Matter is dynamic and changes under the effect of various external constraints, in particular light. The development of ultra-fast techniques now makes it possible to study the elementary mechanisms of ultrafast photoinduced phenomena, in particular by following the dynamics of electronic and structural degrees of freedom of matter. These studies provide a better understanding of these non-equilibrium processes in order to control the physical properties of molecules and materials by light. In this introductory article we discuss different aspects of studying ultra-fast condensed matter phenomena.
La matière est dynamique et se transforme sous l’effet de différentes contraintes extérieures, en particulier la lumière. Le développement de techniques ultra-rapides permet à présent d’étudier les mécanismes élémentaires de phénomènes photoinduits ultra-rapides, en particulier en suivant les dynamiques des degrés de libertés électroniques et structuraux de la matière. Ces études permettent de mieux comprendre ces processus hors équilibre pour envisager un contrôle des propriétés physiques de molécules et matériaux par la lumière. Dans cet article d’introduction nous abordons différents aspects de l’étude de phénomènes ultra-rapide en matière condensée.
Mots-clés : Matière Condensée, Molécules, Matériaux, Phénomènes ultra-rapides, Hors équilibre, Spectroscopies, Diffraction
Eric Collet 1; Sylvain Ravy 2

@article{CRPHYS_2021__22_S2_3_0, author = {Eric Collet and Sylvain Ravy}, title = {Foreword: {Ultrafast} {Phenomena} in condensed matter physics}, journal = {Comptes Rendus. Physique}, pages = {3--14}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {S2}, year = {2021}, doi = {10.5802/crphys.88}, language = {en}, }
Eric Collet; Sylvain Ravy. Foreword: Ultrafast Phenomena in condensed matter physics. Comptes Rendus. Physique, Physics of ultra-fast phenomena, Volume 22 (2021) no. S2, pp. 3-14. doi : 10.5802/crphys.88. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.88/
[1] Towards properties on demand in quantum materials, Nat. Mater., Volume 16 (2017), pp. 1077-1088 | DOI
[2] Photoinduced Phase Transitions, World Scientific, Singapore, Hackensack, NJ, 2004 | DOI
[3] Chemistry at the uncertainty limit, Angew. Chem. Int. Ed., Volume 40 (2001), pp. 4371-4375
[4] Photoinduced structural dynamics of molecular systems mapped by time-resolved X-ray methods, Chem. Rev., Volume 117 (2017), pp. 11025-11065 | DOI
[5] Dynamical structural science, Acta Crystallogr. A, Volume 66 (2010), pp. 133-134 | DOI
[6] Direct observation of collective modes coupled to molecular orbital–driven charge transfer, Science, Volume 350 (2015), pp. 1501-1505 | DOI
[7] Transient electronic structure and melting of a charge density wave in TbTe, Science, Volume 321 (2008), pp. 1649-1652 | DOI
[8] Distinguishing the ultrafast dynamics of spin and orbital moments in solids, Nature, Volume 465 (2010), pp. 458-461 | DOI
[9] Femtochemistry: with the Nobel Lecture of A. Zewail, Wiley-VCH, Weinheim New York, 2001
[10] Resonant and nonresonant control over matter and light by intense terahertz transients, Nat. Photonics, Volume 7 (2013), pp. 680-690 | DOI
[11] Tracking the Metal-centered triplet in photoinduced spin crossover of Fe(phen) with tabletop femtosecond M-Edge X-ray absorption near-edge structure spectroscopy, J. Am. Chem. Soc., Volume 141 (2019) no. 43, pp. 17180-17188 | DOI
[12] Coherent structural trapping through wave packet dispersion during photoinduced spin state switching, Nat. Commun., Volume 8 (2017), 15342 | DOI
[13] Comparison of structural dynamics and coherence of d–d and MLCT light-induced spin state trapping, Chem. Sci., Volume 8 (2017), pp. 4978-4986 | DOI
[14] Direct observation of electron thermalization and electron-phonon coupling in photoexcited bismuth, Phys. Rev. B, Volume 88 (2013), 075120 | DOI
[15] Electron and X-ray methods of ultrafast structural dynamics: advances and applications, Chemphyschem, Volume 10 (2009), pp. 28-43 | DOI
[16] BioCARS: a synchrotron resource for time-resolved X-ray science, J. Synchrotron Radiat., Volume 18 (2011), pp. 658-670 | DOI
[17] Structural dynamics upon photoexcitation in a spin crossover crystal probed with femtosecond electron diffraction, Angew. Chem. Int. Ed., Volume 56 (2017), pp. 7130-7134 | DOI
[18] Recent advances on ultrafast X-ray spectroscopy in the chemical sciences, Chem. Sci., Volume 5 (2014), pp. 4136-4152 | DOI
[19] Chopper system for time resolved experiments with synchrotron radiation, Rev. Sci. Instrum., Volume 80 (2009), 015101 | DOI
[20] Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit, Nature, Volume 422 (2003), pp. 287-289 | DOI
[21] Ultrafast bond softening in bismuth: Mapping a solid’s interatomic potential with X-rays, Science, Volume 315 (2007), pp. 633-636 | DOI
[22] Non-equilibrium phonon dynamics studied by grazing-incidence femtosecond X-ray crystallography, Acta Crystallogr. A, Volume 66 (2010), pp. 157-167 | DOI
[23] Birth and decay of coherent optical phonons in femtosecond-laser-excited bismuth, Phys. Rev. B, Volume 78 (2008), 134302 | DOI
[24] Entropy driven atomic motion in laser-excited bismuth, Phys. Rev. Lett., Volume 106 (2011), 155503 | DOI
[25] Femtosecond structural dynamics in VO during an ultrafast solid-solid phase transition, Phys. Rev. Lett., Volume 8723 (2001), 237401
[26] Transient photoinduced “hidden” phase in a manganite, Nat. Mater., Volume 10 (2011), pp. 101-105 | DOI
[27] Gigantic Photoresponse in -Filled-Band Organic Salt (EDO-TTF)PF, Science, Volume 307 (2005), pp. 86-89 | DOI
[28] Local response to light excitation in the charge-ordered phase of(EDO-TTF)SbF, Phys. Rev. B, Volume 92 (2015), 024304 | DOI
[29] Mapping molecular motions leading to charge delocalization with ultrabright electrons, Nature, Volume 496 (2013), pp. 343-346 | DOI
[30] Elastically driven cooperative response of a molecular material impacted by a laser pulse, Nat. Mater., Volume 15 (2016), pp. 606-610 | DOI
[31] Sequential activation of molecular breathing and bending during spin-crossover photoswitching revealed by femtosecond optical and X-ray absorption spectroscopy, Phys. Rev. Lett., Volume 113 (2014), 227402 | DOI
[32] Laser-induced ferroelectric structural order in an organic charge-transfer crystal, Science, Volume 300 (2003), pp. 612-615 | DOI
[33] A time-dependent order parameter for ultrafast photoinduced phase transitions, Nat. Mater., Volume 13 (2014), pp. 923-927 | DOI
[34] Charge transfer driven by ultrafast spin transition in a CoFe Prussian blue analogue, Nat. Chem., Volume 13 (2021), pp. 10-14 | DOI
[35] Out-of-equilibrium lattice response to photo-induced charge-transfer in a MnFe Prussian blue analogue, J. Mater. Chem. C, Volume 9 (2021), pp. 6773-6780 | DOI
[36] Multifunctional Material: Bistable Metal–Cyanide Polymer of Rubidium Manganese Hexacyanoferrate, Bull. Chem. Soc. Jpn., Volume 88 (2015), pp. 227-239 | DOI
[37] Direct observation of charge transfer in double-perovskite-like RbMnFe(CN), Phys. Rev. Lett., Volume 91 (2003), 255502 | DOI
[38] Observation of spin transition in an octahedrally Coordinated Manganese(II) compound, J. Phys. Chem. B, Volume 106 (2002), pp. 2423-2425 | DOI
[39] A large thermal hysteresis loop produced by a charge-transfer phase transition in a rubidium manganese hexacyanoferrate, Inorg. Chem., Volume 43 (2004), pp. 5231-5236 | DOI
[40] Landau theory for non-symmetry-breaking electronic instability coupled to symmetry-breaking order parameter applied to Prussian blue analog, Phys. Rev. B, Volume 102 (2020), 134104 | DOI
[41] Exploring ultrafast photoswitching pathways in RbMnFe Prussian Blue Analogue, Angew. Chem. Int. Ed. (2021) | DOI
[42] Strain wave pathway to semiconductor-to-metal transition revealed by time-resolved X-ray powder diffraction, Nat. Commun., Volume 12 (2021), 1239 | DOI
[43] Theory of nonlinear phononics for coherent light control of solids, Phys. Rev. B, Volume 89 (2014), 220301 | DOI
[44] Nonlinear light–matter interaction at terahertz frequencies, Adv. Opt. Photonics, Volume 8 (2016), pp. 401-464 | DOI
[45] Nonlinear phononics as an ultrafast route to lattice control, Nat. Phys., Volume 7 (2011), pp. 854-856 | DOI
[46] Dynamics and control in complex transition metal oxides, Annu. Rev. Mater. Res., Volume 44 (2014), pp. 19-43 | DOI
[47] Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBaCuO, Nature, Volume 516 (2014), pp. 71-73 | DOI
[48] Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial, Nature, Volume 487 (2012), pp. 345-348 | DOI
[49] Midinfrared-light-induced ferroelectricity in oxide paraelectrics via nonlinear phononics, Phys. Rev. B, Volume 95 (2017), 134113 | DOI
[50] Ultrafast electronic phase transition in La SrMnO by coherent vibrational excitation: evidence for nonthermal melting of orbital order, Phys. Rev. Lett., Volume 101 (2008), 197404 | DOI
[51] Driving magnetic order in a manganite by ultrafast lattice excitation, Phys. Rev. B, Volume 84 (2011), 241104 | DOI
[52] Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface, Nat. Mater., Volume 14 (2015), pp. 883-888 | DOI
[53] An effective magnetic field from optically driven phonons, Nat. Phys., Volume 13 (2017), pp. 132-136 | DOI
[54] Ultrafast reversal of the ferroelectric polarization, Phys. Rev. Lett., Volume 118 (2017), 197601 | DOI
Cited by Sources:
Comments - Policy