[Lames à retard d’onde accordables à base de métasurfaces - Une approche par conception inverse]
Une approche est proposée pour obtenir un retard de phase d’onde électromagnétique accordable en s’appuyant sur une méta-structure avec deux couches planes en regard l’une de l’autre. Le retard de phase est ajusté par l’intermédiaire de la variation de la distance axiale entre les deux couches. Un contrôle complet de l’ellipticité de l’onde en sortie de dispositif est atteint avec des variations de la distance axiale à l’échelle de la longueur d’onde. Les caractéristiques désirées des méta-structures sont présentées et plusieurs applications physiques sont suggérées, en s’appuyant sur des optimisations topologiques ou des algorithmes génétiques par conception inverse.
An approach to achieve tunable free-space waveplate operation based on a two-layer cascaded metastructure is proposed. Phase retardation is varied through changing the axial distance between the two layers. Full control on the ellipticity of the output wave is attained with wavelength-scale variations in the axial distance. The theoretically desired characteristics of the metastructures are presented and multiple physical implementations are suggested based on inverse design topology optimization.
Publié le :
Mots-clés : Polarisation, Lames d’onde, Accordabilité, Optimisation topologique, Conception inverse, Métamatériau
Nasim Mohammadi Estakhri 1 ; Nader Engheta 1
@article{CRPHYS_2020__21_7-8_625_0, author = {Nasim Mohammadi Estakhri and Nader Engheta}, title = {Tunable metasurface-based waveplates - {A~proposal} using inverse design}, journal = {Comptes Rendus. Physique}, pages = {625--639}, publisher = {Acad\'emie des sciences, Paris}, volume = {21}, number = {7-8}, year = {2020}, doi = {10.5802/crphys.5}, language = {en}, }
TY - JOUR AU - Nasim Mohammadi Estakhri AU - Nader Engheta TI - Tunable metasurface-based waveplates - A proposal using inverse design JO - Comptes Rendus. Physique PY - 2020 SP - 625 EP - 639 VL - 21 IS - 7-8 PB - Académie des sciences, Paris DO - 10.5802/crphys.5 LA - en ID - CRPHYS_2020__21_7-8_625_0 ER -
Nasim Mohammadi Estakhri; Nader Engheta. Tunable metasurface-based waveplates - A proposal using inverse design. Comptes Rendus. Physique, Metamaterials 2, Volume 21 (2020) no. 7-8, pp. 625-639. doi : 10.5802/crphys.5. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.5/
[1] Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals, Opt. Commun., Volume 163 (1999) no. 1–3, pp. 95-102
[2] A broadband, background-free quarter-wave plate based on plasmonic metasurfaces, Nano Lett., Volume 12 (2012) no. 12, pp. 6328-6333
[3] Design of ultrathin plasmonic quarter-wave plate based on period coupling, Opt. Lett., Volume 38 (2013) no. 5, pp. 679-681
[4] Highly flexible broadband terahertz metamaterial quarter-wave plate, Laser Photonics Rev., Volume 8 (2014) no. 4, pp. 626-632
[5] Plasmonic quarter-wave plate, Opt. Lett., Volume 37 (2012) no. 11, pp. 1820-1822
[6] Experimental realization of a high-contrast grating based broadband quarter-wave plate, Opt. Express, Volume 20 (2012) no. 25, pp. 27966-27973
[7] Efficient and broadband quarter-wave plates by gap-plasmon resonators, Opt. Express, Volume 21 (2013) no. 3, pp. 2942-2952
[8] Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates, Nano Lett., Volume 13 (2013) no. 3, pp. 1086-1091
[9] Broadband plasmonic half-wave plates in reflection, Opt. Lett., Volume 38 (2013) no. 4, pp. 513-515
[10] Controlling the polarization state of light with a dispersion-free metastructure, Phys. Rev. X, Volume 4 (2014) no. 2, 021026
[11] Broadband and wide field-of-view plasmonic metasurface-enabled waveplates, Sci. Rep., Volume 4 (2014), p. 7511
[12] Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach, ACS Nano, Volume 9 (2015) no. 4, pp. 4111-4119
[13] An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface, Opt. Express, Volume 23 (2015) no. 9, pp. 11114-11122
[14] Topology optimization and fabrication of photonic crystal structures, Opt. Express, Volume 12 (2004) no. 9, pp. 1996-2001
[15] Topology optimization for nano-photonics, Laser Photonics Rev., Volume 5 (2011) no. 2, pp. 308-321
[16] Adjoint shape optimization applied to electromagnetic design, Opt. Express, Volume 21 (2013) no. 18, pp. 21693-21701
[17] An integrated-nanophotonics polarization beamsplitter with 2. 4 2. 4 m footprint, Nat. Photonics, Volume 9 (2015) no. 6, p. 378
[18] An acoustic metasurface design for wave motion conversion of longitudinal waves to transverse waves using topology optimization, Appl. Phys. Lett., Volume 107 (2015) no. 22, 221909
[19] Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer, Nat. Photonics, Volume 9 (2015) no. 6, p. 374
[20] Inverse-designed broadband all-dielectric electromagnetic metadevices, Sci. Rep., Volume 8 (2018) no. 1, p. 1358
[21] Topology-optimized dual-polarization Dirac cones, Phys. Rev. B, Volume 97 (2018) no. 8, 081408
[22] Topology-optimized multilayered metaoptics, Phys. Rev. Appl., Volume 9 (2018) no. 4, 044030
[23] Inverse-designed metastructures that solve equations, Science, Volume 363 (2019) no. 6433, pp. 1333-1338
[24] Electrically tunable liquid-crystal wave plate in the infrared, Opt. Lett., Volume 15 (1990) no. 1, pp. 87-89
[25] Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes, Light Sci. Appl., Volume 4 (2015) no. 2, e253
[26] Tunable reflective liquid crystal terahertz waveplates, Opt. Mater. Express, Volume 7 (2017) no. 6, pp. 2023-2029
[27] Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface, Sci. Rep., Volume 5 (2015), p. 15020
[28] Tunable wave plate based on active plasmonic metasurfaces, Opt. Express, Volume 25 (2017) no. 4, pp. 4216-4226
[29] Electromechanically tunable metasurface transmission waveplate at terahertz frequencies, Optica, Volume 5 (2018) no. 3, pp. 303-310
[30] Fundamentals of Photonics, John Wiley & Sons, 2019
[31] Free-space optical Mach-Zehnder modulator based on two cascaded metasurfaces, CLEO: Applications and Technology, Optical Society of America, 2018, pp. JW2A-93
[32] Reaction concept in electromagnetic theory, Phys. Rev., Volume 94 (1954) no. 6, p. 1483
[33] Reciprocity identity for periodic surface scattering, IEEE Trans. Antennas Propag., Volume 27 (1979) no. 2, pp. 252-254
[34] Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science, Volume 334 (2011) no. 6054, pp. 333-337
[35] Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets, Phys. Rev. Lett., Volume 110 (2013) no. 19, 197401
[36] Wave-front transformation with gradient metasurfaces, Phys. Rev. X, Volume 6 (2016) no. 4, 041008
[37] Invited article: broadband highly efficient dielectric metadevices for polarization control, APL Photonics, Volume 1 (2016) no. 3, 030801
[38] Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization, Phys. Rev. Lett., Volume 118 (2017) no. 11, 113901
[39] High-efficiency broadband anomalous reflection by gradient meta-surfaces, Nano Lett., Volume 12 (2012) no. 12, pp. 6223-6229
[40] Manipulating optical reflections using engineered nanoscale metasurfaces, Phys. Rev. B, Volume 89 (2014) no. 23, 235419
[41] Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics, Appl. Phys. Lett., Volume 82 (2003) no. 3, pp. 328-330
[42] Dual-polarity plasmonic metalens for visible light, Nat. Commun., Volume 3 (2012), p. 1198
[43] Miniature adjustable-focus endoscope with a solid electrically tunable lens, Opt. Express, Volume 23 (2015) no. 16, pp. 20582-20592
[44] Micro-optical design of a three-dimensional microlens scanner for vertically integrated micro-opto-electro-mechanical systems, Appl. Opt., Volume 54 (2015) no. 22, pp. 6924-6934
[45] MEMS-tunable dielectric metasurface lens, Nat. Commun., Volume 9 (2018) no. 1, p. 812
[46] Metasurface freeform nanophotonics, Sci. Rep., Volume 7 (2017) no. 1, p. 1673
[47] Tunable metasurface and flat optical zoom lens on a stretchable substrate, Nano Lett., Volume 16 (2016) no. 4, pp. 2818-2823
[48] Thermal actuated solid tunable lens, IEEE Photonics Technol. Lett., Volume 18 (2006) no. 21, pp. 2191-2193
[49] An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared, Nat. Nanotechnol., Volume 8 (2013) no. 4, p. 252
[50] Broadband high-efficiency dielectric metasurfaces for the visible spectrum, Proc. Natl Acad. Sci. USA, Volume 113 (2016) no. 38, pp. 10473-10478
[51] Refractive indexes and temperature coefficients of germanium and silicon, Appl. Opt., Volume 15 (1976) no. 10, pp. 2348-2351
[52]
(Topology optimizations are performed with COMSOL optimization module, using SNOPT method. Forward simulations are performed using RF module in the frequency domain. www.comsol.com)[53] https://www.mathworks.com/) using LiveLink interface (https://www.comsol.com/livelink-for-matlab)
Genetic algorithm minimizations are performed in MATLAB ([54] Flat acoustics with soft gradient-index metasurfaces, Nat. Commun., Volume 10 (2019) no. 1, pp. 1-6
[55] Programmable acoustic metasurfaces, Adv. Funct. Mater., Volume 29 (2019) no. 13, 1808489
[56] Unidirectional thermal radiation from a SiC metasurface, J. Opt. Soc. Amer. B, Volume 35 (2018) no. 1, pp. 39-46
[57] Shaping wavefronts of single photons with metasurfaces (Conference Presentation), Proc. SPIE 11344, Metamaterials XII, 113440O (1 April 2020), SPIE, 2020
[58] Controlling quantum interference using metamaterials, Proc. SPIE 11091, Quantum Nanophotonic Materials, Devices, and Systems 2019, 110911D (3 September 2019), SPIE, 2019
[59] Metasurface interferometry toward quantum sensors, Light: Sci. Appl., Volume 8 (2019) no. 1, pp. 1-7
[60] Quantum metasurfaces with atom arrays, Nat. Phys. (2020), pp. 1-6
Cité par Sources :
Commentaires - Politique