. An-Min; Z. Qing-Ming Electron–phonon coupling in cuprate and iron-based superconductors revealed by Raman scattering, Chin. Phys. B, Volume 22 (2013) no. 8, 087103

[23] H. Keller; A. Bussmann-Holder; K. A. Müller Jahn–Teller physics and high-Tc superconductivity, Mater. Today, Volume 11 (2008) no. 9, pp. 38-46

[24] L.-L. Wang; X.-C. Ma; Q.-K. Xue Interface high-temperature superconductivity, Supercond. Sci. Technol., Volume 29 (2016) no. 12, 123001

[25] Y. Zhong; Y. Wang; S. Han; Y. F. Lv; W. L. Wang; D. Zhang; H. Ding; Y. M. Zhang; L. L. Wang; K. He et al. Nodeless pairing in superconducting copper-oxide monolayer films on Bi2Sr2CaCu2O8+δ, Sci. Bull., Volume 61 (2016) no. 16, pp. 1239-1247

[26] Y.-M. Zhang; J.-Q. Fan; W. L. Wang; D. Zhang; L. L. Wang; W. Li; K. He; C. L. Song; X. C. Ma; Q. K. Xue Observation of interface superconductivity in a SnSe2/epitaxial graphene van der Waals heterostructure, Phys. Rev. B, Volume 98 (2018), 220508

[27] T. Kondo; T. Takeuchi; T. Yokoya; S. Tsuda; S. Shin; U. Mizutani Hole-concentration dependence of band structure in (Bi,Pb)2(Sr,La)2CuO6+δ determined by the angle-resolved photoemission spectroscopy, J. Electron. Spectros. Relat. Phenomena, Volume 137 (2004), pp. 663-668

[28] C. C. Tsuei; J. R. Kirtley Pairing symmetry in cuprate superconductors, Rev. Mod. Phys., Volume 72 (2000), pp. 969-1016

[29] H. Won; K. Maki d-wave superconductor as a model of high-Tc superconductors, Phys. Rev. B, Volume 49 (1994), pp. 1397-1402

[30] Y.-Y. Zhu; M.-H. Liao; Q.-H. Zhang; H.-Y. Xie; F.-Q. Meng; Y.-W. Liu; Z.-H. Bai; S.-H. Ji; J. Zhang; K.-L. Jiang et al. Presence of s-wave pairing in Josephson junctions made of twisted ultrathin Bi2Sr2CaCuO8+δ flakes, Phys. Rev. X, Volume 11 (2021), 031011

[31] A. Ohtomo; H. Hwang A high mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature, Volume 427 (2004) no. 6973, pp. 423-426

[32] B. Lei; J. H. Cui; Z. J. Xiang; C. Shang; N. Z. Wang; G. J. Ye; X. G. Luo; T. Wu; Z. Sun; X. H. Chen Evolution of high-temperature superconductivity from a low-Tc phase tuned by carrier concentration in FeSe thin flakes, Phys. Rev. Lett., Volume 116 (2016), 077002

[33] X. F. Lu; N. Z. Wang; H. Wu; Y. P. Wu; D. Zhao; X. Z. Zeng; X. G. Luo; T. Wu; W. Bao; G. H. Zhang et al. Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe, Nat. Mater., Volume 14 (2015) no. 3, pp. 325-329

[34] L. Zhao; A. J. Liang; D. N. Yuan; Y. Hu; D. F. Liu; J. W. Huang; S. L. He; B. Shen; Y. Xu; X. Liu et al. Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films, Nat. Commun., Volume 7 (2016), 10608

[35] Y. Miyata; K. Nakayama; K. Sugawara; T. Sato; T. Takahashi High-temperature superconductivity in potassium-coated multilayer FeSe thin films, Nat. Mater., Volume 14 (2015) no. 8, pp. 775-779

[36] C. P. Wen; H. C. Xu; C. Chen; Z. C. Huang; X. Lou; Y. J. Pu; Q. Song; B. P. Xie; M. Abdel-Hafiez; D. Chareev et al. Anomalous correlation effects and unique phase diagram of electron-doped FeSe revealed by photoemission spectroscopy, Nat. Commun., Volume 7 (2016), 10840

[37] J. Seo; B. Kim; B. S. Kim; J. Jeong; J. Ok; J. S. Kim; J. Denlinger; S.-K. Mo; C. Kim; Y. K. Kim Superconductivity below 20 K in heavily electron-doped surface layer of FeSe bulk crystal, Nat. Commun., Volume 7 (2016), 11116

[38] J. Stahl; D. Johrendt FeSe(en)0.3-separated FeSe layers with stripe-type crystal structure by intercalation of neutral spacer molecules (2017) (https://arxiv.org/abs/1706.00314)

[39] M. K. Xu; X. Q. Song; H. Wang Substrate and band bending effects on monolayer FeSe on SrTiO3(001), Phys. Chem. Chem. Phys., Volume 19 (2017) no. 11, pp. 7964-7970

[40] H. M. Zhang; D. Zhang; X. W. Lu; C. Liu; G. Y. Zhou; X. C. Ma; L. L. Wang; P. Jiang; Q. K. Xue; X. H. Bao Origin of charge transfer and enhanced electron–phonon coupling in single unit-cell FeSe films on SrTiO3, Nat. Commun., Volume 8 (2017) no. 1, 214

[41] W. Zhao; M. Li; C.-Z. Chang; J. Jiang; L. Wu; C. Liu; J. S. Moodera; Y. Zhu; M. H. Chan Direct imaging of electron transfer and its influence on superconducting pairing at FeSe/SrTiO3 interface, Sci. Adv., Volume 4 (2018) no. 3, eaao2682

[42] P. K. Biswas; Z. Salman; Q. Song; R. Peng; J. Zhang; L. Shu; D. L. Feng; T. Prokscha; E. Morenzoni Direct evidence of superconductivity and determination of the superfluid density in buried ultrathin FeSe grown on SrTiO3, Phys. Rev. B, Volume 97 (2018), 174509

[43] H. Sims; D. N. Leonard; A. Y. Birenbaum; Z. Ge; T. Berlijn; L. Li; V. R. Cooper; M. F. Chisholm; S. T. Pantelides Intrinsic interfacial van der Waals monolayers and their effect on the high-temperature superconductor FeSe/SrTiO3, Phys. Rev. B, Volume 100 (2019), 144103

[44] G. Y. Zhou; Q. H. Zhang; F. W. Zheng; D. Zhang; C. Liu; X. X. Wang; C. L. Song; K. He; X. C. Ma; L. Gu et al. Interface enhanced superconductivity in monolayer FeSe films on MgO(001): charge transfer with atomic substitution, Sci. Bull., Volume 63 (2018) no. 12, pp. 747-752

[45] R. Dingle; H. Störmer; A. Gossard; W. Wiegmann Electron mobilities in modulation-doped semiconductor heterojunction superlattices, Appl. Phys. Lett., Volume 33 (1978) no. 7, pp. 665-667

[46] M. Nakamura; A. Sawa; H. Sato; H. Akoh; M. Kawasaki; Y. Tokura Optical probe of electrostatic-doping in an n-type Mott insulator, Phys. Rev. B, Volume 75 (2007), 155103

[47] S. Badoux; W. Tabis; F. Laliberté; G. Grissonnanche; B. Vignolle; D. Vignolles; J. Béard; D. A. Bonn; W. N. Hardy; R. Liang Change of carrier density at the pseudogap critical point of a cuprate superconductor, Nature, Volume 531 (2016) no. 7593, pp. 210-214

[48] M. P. M. Dean; G. Dellea; R. S. Springell; F. Yakhou-Harris; K. Kummer; N. B. Brookes; X. Liu; Y. J. Sun; J. Strle; T. Schmitt et al. Persistence of magnetic excitations in La2-xSrxCuO4 from the undoped insulator to the heavily overdoped non-superconducting metal, Nat. Mater., Volume 12 (2013) no. 11, pp. 1019-1023

[49] F. Baiutti; G. Logvenov; G. Gregori; G. Cristiani; Y. Wang; W. Sigle; P. A. van Aken; J. Maier High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping, Nat. Commun., Volume 6 (2015), 8586

[50] N. Reyren; S. Thiel; A. D. Caviglia; L. F. Kourkoutis; G. Hammerl; C. Richter; C. Schneider; T. Kopp; A.-S. Rüetschi; D. Jaccard et al. Superconducting interfaces between insulating oxides, Science, Volume 317 (2007) no. 5842, pp. 1196-1199

[51] C. Richter; H. Boschker; W. Dietsche; E. Fillis-Tsirakis; R. Jany; F. Loder; L. Kourkoutis; D. Muller; J. Kirtley; C. Schneider et al. Interface superconductor with gap behaviour like a high-temperature superconductor, Nature, Volume 502 (2013) no. 7472, pp. 528-531

[52] H. Lee; N. Campbell; J. Lee; T. J. Asel; T. R. Paudel; H. Zhou; J. W. Lee; B. Noesges; J. Seo; B. Park et al. Direct observation of a two-dimensional hole gas at oxide interfaces, Nat. Mater., Volume 17 (2018) no. 3, pp. 231-236

[53] S. Gariglio; M. Gabay; J. Mannhart; J.-M. Triscone Interface superconductivity, Physica C, Volume 514 (2015), pp. 189-198

[54] N. Nakagawa; H. Y. Hwang; D. A. Muller Why some interfaces cannot be sharp, Nat. Mater., Volume 5 (2006) no. 3, pp. 204-209

[55] Y. W. Xie; Y. Hikita; C. Bell; H. Y. Hwang Control of electronic conduction at an oxide heterointerface using surface polar adsorbates, Nat. Commun., Volume 2 (2011), 494

[56] V. T. Tra; J.-W. Chen; P.-C. Huang; B.-C. Huang; Y. Cao; C.-H. Yeh; H.-J. Liu; E. A. Eliseev; A. N. Morozovska; J.-Y. Lin et al. Ferroelectric control of the conduction at the LaAlO3/SrTiO3 heterointerface, Adv. Mater., Volume 25 (2013) no. 24, pp. 3357-3364

[57] R. Arras; V. G. Ruiz; W. E. Pickett; R. Pentcheva Tuning the two-dimensional electron gas at the LaAlO3/SrTiO3(001) interface by metallic contacts, Phys. Rev. B, Volume 85 (2012), 125404

[58] T. Kim; S.-I. Kim; S. Joo; S. Kim; J. Jeon; J. Hong; Y.-J. Doh; S.-H. Baek; H. C. Koo A possible superconductor-like state at elevated temperatures near metal electrodes in an LaAlO3/SrTiO3 interface, Sci. Rep., Volume 8 (2018) no. 1, 11558

[59] A. Rastogi; S. Tiwari; J. Pulikkotil; Z. Hossain; D. Kumar; R. Budhani δ-doped LaAlO3–SrTiO3 interface: Electrical transport and characterization of the interface potential, EPL, Volume 106 (2014) no. 5, 57002

[60] A. Ohtomo; D. Muller; J. Grazul; H. Y. Hwang Artificial charge-modulationin atomic-scale perovskite titanate superlattices, Nature, Volume 419 (2002) no. 6905, pp. 378-380

[61] A. Kalabukhov; R. Gunnarsson; T. Claeson; D. Winkler Electrical transport properties of polar heterointerface between KTaO3 and SrTiO3 (2007) (https://arxiv.org/abs/0704.1050)

[62] Y. Hotta; T. Susaki; H. Y. Hwang Polar discontinuity doping of the LaVO3/SrTiO3 interface, Phys. Rev. Lett., Volume 99 (2007), 236805

[63] T. Koida; M. Lippmaa; T. Fukumura; K. Itaka; Y. Matsumoto; M. Kawasaki; H. Koinuma Effect of A-site cation ordering on the magnetoelectric properties in [(LaMnO3)m/(SrMnO3)m]n artificial superlattices, Phys. Rev. B, Volume 66 (2002), 144418

[64] H. R. Zhang; Y. Yun; X. J. Zhang; H. Zhang; Y. Ma; X. Yan; F. Wang; G. Li; R. Li; T. Khan et al. High-mobility spin-polarized two-dimensional electron gases at EuO/KTaO3 interfaces, Phys. Rev. Lett., Volume 121 (2018), 116803

[65] C. J. Liu; X. Yan; D. F. Jin; Y. Ma; H. W. Hsiao; Y. Lin; T. M. Bretz-Sullivan; X. J. Zhou; J. Pearson; B. Fisher et al. Two-dimensional superconductivity and anisotropic transport at KTaO3(111) interfaces, Science, Volume 371 (2021), pp. 716-721

[66] P. Cai; W. Ruan; Y. Y. Peng; C. Ye; X. T. Li; Z. Q. Hao; X. J. Zhou; D. H. Lee; Y. Y. Wang Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates, Nat. Phys., Volume 12 (2016) no. 11, pp. 1047-1051

[67] A. Ino; C. Kim; M. Nakamura; T. Yoshida; T. Mizokawa; Z.-X. Shen; A. Fujimori; T. Kakeshita; H. Eisaki; S. Uchida Electronic structure of La2-xSrxCuO4 in the vicinity of the superconductor-insulator transition, Phys. Rev. B, Volume 62 (2000), pp. 4137-4141

[68] A. Damascelli; Z. Hussain; Z.-X. Shen Angle-resolved photoemission studies of the cuprate superconductors, Rev. Mod. Phys., Volume 75 (2003) no. 2, 473

[69] A. Ino; T. Mizokawa; A. Fujimori; K. Tamasaku; H. Eisaki; S. Uchida; T. Kimura; T. Sasagawa; K. Kishio Chemical potential shift in overdoped and underdoped La2-xSrxCuO4, Phys. Rev. Lett., Volume 79 (1997), pp. 2101-2104

[70] W. Kyung; S. Huh; Y. Koh; K. Y. Choi; M. Nakajima; H. Eisaki; J. D. Denlinger; S. K. Mo; C. Kim; Y. K. Kim Enhanced superconductivity in surface-electron-doped iron pnictide Ba(Fe1.94Co0.06)2As2, Nat. Mater., Volume 15 (2016) no. 12, pp. 1233-1236

[71] J. Seo; B. Kim; B. S. Kim; J. Jeong; J. Ok; J. S. Kim; J. Denlinger; S. K. Mo; C. Kim; Y. K. Kim Superconductivity below 20 K in heavily electron-doped surface layer of FeSe bulk crystal, Nat. Commun., Volume 7 (2016), 11116

[72] X. Shi; Z. Q. Han; X. L. Peng; P. Richard; T. Qian; X. X. Wu; M. W. Qiu; S. C. Wang; J. P. Hu; Y. J. Sun et al. Enhanced superconductivity accompanying a Lifshitz transition in electron-doped FeSe monolayer, Nat. Commun., Volume 8 (2017), 14988

[73] T. Shimojima; Y. Suzuki; T. Sonobe; A. Nakamura; M. Sakano; J. Omachi; K. Yoshioka; M. Kuwata-Gonokami; K. Ono; H. Kumigashira et al. Lifting of xz/yz orbital degeneracy at the structural transition in detwinned FeSe, Phys. Rev. B, Volume 90 (2014), 121111

[74] R. Peng; H. C. Xu; S. Y. Tan; H. Y. Cao; M. Xia; X. P. Shen; Z. C. Huang; C. P. Wen; Q. Song; T. Zhang et al. Tuning the band structure and superconductivity in single-layer FeSe by interface engineering, Nat. Commun., Volume 5 (2014), 5044 | DOI

[75] D. X. Mou; S. Y. Liu; X. W. Jia; J. F. He; Y. Y. Peng; L. Zhao; L. Yu; G. D. Liu; S. L. He; X. L. Dong et al. Distinct Fermi surface topology and nodeless superconducting gap in a Tl0.58Rb0.42Fe1.72Se2 superconductor, Phys. Rev. Lett., Volume 106 (2011), 107001

[76] Y. Zhang; L. X. Yang; M. Xu; Z. R. Ye; F. Chen; C. He; H. C. Xu; J. Jiang; B. P. Xie; J. J. Ying et al. Nodeless superconducting gap in AxFe2Se2 (A  = K, Cs) revealed by angle-resolved photoemission spectroscopy, Nat. Mater., Volume 10 (2011) no. 4, pp. 273-277 | DOI

[77] L. Fanfarillo; J. Mansart; P. Toulemonde; H. Cercellier; P. Le Fèvre; F. M. C. Bertran; B. Valenzuela; L. Benfatto; V. Brouet Orbital-dependent Fermi surface shrinking as a fingerprint of nematicity in FeSe, Phys. Rev. B, Volume 94 (2016), 155138 | DOI

[78] X. P. Wang; T. Qian; P. Richard; P. Zhang; J. Dong; H. D. Wang; C. H. Dong; M. H. Fang; H. Ding Strong nodeless pairing on separate electron Fermi surface sheets in (Tl,K)Fe1.78Se2 probed by ARPES, EPL, Volume 93 (2011) no. 5, 57001

[79] L. Zhao; D. X. Mou; S. Y. Liu; X. W. Jia; J. F. He; Y. Y. Peng; L. Yu; X. Liu; G. D. Liu; S. L. He et al. Common Fermi-surface topology and nodeless superconducting gap of K0.68Fe1.79Se2 and (Tl0.45K0.34)Fe1.84Se2 superconductors revealed via angle-resolved photoemission, Phys. Rev. B, Volume 83 (2011), 140508 | DOI

[80] T. Qian; X. P. Wang; W. C. Jin; P. Zhang; P. Richard; G. Xu; X. Dai; Z. Fang; J. G. Guo; X. L. Chen et al. Absence of a holelike Fermi surface for the iron-based K0.8Fe1.7Se2 duperconductor tevealed by angle-resolved photoemission spectroscopy, Phys. Rev. Lett., Volume 106 (2011), 187001 | DOI

[81] T. Sato; K. Nakayama; Y. Sekiba; P. Richard; Y. M. Xu; S. Souma; T. Takahashi; G. F. Chen; J. L. Luo; N. L. Wang et al. Band structure and Fermi surface of an extremely overdoped iron-based superconductor KFe2As2, Phys. Rev. Lett., Volume 103 (2009), 047002 | DOI

[82] S. Moser; L. Moreschini; H. Y. Yang; D. Innocenti; F. Fuchs; N. H. Hansen; Y. J. Chang; K. S. Kim; A. L. Walter; A. Bostwick et al. Angle-resolved photoemission spectroscopy of tetragonal CuO: evidence for intralayer coupling between cupratelike sublattices, Phys. Rev. Lett., Volume 113 (2014), 187001 | DOI

[83] T. Takeuchi; T. Yokoya; S. Shin; K. Jinno; M. Matsuura; T. Kondo; H. Ikuta; U. Mizutani Topology of the Fermi surface and band structure near the Fermi level in the Pb-doped Bi2Sr2CuO6+δ superconductor, J. Electron. Spectros. Relat. Phenomena, Volume 114 (2001), pp. 629-634 | DOI

[84] K. M. Shen; F. Ronning; D. H. Lu; W. S. Lee; N. J. C. Ingle; W. Meevasana; F. Baumberger; A. Damascelli; N. P. Armitage; L. L. Miller et al. Missing quasiparticles and the chemical potential puzzle in the doping evolution of the cuprate superconductors, Phys. Rev. Lett., Volume 93 (2004), 267002

[85] H. Yagi; T. Yoshida; A. Fujimori; Y. Kohsaka; M. Misawa; T. Sasagawa; H. Takagi; M. Azuma; M. Takano Chemical potential shift in lightly doped to optimally doped Ca2-xNaxCuO2Cl2, Phys. Rev. B, Volume 73 (2006), 172503 | DOI

[86] N. Harima; A. Fujimori; T. Sugaya; I. Terasaki Chemical potential shift in lightly doped to overdoped Bi2Sr2Ca1-xRxCu2O8+y (R  = Pr, Er), Phys. Rev. B, Volume 67 (2003), 172501 | DOI

[87] S. Sahrakorpi; R. S. Markiewicz; H. Lin; M. Lindroos; X. J. Zhou; T. Yoshida; W. L. Yang; T. Kakeshita; H. Eisaki; S. Uchida et al. Appearance of universal metallic dispersion in a doped Mott insulator, Phys. Rev. B, Volume 78 (2008), 104513 | DOI

[88] A. Ino; C. Kim; M. Nakamura; T. Yoshida; T. Mizokawa; A. Fujimori; Z.-X. Shen; T. Kakeshita; H. Eisaki; S. Uchida Doping-dependent evolution of the electronic structure of La2-xSrxCuO4 in the superconducting and metallic phases, Phys. Rev. B, Volume 65 (2002), 094504

[89] S. Sachdev; M. A. Metlitski; M. Punk Antiferromagnetism in metals: from the cuprate superconductors to the heavy Fermion materials, J. Phys.: Condens. Matter, Volume 24 (2012) no. 29, 294205

[90] N. Harima; J. Matsuno; A. Fujimori; Y. Onose; Y. Taguchi; Y. Tokura Chemical potential shift in Nd2-xCexCuO4: Contrasting behavior between the electron- and hole-doped cuprates, Phys. Rev. B, Volume 64 (2001), 220507 | DOI

[91] N. P. Armitage; F. Ronning; D. H. Lu; C. Kim; A. Damascelli; K. M. Shen; D. L. Feng; H. Eisaki; Z.-X. Shen; P. K. Mang et al. Doping dependence of an n-type cuprate superconductor investigated by angle-resolved photoemission spectroscopy, Phys. Rev. Lett., Volume 88 (2002), 257001 | DOI

[92] M. Platé; J. D. F. Mottershead; I. S. Elfimov; D. C. Peets; R. Liang; D. A. Bonn; W. N. Hardy; S. Chiuzbaian; M. Falub; M. Shi et al. Fermi surface and quasiparticle excitations of overdoped Tl2Ba2CuO6+δ, Phys. Rev. Lett., Volume 95 (2005), 077001 | DOI

[93] A. F. Santander Syro; M. Ikeda; T. Yoshida; A. Fujimori; K. Ishizaka; M. Okawa; S. Shin; R. L. Greene; N. Bontemps Two-Fermi-surface superconducting state and a nodal d-wave energy gap of the electron-doped Sm1.85Ce0.15CuO4-δ cuprate superconductor, Phys. Rev. Lett., Volume 106 (2011), 197002 | DOI

[94] C. Liu; A. D. Palczewski; R. S. Dhaka; T. Kondo; R. M. Fernandes; E. D. Mun; H. Hodovanets; A. N. Thaler; J. Schmalian; S. L. Bud’ko et al. Importance of the Fermi-surface topology to the superconducting state of the electron-doped pnictide Ba(Fe1-xCox)2As2, Phys. Rev. B, Volume 84 (2011), 020509

[95] L. C. Rhodes; M. D. Watson; A. A. Haghighirad; M. Eschrig; T. K. Kim Strongly enhanced temperature dependence of the chemical potential in FeSe, Phys. Rev. B, Volume 95 (2017), 195111 | DOI

[96] R. S. Dhaka; S. E. Hahn; E. Razzoli; R. Jiang; M. Shi; B. N. Harmon; A. Thaler; S. L. Bud’ko; P. C. Canfield; A. Kaminski Unusual temperature dependence of band dispersion in Ba(Fe1-xRux)2As2 and its consequences for antiferromagnetic ordering, Phys. Rev. Lett., Volume 110 (2013), 067002 | DOI

[97] V. Brouet; P. H. Lin; Y. Texier; J. Bobroff; A. Taleb-Ibrahimi; P. Le Fèvre; F. Bertran; M. Casula; P. Werner; S. Biermann et al. Large temperature dependence of the number of carriers in Co-doped BaFe2As2, Phys. Rev. Lett., Volume 110 (2013), 167002 | DOI

[98] A. Kanigel; M. Norman; M. Randeria; U. Chatterjee; S. Souma; A. Kaminski; H. Fretwell; S. Rosenkranz; M. Shi; T. Sato et al. Evolution of the pseudogap from Fermi arcs to the nodal liquid, Nat. Phys., Volume 2 (2006) no. 7, pp. 447-451 | DOI

[99] Y. J. Zhou; A. J. Millis Charge transfer and electron–phonon coupling in monolayer FeSe on Nb-doped SrTiO3, Phys. Rev. B, Volume 93 (2016), 224506

[100] N. Choudhury; E. J. Walter; A. I. Kolesnikov; C. K. Loong Large phonon band gap in SrTiO3 and the vibrational signatures of ferroelectricity in ATiO3 perovskites: First-principles lattice dynamics and inelastic neutron scattering, Phys. Rev. B, Volume 77 (2008), 134111 | DOI

[101] F. Li; G. A. Sawatzky Electron phonon coupling versus photoelectron energy loss at the origin of replica bands in photoemission of FeSe on SrTiO3, Phys. Rev. Lett., Volume 120 (2018), 237001

[102] Q. Song; T. L. Yu; X. Lou; B. P. Xie; H. C. Xu; C. P. Wen; Q. Yao; S. Y. Zhang; X. T. Zhu; J. D. Guo et al. Evidence of cooperative effect on the enhanced superconducting transition temperature at the FeSe/SrTiO3 interface, Nat. Commun., Volume 10 (2019) no. 1, pp. 1-8 | DOI

[103] S. Y. Zhang; J. Q. Guan; Y. Wang; T. Berlijn; S. Johnston; X. Jia; B. Liu; Q. Zhu; Q. An; S. Xue et al. Lattice dynamics of ultrathin FeSe films on SrTO3, Phys. Rev. B, Volume 97 (2018), 035408

[104] S. Coh; M. L. Cohen; S. G. Louie Large electron–phonon interactions from FeSe phonons in a monolayer, New J. Phys., Volume 17 (2015) no. 7, 073027

[105] Z. Li; J. P. Peng; H. M. Zhang; W. H. Zhang; H. Ding; P. Deng; K. Chang; C. L. Song; S. H. Ji; L. L. Wang et al. Molecular beam epitaxy growth and post-growth annealing of FeSe films on SrTiO3: A scanning tunneling microscopy study, J. Phys.: Condens. Matter, Volume 26 (2014) no. 26, 265002

[106] X. T. Zhu; L. Santos; R. Sankar; S. Chikara; C. Howard; F. C. Chou; C. Chamon; M. El-Batanouny Interaction of phonons and Dirac Fermions on the surface of Bi2Se3: A strong Kohn anomaly, Phys. Rev. Lett., Volume 107 (2011), 186102

[107] V. Ksenofontov; G. Wortmann; A. I. Chumakov; T. Gasi; S. Medvedev; T. M. McQueen; R. J. Cava; C. Felser Density of phonon states in superconducting FeSe as a function of temperature and pressure, Phys. Rev. B, Volume 81 (2010), 184510 | DOI

[108] J. Y. Lin; Y. S. Hsieh; D. A. Chareev; A. N. Vasiliev; Y. Parsons; H. D. Yang Coexistence of isotropic and extended s-wave order parameters in FeSe as revealed by low-temperature specific heat, Phys. Rev. B, Volume 84 (2011), 220507

[109] D. H. Lee What makes the Tc of FeSe/SrTiO3 so high?, Chin. Phys. B, Volume 24 (2015) no. 11, 117405

[110] K. Liu; B. J. Zhang; Z. Y. Lu First-principles study of magnetic frustration in FeSe epitaxial films on SrTiO3, Phys. Rev. B, Volume 91 (2015), 045107

[111] Y. T. Cui; R. G. Moore; A. M. Zhang; Y. Tian; J. J. Lee; F. T. Schmitt; W. H. Zhang; W. Li; M. Yi; Z. K. Liu et al. Interface ferroelectric transition near the gap-opening temperature in a single-unit-cell FeSe film grown on Nb-Doped SrTiO3 substrate, Phys. Rev. Lett., Volume 114 (2015), 037002

[112] S. Y. Zhang; J. Q. Guan; X. Jia; B. Liu; W. H. Wang; F. S. Li; L. L. Wang; X. C. Ma; Q. K. Xue; J. D. Zhang et al. Role of SrTiO3 phonon penetrating into thin FeSe films in the enhancement of superconductivity, Phys. Rev. B, Volume 94 (2016), 081116

[113] S. Y. Zhang; T. Wei; J. Q. Guan; Q. Zhu; W. Qin; W. H. Wang; J. D. Zhang; E. W. Plummer; X. T. Zhu; Z. Y. Zhang et al. Enhanced superconducting state in FeSe/SrTiO3 by a dynamic interfacial polaron mechanism, Phys. Rev. Lett., Volume 122 (2019), 066802

[114] S. Gerber; S. L. Yang; D. Zhu; H. Soifer; J. Sobota; S. Rebec; J. Lee; T. Jia; B. Moritz; C. Jia et al. Femtosecond electron–phonon lock-in by photoemission and X-ray free-electron laser, Science, Volume 357 (2017) no. 6346, pp. 71-75 | DOI

[115] P. Zhang; X. L. Peng; T. Qian; P. Richard; X. Shi; J. Z. Ma; B. B. Fu; Y. L. Guo; Z. Q. Han; S. C. Wang et al. Observation of high-Tc superconductivity in rectangular FeSe/SrTiO3(110) monolayers, Phys. Rev. B, Volume 94 (2016), 104510

[116] G. Y. Zhou; D. Zhang; C. Liu; C. J. Tang; X. X. Wang; Z. Li; C. L. Song; S. H. Ji; K. He; L. L. Wang et al. Interface induced high temperature superconductivity in single unit-cell FeSe on SrTiO3(110), Appl. Phys. Lett., Volume 108 (2016) no. 20, 202603

[117] H. Ding; Y. F. Lv; K. Zhao; W. L. Wang; L. L. Wang; C. L. Song; X. Chen; X. C. Ma; Q. K. Xue High-temperature superconductivity in single-unit-cell FeSe films on anatase TiO2(001), Phys. Rev. Lett., Volume 117 (2016), 067001 | DOI

[118] S. N. Rebec; T. Jia; C. Zhang; M. Hashimoto; D. H. Lu; R. G. Moore; Z. X. Shen Coexistence of replica bands and superconductivity in FeSe monolayer films, Phys. Rev. Lett., Volume 118 (2017), 067002 | DOI

[119] H. H. Yang; G. Y. Zhou; Y. Y. Zhu; G. M. Gong; Q. H. Zhang; M. H. Liao; Z. Li; C. Ding; F. Q. Meng; M. Rafique et al. Superconductivity above 28 K in single unit cell FeSe films interfaced with GaO2-δ layer on NdGaO3(110), Sci. Bull., Volume 64 (2019), pp. 490-494 | DOI

[120] Q. S. Wang; Y. Shen; B. Y. Pan; Y. Q. Hao; M. W. Ma; F. Zhou; P. Steffens; K. Schmalzl; T. Forrest; M. Abdel-Hafiez et al. Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe, Nat. Mater., Volume 15 (2016) no. 2, pp. 159-163 | DOI

[121] L. Kai; G. Miao; L. Zhong Yi; X. Tao First-principles study of FeSe epitaxial films on SrTiO3, Chin. Phys. B, Volume 24 (2015) no. 11, 117402

[122] H. Y. Cao; S. Chen; H. Xiang; X. G. Gong Antiferromagnetic ground state with pair-checkerboard order in FeSe, Phys. Rev. B, Volume 91 (2015), 020504

[123] Y. Zhou; L. Miao; P. Wang; F. F. Zhu; W. X. Jiang; S. W. Jiang; Y. Zhang; B. Lei; X. H. Chen; H. F. Ding et al. Antiferromagnetic order in epitaxial FeSe films on SrTiO3, Phys. Rev. Lett., Volume 120 (2018), 097001 | DOI

[124] Y. Zhou; A. J. Millis Dipolar phonons and electronic screening in monolayer FeSe on SrTiO3, Phys. Rev. B, Volume 96 (2017), 054516 | DOI

[125] L. Li; C. Richter; J. Mannhart; R. Ashoori Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces, Nat. Phys., Volume 7 (2011) no. 10, pp. 762-766 | DOI

[126] A. Scholl; J. Stöhr; J. Lüning; J. W. Seo; J. Fompeyrine; H. Siegwart; J.-P. Locquet; F. Nolting; S. Anders; E. Fullerton et al. Observation of antiferromagnetic domains in epitaxial thin films, Science, Volume 287 (2000) no. 5455, pp. 1014-1016 | DOI

[127] T. Bazhirov; M. L. Cohen Spin-resolved electron–phonon coupling in FeSe and KFe2Se2, Phys. Rev. B, Volume 86 (2012), 134517 | DOI

[128] F. W. Zheng; Z. G. Wang; W. Kang; P. Zhang Antiferromagnetic FeSe monolayer on SrTiO3: the charge doping and electric field effects, Sci. Rep., Volume 3 (2013), 2213 | DOI

[129] T. Bazhirov; M. L. Cohen Effects of charge doping and constrained magnetization on the electronic structure of an FeSe monolayer, J. Phys.: Condens. Matter, Volume 25 (2013) no. 10, 105506

[130] W. T. Zhang; T. Miller; C. L. Smallwood; Y. Yoshida; H. Eisaki; R. Kaindl; D. H. Lee; A. Lanzara Stimulated emission of Cooper pairs in a high-temperature cuprate superconductor, Sci. Rep., Volume 6 (2016), 29100

[131] J. R. Schrieffer; J. S. Brooks Handbook of High-temperature Superconductivity: Theory and Experiment, Springer, New York, NY, USA, 2007 | Zbl

[132] M. Hepting; L. Chaix; E. Huang; R. Fumagalli; Y. Peng; B. Moritz; K. Kummer; N. Brookes; W. Lee; M. Hashimoto et al. Three-dimensional collective charge excitations in electron-doped copper oxide superconductors, Nature, Volume 563 (2018) no. 7731, pp. 374-378 | DOI

  • Ju Yoon Hnin Bo; Heishun Zen; Kyohei Yoshida; Kan Hachiya; Rei Akasegawa; Hideaki Ohgaki Observation of Selective Excitation of Raman Inactive Phonon Mode of Strontium Titanate Through Anti-Stokes Hyper-Raman Scattering Process, Journal of Infrared, Millimeter, and Terahertz Waves, Volume 45 (2024) no. 11-12, p. 999 | DOI:10.1007/s10762-024-01014-8
  • Krzysztof Szot; Christian Rodenbücher; Krzysztof Rogacki; Gustav Bihlmayer; Wolfgang Speier; Krystian Roleder; Franciszek Krok; Hugo Keller; Arndt Simon; Annette Bussmann-Holder Transition to Metallic and Superconducting States Induced by Thermal or Electrical Deoxidation of the Dislocation Network in the Surface Region of SrTiO3, Nanomaterials, Volume 14 (2024) no. 23, p. 1944 | DOI:10.3390/nano14231944
  • Qijin Chen; Zhiqiang Wang; Rufus Boyack; Shuolong Yang; K. Levin When superconductivity crosses over: From BCS to BEC, Reviews of Modern Physics, Volume 96 (2024) no. 2 | DOI:10.1103/revmodphys.96.025002
  • Jia-Bei Huang; Fu-Zhuo Lian; Zhi-Yuan Wang; Shi-Tao Sun; Ming Li; Di Zhang; Xiao-Fan Cai; Guo-Dong Ma; Zhi-Hong Mai; Shen Andy; Lei Wang; Ge-Liang Yu Two-dimensional van der Waals: Characterization and manipulation of superconductivity, Acta Physica Sinica, Volume 71 (2022) no. 18, p. 187401 | DOI:10.7498/aps.71.20220638

Cité par 4 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: